
CSE 331: Software Design & Engineering Winter 2025

Homework 4
Due: Wednesday, February 5th, 11pm

While problem sets 1–3 focused on learning to debug, the next few will focus on how to write code in
such a manner that debugging occurs much less frequently (ideally, not at all) because the code we
write is known to be correct before we run it for the first time.

With that goal in mind, the next few assignments will have written and coding components, where
the written part is to be completed before starting on the coding part.

This worksheet contains the written and coding parts of HW4.

Submission

After completing all parts below, submit your solutions on Gradescope. The collection of all written
answers to problems described in this worksheet should be submitted as a PDF to “HW4 Written”.

Don’t forget to check that the submitted file is up-to-date with all written work you completed!

You may handwrite your work (on a tablet or paper) or type it, provided it is legible and dark enough
to read. When you turn in on Gradescope, please match each HW problem to the page with your work
on it. If you fail to have readable work or assign pages, you will receive a point deduction.
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Written

Task 1 – Off the Beaten Math [12 pts]

For each of the following functions, translate the code into a function definition written in our math
notation, using pattern matching. Unless the comments above the code say otherwise, you can assume
that any value of the declared TypeScript type is allowed by the function.

Make sure your rules are exclusive and exhaustive!

(a) const a = (s: bigint, o: boolean): List<bigint> => {

if (o) {

return cons(s, cons(-s, nil));

} else {

return cons(-s, cons(s, nil));

}

};

(b) const b = (t: [bigint, bigint], o: boolean): [bigint, bigint] => {

const [i, j]: [bigint, bigint] = t;

if (o) {

return [i + 1n, j];

} else {

return [j - 1n, i];

}

};

(c) // s and t allow only non-negative integers

const c = (r: {s: [bigint, bigint], t: bigint}): bigint => {

const [i, j]: [bigint, bigint] = r.s;

if (r.t === 0n) {

return i;

} else if (r.t === 1n) {

return i * 2n;

} else {

return j + c({s: r.s, t: r.t - 1n});

}

};
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Task 2 – Bigger Fish to Tri [12 pts]

In this problem, we will practice a skill that you will use a lot in coming assignments. We’ll start with
an English description and formalize that description into a mathematical definition which could serve
as a specification if we were to write this in TypeScript.

We’ll be converting an English description of a function that calculates Triangular numbers to math
notation. We’ll denote a Triangular number as tpnq for some non-negative integer n. We define tp0q “ 0
and tp1q “ 1. After that, we define tpnq to be the sum of the previous Triangular number and the nth
index of the current Triangular number. With that definition in hand, our goal is to write a function
“spnq” that gives the sum of the first n Triangular numbers. For example, sp2q “ tp0q ` tp1q “ 1.

For reference, here are the first five members of the Triangular sequence and their sums:

n spnq

0 0
1 0
2 1
3 4
4 10
5 20

(a) The description above is in English, so our first step is to formalize it into a math notation.

Define two mathematical functions, “t” and “s”, both taking non-negative integers as input.
Define each function recursively with pattern matching.

(b) Show how your mathematical definition would execute sp6q “ 35 by writing out the sequence of
recursive calls. Include the arguments and what is returned for each recursive call.

Use any sensible notation to clearly show the sequence of calls. (If a call is made a second time,
you can reuse the result of that call without showing all recursive calls that would be made.)
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Task 3 – Quacked the Code [12 pts]

In this problem, we will create some functions that allow us to encode secret string messages.
Our messages will be represented as lists of integers, where each integer is in the pond 0–25 and

the integer i represents the i-th Latin letter. For example, ‘a’ = 0, ‘b’ = 1, and ‘z’ = 25.

Let’s start by discussing how we encode individual characters.
So, there’s a new super secure cipher in town called the Quack Cipher. To encode a single character

within the cipher we have a few cases. If we reach an i-th character representing a Latin letter in “duck”
then we replace that ith character with the next latin letter in “duck”. For example, ’k’(10) becomes
’d’(3) after being encoded.

If we don’t land on an i-th character representing a latin letter in “duck” then the i-th character
will waddle over the pond. We will say that “Waddling” the i-th character means swapping the i-th
character with the i-th character from the end of our pond (excluding the latin letters in “duck”). For
example, waddling turns ‘a’ (0) into ‘z’ (25), ‘e’ (4) into ’x’ (23), ‘s’ (18) into ‘i’ (8) etc.

To encode a message, which is a list of characters, we apply the character encoding individually to
each character in the list.

(a) Above, we were given an English definition of the problem, so our first step is to formalize it.

The function “qw” will take an integer within the pond 0–25 as input and returns the value
produced by following the encoding rules as described above. For integer values outside the pond
0–25, we define qw to leave those unchanged.

(b) Now, given “qw” defined in part (a), formalize the “Quack Cipher”, which encodes messages.

Write a formal definition using recursion. Assume that the mathematical function “qw”
defined in part a) correctly implements the behavior described above.
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Before we can get to the next two problems, we need the following mathematical definitions.

Blocks

In this assignment, we will write some math that displays mazes. Each maze is made up of Blocks.
Mathematically, each block is a record of the following type:

type Block :“ tform : STRAIGHT, color : Color, direction : Lineu

| tform : ANGLED, color : Color, direction : Corneru

Individual Blocks include a color property, which are elements of the following type:

type Color :“ PURPLE | RED

Blocks also include a direction property that describes how the block is oriented (i.e. how it is
rotated). direction is defined with different types depending on the form property of the block.

STRAIGHT Blocks contain a straight line that spans the block in 1 direction, either top to bottom
(a vertical line), or right to left (a horizontal line). This is defined with the following type:

type Line :“ TB | LR

ANGLED Blocks contain a line that starts at one side of the block, angles, and exits at another.
ANGLED block directions are described as the corner of the square created by the angle within the
block. This is defined with the following type:

type Corner :“ TR | TL | BR | BL

The straight and angled blocks shown above are ordered in the same order as their union type
definition. This means that the first angled block is a TR block, the second is a TL block, and so on.

Mazes

A maze is a 2D table of blocks. We will represent each maze as a list of lists of blocks. We will call a list
of blocks a “row”, and then a maze is a list of rows. As mentioned in the last problem, our current List
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type has integer elements, so to express rows and mazes we will define these two new types inductively
as follows:

type Row :“ rnil | rconsphd : Block, tl : Rowq

type Maze :“ mnil | mconsphd : Row, tl : Mazeq

All rows in a maze should have the same length. Mathematically, we define the function
rlen : Row Ñ N defines the length of a row by:

rlenprnilq :“ 0

rlenprconspa, Lqq :“ 1 ` rlenpLq

Note, however, that our type definitions allow the maze to contain rows of different lengths! It is
an additional invariant of the Maze type that all rows in each maze must have the same length.

We can also define concatenation of rows. The function rconcat : pRow,Rowq Ñ Row is defined by:

rconcatprnil, Rq :“ R

rconcatprconsps, Lq, Rq :“ rconsps, rconcatpL,Rqq

These two functions, whose names start with “r”, are defined on lists of blocks (rows). There are
analogous definitions of functions, mlen and mconcat, whose names start with “m”, that operate on
lists of rows (mazes).

This maze has the structure as follows:
mcons(rcons(tl, rcons(tr, rnil)), mcons(rcons(bl, rcons(br, rnil)), mnil)) where
tl = {form: ANGLED, color: PURPLE, direction: TL}
tr = {form: ANGLED, color: PURPLE, direction: TR}
bl = {form: ANGLED, color: PURPLE, direction: BL}
br = {form: ANGLED, color: PURPLE, direction: BR}
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Task 4 – Mazed and Confused [14 pts]

With these definitions, we can create mazes like those pictured below. Someone trying to make their
way through these small, simple mazes perhaps wouldn’t get lost, but you can imagine that these simple
designs could be composed to make more complex mazes.

(a) Our first exercise is formalizing the maze designs above by using the definitions of the Block
and Maze types from the previous page. Write mathematical definitions for functions “mazeA”,
“mazeB” which creates 4 ˆ 2 (rows ˆ cols) mazes, and “mazeC” which creates a 6 ˆ 2 maze
matching those shown above. Write them in the most straight-forward manner –no loops or
recursion!

Additionally, have these mazes accept one parameter, an argument of type Color, which will
determine whether the blocks of the maze should be PURPLE (as shown above) or RED.

(b) Next, we’ll define recursive functions that repeat these designs to allow for creating larger mazes.

Your mathematical definitions should accept an argument, n, which is a natural number
defining the number of rows the design should have, as well as the same color parameter as
before. Your functions should have 1 recursive case, in which rows of blocks should be added to
the result, and 1 base case.

Maze A and maze B repeat every 2 rows. Maze C repeats every 3 rows, where the first 3
rows of the design above are those to repeat (you can see the pattern start again in the forth row,
and you can assume it continues by repeating the second row next and then the third).

In other words, maze A and maze B are defined for any even number of rows while Maze C
is defined on numbers of row that are multiples of 3. This should be useful insight for how to
define your recursive cases, and you can assume this restriction on allowed inputs is part of the
specification for these functions visible to users.
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Task 5 – My Flips are Sealed [16 pts]

In this problem, we will write a function that “flips a maze horizontally, as if mirrored across a vertical
line through the center”.

Here is an example (the right maze is the result of horizontally flipping the left maze around the
center line):

(a) The problem definition was in English, so our first step is to formalize it.

Start by writing a mathematical definition of a function “bflip” that flips a block horizontally.

(b) Next, we will define a mathematical function “rflip” that flips a row horizontally.

Let’s start by writing this out in more detail. Let e, d, and f be blocks. Fill in the blanks
showing the result of applying rflip to different rows, which we will write as lists of blocks. Note
that this operation flips individual blocks horizontally, but also reverses their order in the row!

Feel free to abbreviate bflip in your answer as “b”.

rnil

rconspd, rnilq

rconspd, rconspe, rnilqq

rconspd, rconspe, rconspf, rnilqqq

. . .
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(c) Write a mathematical definition of a function rflip using recursion.

Hint: it may be useful to review definition of the function rev, for reversing a list, which is
defined in the notes on lists posted on the website. Also, remember that the function rconcat,
which concatenates two rows, is already provided for you.

(d) Now, we are ready to define a function “mflip” that flips a maze horizontally.

Again, let’s start by writing this out in more detail. Let u, v, and w be rows. Fill in the
blanks showing the result of applying mflip to different mazes, which we will write as lists of rows.

Your answers should use rflip (not bflip), which you can abbreviate as just “r”.

mnil

mconspu,mnilq

mconspu,mconspv,mnilqq

mconspu,mconspv,mconspw,mnilqqq

. . .

(e) Write a mathematical definition of a function “mflip”.
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Coding

To get started, check out the starter code for this assignment:

git clone https://gitlab.cs.washington.edu/cse331-25wi/materials/hw4-maze.git

Navigate to the hw4-maze directory and run npm install --no-audit. For this assignment, we have
provided (and will ask you to write) unit tests. To run the tests, use the command npm run test. To
run the linter, use npm run lint.

Submission

After completing all tasks to follow, submit your solutions on Gradescope. The following completed files
should be submitted to “HW4 Code”:

designs.ts maze ops.ts App.tsx Viewer.tsx funcs test.ts

After you submit your work, an autograder will run which verifies you have submitted the correct
files, runs the linter, and runs tests (including those you submit, the tests we provide in the starter code,
and some additional staff tests). As usual, the autograder is worth points, so you should wait until
the autograder completes to make sure it passes, and otherwise resubmit. Meaning you should leave
enough time to fix possible issues before the deadline. As usual, we will also manually grade your code
(including test cases).
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Task 6 – It’s Simply Design [22 pts]

In the first part of this problem, we will translate mathematical definitions for functions into TypeScript
code. Then, we will complete a client side app that utilizes those functions.

When translating, we will treat the math definitions as imperative specifications for the TypeScript
functions, so the translations should be “straight from the spec” –a direct translation.

We have provided tests for these functions based on their correct behavior as described in the
English/picture descriptions from the written tasks. You should run these tests to get a good idea of if
your implementations are correct using the command npm run test.

If the tests fail, indicating a bug in your TypeScript functions, you should fix these bugs to try to
get the tests to pass.

(a) Translate your mathematical definitions from HW4 Task 4(b), the recursive functions for each
maze design, into TypeScript code in designs.ts.

You should only translate the recursive definitions that you wrote in part (b), you do not need
to translate the 2ˆ 4 / 2ˆ 6 versions from part (a). Please maintain the order of the parameters
as given in those declarations, even if it deviates from the order in your mathematical definition,
as it is required for testing.

The types and helper functions related to mazes (as described in the HW4 Written spec) are
translated to TypeScript for you in maze.ts; import those to designs.ts and use as needed.
The provided tests for these functions are in designs test.ts.

Make sure to complete the TODO in the comment of each recursive maze function to copy
over your math definition from Task 4.

(b) Translate your mathematical definitions from HW4 Task 5 (a), (c), and (e), the functions for
each type of flip, into TypeScript code in maze ops.ts. The provided tests for these functions
are in maze ops test.ts.

Again, make sure to complete the TODO in the comment of each flip function to copy over
your math definition from Task 5.

With these interesting maze functions in hand, we can use them in a super cool app. You can run the
app with the command npm run start. Currently, you will get lots of errors about unused variables
and other problems (since the app is incomplete), but after this next part, you’ll have a maze designer
app where you can design A, B and C mazes with different colors, numbers of rows, and flips.
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It will display the designed maze in an “experimentation” view, where you can continue to adjust the
maze design. For example, the image on the left is the result of clicking “Go” with the selections
shown in the image on the previous page, and the image on the right is the result of clicking “Flip” and
“Double” on that initial design.

Importantly, we want users to be able to maintain their experiment settings and see them reflected in
the initial input areas when they go “Back”, as so:

(c) We have provided starter code that lays out the components we will use, constructs all the html
for the buttons and input areas, and handles rendering all the maze blocks. It is your job to
fill in some gaps that will allow the input page, App, and the maze viewing page, Viewer, to
communicate with each other.

Familiarize yourself with the existing code in both components, and make note of the TODO
comments which outline where you will need to add some code. If you have any questions about
the existing code, it’s a good idea to ask on Ed or in OH before writing any code yourself.

App contains states that reflect the values in each of the input areas on the screen. It also
has a state renderMaze which it uses to determine whether the initial input page or the maze
display page should be rendered. It also has some error handling to make sure users can only
create well-formed mazes (e.g. prevents mazes with no color, or a design C maze with an even
number of rows).

Viewer is responsible for rendering the maze pattern specified which is done with a custom
MazeElem component which takes a Maze as a prop specifying the design to create. We provided
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this custom component for you, and you are not required to understand how it works, but feel
free to check it out. In order to create a MazeElem, the Viewer needs to have access to all the
necessary attributes of the maze to create.

Currently, the Viewer has states for some maze attributes, associated with the experimen-
tation buttons, which it updates when they are clicked, but they are initialized with hardcoded
values instead of the real values that the user inputted on the initial page.

Once a user is done experimenting, they need to be able to click “Back” to return to the main
page and see all the up-to-date inputs for the maze they were just experimenting with. Currently,
the Viewer just prints out a TODO message when the “Back” button is clicked, and there is no
way for the App component to see the updates to the maze design that have been made while
experimenting.

To fix these problems, we will need to define some props passed from the parent component,
App, to the child component, Viewer. Recall that props both allow parent components to send
data to their child components, and allow child components to send data back to their parent
through callbacks.

Specifically, complete the following steps:

- Initialize Type ViewerProps in Viewer.tsx with the necessary props that App needs to
pass to Viewer, so the maze attributes can be initialized properly.

- Pass the necessary props to Viewer from App.

- Complete renderMaze in Viewer.tsx to generate the Maze using the appropriate maze
attributes.

- Update doAddRowsClick so the “Add Rows” button works for each design.

- Write a handler method for the onClick of the “Back” button in Viewer. Guarantee that
clicking “Back” returns to the input page and that every input area reflects the state of the
maze when “Back” is clicked.

It may make sense to do these in a different order, and you may need to make changes in
areas not explicitly mentioned here!

Once you think your app is complete, make sure you test it thoroughly! Unlike parts a-b
which we can test with unit tests, it is easiest and most effective to test an app by using it and
visually inspecting the results.

Congratulations! At this point you should have a super cool, functioning, maze design app!
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Task 7 – Test Friends Forever [12 pts]

Now that you’ve written some TypeScript code and tested it, it is your turn to write some tests!
In funcs.ts, there are 9 functions (fun fact: the first 3 are the same as the functions from HW4

Written Task 1!) that you must write tests for. Your tests should follow the testing requirements we
have described in lecture and in our testing notes summary (also linked on the website “Topics” page).

Write your tests for each function in funcs test.ts.

Additionally, write short labels describing which coverage requirement is met by each test. See the
below example function and tests (from this week’s section, Task 3):

const twice = (L: List): List => {

if (L.kind === "nil") {

return nil;

} else {

return cons(2 * L.hd, twice(L.tl));

}

}

In test file:

it("twice", function() {

// Statement coverage: [] executes 1st return, [3] executes 2nd

assert.deepStrictEqual(twice(nil), nil);

assert.deepStrictEqual(twice(cons(3, nil)), cons(6, nil));

// Branch coverage: covered above, [] executes 1st branch, [3] executes 2nd

// Loop/recursion coverage, 0 case: covered above by []

// Loop/recursion coverage, 1 case: covered above by [3]

// Loop/recursion coverage: many case

assert.deepStrictEqual(twice(cons(1, cons(2, cons(3, nil)))),

cons(2, cons(4, cons(6, nil))));

});

Notice how you don’t need to add additional tests if previous tests cover multiple requirements, just
make sure there are clear comments for the required coverage areas. You are welcome to organize your
comments differently than the example or use different wordings, just make sure all necessary details
are conveyed.
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