
CSE 331: Software Design & Implementation Winter 2025

Homework 9
Due: Friday, March 14th, 11pm

Written

Submission

After completing all parts below, submit your solutions as a PDF on Gradescope under “HW9 Written”.
Don’t forget to check that the submitted file is up-to-date with all written work you completed!

Make sure your work is legible and scanned clearly if you handwrite it, or compiled correctly if you
choose to use LaTeX. Match each HW problem to the page with your work when you turn in. If your
work is not readable or pages are not assigned correctly, you will receive a point deduction.

In this assignment, we will be working with LocTree as we worked with in section. For more
information on all of the data structures and definitions used, please refer to the resource found here:
https://courses.cs.washington.edu/courses/cse331/25wi/homework/hw9def.pdf.

1

https://courses.cs.washington.edu/courses/cse331/25wi/homework/hw9def.pdf


Task 1 – He’s Making a Dist, and Checking It Twice [5 pts]

We defined a function “dist” before that calculates the distance between two locations. It will also be
useful for us to have a function distTo : pLocation,Regionq Ñ R that calculates the distance from the
given location to the closest location in the given region. This gives us a lower bound on the distance
to any location within that region.

To define this function, distTopℓ, Rq, we will break our analysis into a few different cases. The first
case is when ℓ is within R. In that case, the distance from ℓ to R is 0.

(a) Write an expression that is true iff location ℓ falls within the region R.

(b) If ℓ is not within R, then our next case is when it is directly below, above, to the left, to the right.
For example, if ℓ is directly below, then the picture looks like this:

ℓ

As we can see, the closest location to ℓ in the region R is directly above ℓ.

Write an expression that is true iff location ℓ is directly below R.

(Note that larger y values are farther down on the page.)

(c) Write an expression that calculates the distance from ℓ to the closest location in R when ℓ is
directly below R.

(d) If ℓ is not within R and not directly below, above, left, or right, then it is in one of the regions
diagonally away from R (above and left, above and right, below and left, or below and right). For
example, if ℓ is below and right, then the picture looks like this:

ℓ

In this case, the closest point is the bottom-right corner of R.

Write an expression that is true iff location ℓ is below and right of R.

(e) Write an expression that calculates the distance from ℓ to the closest location in R when ℓ is
below and right of R. Feel free to use the function dist defined before.

2



Finding the Closest Location

The function closest : pLocTree, Location, Locationq Ñ Location finds the closest location in the given
tree to a given location. More specifically, when invoked as closestpT, ℓ, cq, it returns either the closest
location in the tree T to ℓ or the location c, whichever is closer to ℓ. It is defined as follows:

closestpempty, ℓ, cq :“ c

closestpsingle(s), ℓ, cq :“ c if distpc, ℓq ď distps, ℓq

closestpsingle(s), ℓ, cq :“ s if distpc, ℓq ą distps, ℓq

closestpsplitpm, nw, ne, sw, seq, ℓ, cq :“ closestpnw, ℓ,

closestpsw, ℓ,

closestpse, ℓ,

closestpne, ℓ, cqqqq

The splitp. . . q case performs a tree traversal.
It recurses into the NE quadrant, and the call results in the closest location to ℓ within the NE

quadrant, or c if the NE quadrant has no locations that are closer to ℓ than c is.
The result from traversing the NE quadrant is passed to a recursive call to traverse the SE quadrant

as the updated closest location found, call it c2. This SE traversal results in the closest location to ℓ
within the SE quadrant, or c2 if the SE quadrant has no locations that are closer to ℓ than c2.

This process continues through the SW and then the NW quadrant.

The location returned from the final recursive call is the closest location of the NW branch to ℓ
unless a closer location to ℓ was already found in the SW branch, or the SE branch, or the NE branch,
or the originally given 3rd parameter, c. This fact that c is returned from closest if every location in the
tree is farther away from ℓ will be a useful fact later on! (And can be proven formally by induction.)

The particular order chosen here — NE, SE, SW, NW — traverses the quadrants in clockwise order.
We could traverse the quadrants counter-clockwise or in any order we want by switching the order of
nw, . . . , ne in the recursive calls.

3



Task 2 – Going Weak in the Trees [18 pts]

Notice that each subtree traversal in closest will traverse all the way down to single location subtrees
and directly calculate the distance between that location and ℓ. Distance calculations are expensive, so
we want to avoid traversing into subtrees if we know we won’t be able to find a closer location than
we’ve already found (c).

We will define a function cl : pLocTree, Location, Region, Locationq Ñ Location that looks like
closest but takes an extra argument that is a region containing all the points in the tree. With this, it
will exclude quadrants of split nodes from the traversal when its region is farther away from ℓ than the
known c is (and therefore cannot contain any closer location).

clpempty, ℓ, R, cq :“ c

clpsingle(s), ℓ, R, cq :“ c if distpc, ℓq ď distps, ℓq

clpsingle(s), ℓ, R, cq :“ s if distpc, ℓq ą distps, ℓq

clpsplitpm, nw, ne, sw, seq, ℓ, R, cq :“ c if distpℓ, cq ď distTopℓ, Rq

clpsplitpm, nw, ne, sw, seq, ℓ, R, cq :“ clpnw, ℓ,NWpm,Rq, if distpℓ, cq ą distTopℓ, Rq

clpsw, ℓ,SWpm,Rq,

clpse, ℓ,SEpm,Rq,

clpne, ℓ,NEpm,Rq, cqqqq

The split case from closest has become two cases. In the first case, when distpℓ, cq ď distTopℓ, Rq, we
know that all the locations within this subtree are farther away than c is from ℓ, so we skip the recursive
calls and simply return c. It is only in the second case, when distpℓ, cq ą distTopℓ, Rq, that we perform
the recursive calls.

We use the functions NW, NE, SW, SE to calculate a smaller region that only includes the part of
R that falls within that quadrant and pass that region in the recursive call. (See the Week 9 Definitions
resource for an example of using these functions.)

(a) Prove that, if the region R contains all locations in the tree T , then clpT, ℓ, R, cq “ closestpT, ℓ, cq.
Your proof should be by structural induction on T .

Feel free to use the fact that, if R contains all the locations in splitpm, nw, ne, sw, seq, then
NWpm, nwq contains all the locations in nw and likewise for ne, sw, and se.

Remember that, because distTopℓ, Rq is the distance from ℓ to the closest location in R, any
other location s in R must satisfy distpℓ, sq ě distTopℓ, Rq. Hence, if distpℓ, cq ď distTopℓ, Rq

(ď distpℓ, sq), then we know already that s cannot be closer to ℓ than c. Thus, if R contains all
the locations in the tree, then none of them can be closer to ℓ than c, and we can simply return
c immediately as the closest, which is exactly what cl does in its definition above.

Hints:

- We covered a suspiciously similar problem in section that you should use as a direct reference
for how to organize your proof.

- Your base case and inductive step will need to contain a proof by cases.

- Our claim states “if the region R contains all locations in the tree...,” but you still need to
state the claim holds in the vacuous cases when the region R does not contain all locations.

4



Coding

Submission

After completing all tasks to follow, submit your solutions on Gradescope. The following completed files
should be submitted to “HW9 Code”:

locations.ts locations test.ts location tree.ts location tree test.ts

routes.ts routes test.ts index.ts MapViewer.tsx

App.tsx FriendsEditor.tsx

Set up

Start by checking out the starter code using the command

git clone https://gitlab.cs.washington.edu/cse331-25wi/materials/hw9-campusfriends.git

Install the node modules: Create two terminals. Navigate to the /client directory in one and the
/server directory in the other, and run npm install --no-audit in both. To run the app, you’ll
need to run the command npm run start in both the /client and /server directories. Then navigate
to where the client is running http://localhost:8080/.

Like HW8, mutation is permitted in the /server but not the /client.

5



So your internship project “CampusMaps” from week 3 was a hit with the development team of Comfy
Inc, so you were offered a return offer with the condition that you could add new features to improve
the app. The feature you came up was to be able to find friends that will be nearby when you go to
class. Kevin the CEO of Comfy Inc hears this and is over the moon with the idea, so now all that’s left
for you to do is to implement it.

Before you start Kevin has some wise words he would like to impart onto you. Building on an
existing app requires first understanding existing code. Know that it is expected that you may have
to spend time reading starter code (and tests), using the app, drawing diagrams and/or anything else
that’s useful to understanding the context around the tasks you’ll need to complete. The spec also
requires a lot of reading, but its worth it to take time to understand.

As a note from the development team we’ve unfortunately been a little lost without our star intern,
and this is a work in progress, so if you encounter any bugs please report them to upper management,
but don’t feel the need to fix them.

Instead of only having the map, the starter code now supports multiple users by beginning with a
“login” page1 using a dropdown to select a user:

Feel free to update the code in users.ts to include yourself and your friends.

After logging in, the user will be able to see the map from the original app:

You can specify and add in your classes which will appear in a list. During the 10 minutes before each
class, users will be walking from their previous class, and the “Show path at” dropdown allows you to
display the path to get to class on the map.

1A real version of this application would authenticate with a password or similarly secure mechanism.

6



Task 3 – Let’s Do Dist Thing [10 pts]

Before we can add our super cool feature, we need to implement some helper functions.
The following types and functions we began working with in HW9 written (some of which we also

saw in HW3) have been translated to typescript in server/src/locations.ts.

type Location = {x: number, y: number};

type Region = {x1: number, x2: number, y1: number, y2: number}

const distance = (loc1: Location, loc2: Location): number

The starter code also includes a function called squaredDistance that simply skips the final square
root of the distance calculation, making it substantially cheaper, but equally useful when the only
requirement is comparing distances (e.g. is point b or c farther away from point a). You should use
squaredDistance instead of distance whenever possible in the following tasks.

We will start by implementing the following helper function in locations.ts:

const distanceMoreThan = (loc: Location, region: Region, dist: number): boolean

This should check whether the distance from the given location to the closest point in the given region
is more than dist. (An alternative for the user would be to use the distance function to calculate the
distance to the region and compare it to dist directly, but that would require a square root. By taking
dist as an argument, we can answer the “more than” question using squaredDistance alone.)

It remains to figure out what point in the region is closest to the given point. Since the closest
point must be along a boundary, it is either one of the corners or a point along one of the four sides.
As the following figures demonstrate, when the location is in line with the region — either vertically or
horizontally – then the closest point is the first point along that line, which is on a side. Otherwise, the
closest point is the nearest corner.

(a) Implement the function distanceMoreThan in locations.ts. Make sure that your function
does not call distance or otherwise use any square root calculations.

Carefully think through your code to make sure it is right. Finding and fixing a bug in this
code will only get harder later on, so do the work now to make sure it is right!

(b) Write tests for your function in locations test.ts. Make sure that you cover all required cases.

The debugging will only get harder if you miss a bug now.

7



Task 4 – The Best Things in Life are Tree [20 pts]

In this part, we will implement a TypeScript function that finds the Location in a LocTree closest
to a given Location. This may sound very familiar and that’s because you worked with a function that
did just this in Task 2 with the function cl!

Our function will have the same results as cl but with a slightly modified recursive search. Instead
of searching in counter clock-wise order, we’ll search the regions by distance to the given location. This
gives us a nice heuristic for finding closest points sooner as they’re likely to be within regions that are
nearer.

Note that this alternative order does not impact the accuracy of this function! Check out Task 2
where we proved that cl accurately found the closest location, would the proof have still worked if the
recursive calls were completed in a different order?2

Take the following example. The blue points are part of the location tree, and we want to find the
closest of those to the given green point.

(Note, in this case the centroid of the points in the bottom-right corner causes the points to end up
on the boundary line. Both points end up in the region to the right of the boundary. See buildTree

in location tree.ts to see more details!)

11

2

Since the green node falls into the SW region of the split at “1”, we should start by recursively finding
the closest point there. That region is empty, so we move on.
The region next closest to the green point is the SE region, so we recursively search there next. That
is itself a split node. The green node is closest to the NW region of “2”, so we search there. That
contains a blue node that is at a distance shown by the radius of the circle in this figure:

11

2

2Hint: yes, it would have still worked!

8



This distance becomes an upper bound on the closest distance of any point in the tree. We may later
find points that are closer, but if they are, they would need to be closer than this region.

The next closest region in the “2” split is the SW region. We can see that its north-west corner falls
just within the circle, so it is possible for it to contain a closer node, so we need to search it recursively,
but when we do so, we find that it has no closer points.

The next closest region in the “2” split is its NE region, but its distance to the green point is larger
than the closest point found so far, so we can skip search it all together. The same goes for the SE
region of the “2” split. That completes the search of the SE region of the split marked “1”. We have
a candidate closest point and have performed two distance calculations.

When we return from searching the SE region, we go back to our search of the split marked “1”.
The next closest region (after SW and SE) is the NE region. We find that the circle does not intersect
it, so we can skip it. Likewise for the NW region. Thus, we now know for sure that the first point we
found was the closest, and we did so using only two distance calculations.

In addition to a slightly different recursive search order, we will also change the c parameter and
the return value to the following record type:

type ClosestInfo = {loc: Location | undefined, dist: number}

This will allow us to keep track of the closest location found so far as well as its distance to the given
location. Since distance calculations are expensive, this will help us avoid recomputing them on every
recursive call.

With that in mind, the actual signature of the function we want to implement is the following:

const closestInTree = (tree: LocationTree, loc: Location,

bounds: Region, closest: ClosestInfo): ClosestInfo

The LocTree type and the other math definitions we defined in the Week 9 definitions sheet are
implemented in TypeScript in locations.ts and location tree.ts.

(a) Implement the function closestInTree in location tree.ts.

Your function should begin by checking whether the distance from loc to the bounds of
that region is more than the distance to the closest point found so far. If it is, then you can skip
searching this subtree. (The closest point remains the one passed in.)

Otherwise, if the tree is empty, the closest point remains the same. If it is a single node,
then we need to perform a distance calculation. If it is closer than the closest so far, we return it;
otherwise, we return the existing closest.

Lastly, if we have a split node, then we need to search through the subregions in order by
the distance to loc (without calling the distance function!), make a recursive call for each of
them, update the closest each time to the result of the call, and return the closest from the last
recursive call as the closest point in the subtree.

There are, only eight different orders that you might go through the subregions, so you should
implement this with fairly simple if / else statements.

(b) Write tests for your function in location tree test.ts. Make sure you cover all required cases.

Again, the debugging will only get harder if you miss a bug now.

9



Task 5 – I’m All Nears [23 pts]

We now have all the helper functions we need to implement the server part of our new feature.
Now we want to add functionality to store a list of friends on the server for each server (check out

the next page for a hint on what this will eventually be used for).
We also want to change the shortestPath route so that, in addition to returning the shortest path

for the user, it also returns the closest point in the path of any friend that is also walking at that time.
We will provide that information in an array of records, each having the following shape:

type Nearby = {friend: string, dist: number, loc: Location};

(a) Add or edit existing route(s) in routes.ts to get and set an updated list of friends per user.

Each “friend” is just represented by their string name.

Feel free to edit any existing data structures, routes, and index.ts as you see fit.

(b) Modify the function getShortestPath in routes.ts so that the JSON response sent back
includes a list of Nearby records for each friend who is walking at the same time.

Follow the TODOS in getShortestPath to grab friendship information according to how you
decided to store it in the last part.

If the two lists contain n and m points respectively, then a naive algorithm would perform
n ˆ m distance calculations. We can use an optimized approach of putting the second list of
points into a tree using buildTree and then call findClosestInTree to find the closest pair of
points with only Opn logmq distance calculations.

(c) Modify the tests this function in routes test.ts so that it also tests the cases where friends
are nearby. This will require adding a schedule for another friend and making sure they will be
walking between locations at the same hour.

Write/modify tests for setting and getting the list of friends on the server depending on how
you implemented this functionality in part a).

As annoying as it may seem to write these tests, debugging a problem in the UI that is actually
a bug in the server is much more work, so be sure that your code is correct before continuing.

10



Task 6 – Jolly Green Client [24 pts]

Now that the server is working correctly, we will switch over to the client and work towards this beautiful
final product3.

We want to change the UI to allow users to choose which users are actually their friends. Then
update the map to show all the nearby friends of the user who will also be walking between classes. The
bronze dot in the middle of the path represents the point on Kevin’s walk to class that is nearest to a
point on James’ walk to class.

(a) Implement FriendsEditor to allow users to Friend and Unfriend the other users. Complete the
TODO to render this component in App and pass in any needed props.

Add or update fetch request, status code, and response parsing functions in App to reflect
updated lists of friends on the server and get the list of friends when the main page opens.

(b) Modify doHourChange in MapViewer.tsx to record the list of nearby points in the state when it
is returned by the server.

We have provided a function called parseNearbyList in nearby.ts that turns the JSON
data back into the TypeScript Nearby type.4

(c) Modify renderEndPoints to draw a circle showing the location of each of the nearby friends and
renderLegendItems to identify that circle on the legend.

At the bottom of the file, you’ll see a commented out list of colors FRIEND COLORS that you
are free to use (or you can pick your own colors). If there are more friends than colors, you can
either reuse colors or only show that many friends.

Congratulations!! on completing your biggest app of the quarter!

3Yours doesn’t have to be as beautiful as ours, or even look like this at all, you just need to complete the required
functionality. If you want tips on styling things also, feel free to ask!

4You’re welcome!

11


