
CSE 331: Software Design & Implementation Winter 2025

Week 9 Definitions

This week, we will work with locations on a 2D map. We will represent locations as follows:

type Location :“ tx : R, y : Ru

A basic operation on locations is calculating the distance between them. This can be done using
the function dist : pLocation, Locationq Ñ R, which is defined as follows:

distpℓ, rq :“
a

pℓ.x ´ r.xq2 ` pℓ.y ´ r.yq2

We will be interested in finding the location, from amongst a list of possibilities, that is closest to a
given target location. The simplest way to do this would be to calculate the distance of each location in
the list to the target location. However, we can do this more efficiently by using a better data structure,
namely, a tree, similar to the one we used in HW8, that recursively break up the points into smaller
rectangles until each rectangle is either empty or contains a single point.

Trees of Locations

For example, with the four blue points below, we would start by splitting them at point “m1” (the
centroid of those locations). The NW and NE regions then contain only a single point and the SW
region is empty. The SE region, however, still contains two points, so we would split them again at
point “m2”, which leaves four regions containing at most one point.

a

b

c

d

m1

m2

We can represent this tree with the following inductive data type:

type LocTree :“ empty

| singleploc : Locationq

| splitpat : Location, nw : LocTree, ne : LocTree, sw : LocTree, se : LocTreeq

The constructor “empty” represents a region that is empty, while “singlepsq” represents a region con-
taining a single location at location s. The final constructor “splitpm, nw, ne, sw, seq” represents a region
that splits at location m into the four regions to the NW, NE, SW, and SE, respectively.

With those definitions, the example above would be represented with the following tree:

splitpm1, singlepaq, singlepbq, empty,

splitpm2, singlepcq, empty, empty, singlepdqqq

1



Regions

Note that, while each node represents some rectangular region in space, the bounds of that region are
not recorded in any field. That said, we can easily calculate the bounds of the region as we work down
to that node, recursively, through the tree.

Specifically, we can store a rectangular region as an instance of the following type

type Region :“ tx1 : R, x2 : R, y1 : R, y2 : Ru

The region R contains the location ℓ iff R.x1 ď ℓ.x ď R.x2 and R.y1 ď ℓ.y ď R.y2. Thus, the
following region includes every point in the plane:

EVERYWHERE :“ tx1 : ´8, x2 : 8, y1 : ´8, y2 : 8u

The following functions NW, . . . ,SE : pLocation,Regionq Ñ Region return the intersection of the
region passed in with one of the quadrants of a node that was split at the location passed in. For
example, NWpm,Rq would return the region that includes only the area that is both inside of R and
northwest of m (i.e., an x coordinate that is ă m.x and a y coordinate that is ă m.y).

These functions assume that m falls within the region R, and they are defined as follows:

NWpm,Rq :“ tx1 : R.x1, x2 : m.x, y1 : R.y1, y2 : m.yu

NEpm,Rq :“ tx1 : m.x, x2 : R.x2, y1 : R.y1, y2 : m.yu

SWpm,Rq :“ tx1 : R.x1, x2 : m.x, y1 : m.y, y2 : R.y2u

SEpm,Rq :“ tx1 : m.x, x2 : R.x2, y1 : m.y, y2 : R.y2u

For example, NW pm,Rq leaves the left side of the region at R.x1, but it extends the region to the
right to m.x. Any point further right than that is outside the region to the NW of m.

Returning to our example from before

a

b

c

d

m1

m2

the shaded region, which is the region that lies in the SE quadrant of the split at m1 and then, within
that, the NW quadrant of the split at m2, can be calculated as NWpm2, SEpm1,EVERYWHEREqq.

2


