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Administrivia (8/15)

e HWS8 released last night

— 4 tasks total
2 written (probably harder), 2 coding (probably easier)

— Use Ed & OH!

New assignment, let us know if you see bugs!

— Due next Wednesday @11pm

— NO USUAL 48-HOUR FREE
EXTENSION!



Administrivia (8/15)

* Final is one week from today!

* Jaelais behind on sample final - SO sorry!
— will make an Ed post when available



Object-Oriented Programming

 We haven’t done any OO this quarter
— this week, we will see some reasons why!

 Plan for this week:

— focus on topics that are good to know but not needed for HW
usually, mistakes you want to avoid

— every lecture will include one related to OO



Subtypes



Subtypes of Concrete Types (in math)

 We initially defined types as sets

* |n math, a subtype can be thought of as a subset
— e.g., the even integers are a subtype of Z
— e.g., the numbers {1, 2, 3, 4, 5, 6} are a subtype of Z
— likewise, a superset would be a supertype

* Any even integer “is an” integer
— “is a” is often (but not always) good intuition for subtypes



Subtypes of Concrete Types (in TypeScript)

 We initially defined types as sets

* In TypeScript, some subtypes are also subsets
— number has a set of allowed values
— it is a subtype of types that allow those values + more

unknown

I

number | string

I

number



Subtypes of Concrete Types (for records)

 We initially defined types as sets

* In TypeScript, some subtypes are also subsets
— record types require certain fields but allow more
— record type with a superset of the fields is a subtype

{name: string}

I

{name: string, completed: boolean}



Subtyping Used by TypeScript: Parameters

* TypeScript uses subtyping in function calls
const f = (s: number | string): number => { .. };

const x: number = 3;
. T(x) .

— types are not the same (number VS number | string)

— subtype can be passed where super-type is expected
any element of the subtype “is an” element of the super-type

 Similar rules in Java



Subtyping Used by TypeScript: Returns

* TypeScript uses subtyping in function calls
const g = (n: number): number => { .. };

const x: number | string = g(3);

— types are not the same (number VS number | string)

— subtype can be returned where super-type is expected
any element of the subtype “is an” element of the super-type

 Similar rules in Java
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Subtyping Used by TypeScript: Invariants (1/2)

* TypeScript only sees the declared types
— any other behavior is left to reasoning

 Example: invariants

// RI: 0 <= index < options.length
type OptionState = {
options: stringl[],

index: number
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Subtyping Used by TypeScript: Invariants (2/2)

{options: string[], 1index: number}

N

OptionState

 OptionState is a subtype of the bare record type

— it is a record with those fields
— but reverse is not true

* TypeScript will see these as the same

— will let you pass the top where the bottom is expected

up to us to make sure this doesn’t happen
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Subtypes of Abstract Types

* Recall: ADTs are collections of functions
— hide the concrete representation

— pass functions that operate on the data
create, observe, mutate

* “Subtypes are subsets” does not work well here
— set of all possible functions with ... yuck

 Would be nice to find a cleaner approach
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Subtypes Are Substitutable

* If Bis a subtype of A, can send B where A is expected:

const £f = (s: A): void => { .. }
const g = (): B => { ..}
A
const x: B = ...; I
f(x); // oka
Y B
const y: A = g(); // okay

— okay to “substitute” a B where an A is expected
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Liskov Substitution Principle

* Subtypes are substitutable for supertype
— this is the “Liskov substitution principle”
— due to Barbara Liskov

photo courtesy MIT

* For ADTs, we use this as our definition of subtypes
— (for concrete types, subsets are usually easier)
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Defining Substitutable Abstract Types

e When is ADT B substitutable for A?

* Must satisfy two conditions:

1. B must provide all the methods of A
If A has a method “f”, then B must have a method called “f”

2. B’s corresponding method must...
must accept all the inputs that A’s does
must also promise everything in A’s postcondition

l.e., B must have the same or a "stronger" spec

17



Review: Stronger Assertions vs Specifications

 Assertion is stronger iff it holds in a subset of states

 Stronger assertion implies the weaker one
— stronger is a synonym for “implies”

— weaker is a synonym for “is implied by”
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Strengthening a Specification (1/3)

Q,

interface A {
f: (x: number) => number

// Qrequires x >= 0
g: (x: number) => number

}

e Stronger specs promise more (or same) outputs
— more specific return type (or thrown type)

interface D extends A {
f: (x: number) => 0 | 1 | 2 | 3
}
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Strengthening a Specification (2/3)

Q,

interface A {
f: (x: number) => number

// Qrequires x >= 0
g: (x: number) => number

}

e Stronger specs promise more (or same) outputs
— more specific return type (or thrown type)
— more facts included in @returns and @effects

interface E extends A {
// @Qrequires x >= 0
// Qreturns an even integer
g: (x: number) => number

}

— fewer objects listed in @modifies
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Strengthening a Specification (3/3)

Q,

interface A {
f: (x: number) => number

// Qrequires x >= 0
g: (x: number) => number

}

e Stronger specs allow more (or same) inputs
— allowed argument types are supersets

interface B extends A {
f: (x: number | string) => number

}

— fewer requirements on arguments

interface C extends A {

g: (x: number) => number // x can be negative

}
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Example: Rectangle and Square

* Is Square a subtype of Rectangle?
— math intuition says yes
— asquare “is a” rectangle

* Let’'s check this with substitutability...

22



Example: Immutable Rectangle and Square

interface Rectangle {

getWidth: () => number,
getHeight: () => number
}
// A rectangle with width = height extra invariant

on abstract state

interface Square extends Rectangle { ) ) ) ,
(an “abstract invariant”)

getSideLength: () => number

Yes
* |s Square substitutable for Rectangle?

— allows the same inputs (hone)
— makes the same promises about outputs (numbers)
— adds another promise: both methods return same number
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Example: Mutable Rectangle and Square (1/2)

interface Rectangle {
getWidth: () => number,
getHeight: () => number

resize: (width: number, height: number) => wvoid

// A rectangle with width = height
interface Square extends Rectangle {
// @requires width = height
resize: (width: number, height: number) => wvoid

* Is Square substitutable for Rectangle? No!
— allows fewer inputs to resize!
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Example: Mutable Rectangle and Square (2/2)

e None of these work:

weaker spec
// @requires width = height

resize: (width: number, height: number) => void

// Qthrows Error if width != height

resize: (width: number, height: number) => wvoid

incomparable specs
// Sets height = width also

resize: (width: number , height: number) => wvoid

 Mutation sometimes makes subtyping impossible
— yet another reason to avoid it
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Course Evals

* course evals are out! (link)
— One for lecture & one for section. See email!

* Please give us feedback!
— your perspective is valuable; we read everything!

— one request: please be specific and actionable
specificity helps us understand problems
actionable suggestions scope out the solution space

* This iteration of 331 is still relatively new

— some things probably (?) went well
We already tried to apply some of your feedback mid-quarter

— some things could still be better!

big picture course feedback is most useful if recorded in official eval
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Subclasses & Subtyping



Review: Subclasses

* Subclassing is a means of sharing code
— subclass gets parent fields & methods (unless overridden)

class Product ({
private String name;
private int price;
public String getName () {return name; }

public int getPrice() { return price; }

}

class SaleProduct extends Product {
private float discount;

public int getPrice () {
return (1 - discount) * super.getPrice();
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Subclasses are not always Subtypes

* Subclassing does not guarantee subtyping relationship

class Product {
public int getPrice() { ... }

// @returns true iff obj’s price < p’s price
public boolean i1sCheaperThan (Product p) {
return getPrice() < p.getPricel();

}

class WackyProduct extends Product {
// @returns some boolean value
public boolean isCheaperThan (Product p) {

return false;

Legal Java, but not a subtype
30



Subclasses in Java (and other OOP languages)

Java subclassing is a means of sharing code
— subclass gets parent fields & methods (unless overridden)

Does not guarantee subtyping
— up to you to check that method specs are stronger

* Java treats it as a subtype
— will let you pass subclasses where superclass is expected

Subclassing is a surprisingly dangerous feature
— that’s not the only reason...
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Subclasses & Coupling

e Subclassing is a surprisingly dangerous feature

e Subclassing tends to break modularity

— creates tight coupling between super- and sub-class

— often see the “fragile base class” problem
changes to super class often break subclasses

* Let’s see some Java examples...
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Example 1: Tight Coupling

class Product {
private int price;

public int getPrice() { return price; }

// Qreturns true iff obj’s price < p’s price
public boolean i1sCheaperThan (Product p) {
return getPrice () < p.getPrice();

}

class SaleProduct extends Product {
public int getPrice () {

return (1 - discount) * super.getPrice();

— looks okay so far...
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Example 1: Tight Coupling Gone Wrong!

class Product ({
private int price;

public int getPrice() { return price; }

// @returns true iff obj’s price < p’s price
public boolean 1sCheaperThan (Product p) {
return this.price < p.price;

} Made it “faster” by eliminating a method call!

class SaleProduct extends Product {
public int getPrice () {

return (1 - discount) * super.getPrice();

What’s wrong?

Oops! Broke the subclass
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Example 2: Tight Coupling

class InstrumentedHashSet extends HashSet<Integer> {

private static int count = 0;

public boolean add(Integer e) {
count += 1;
return super.add(e);

}

public boolean addAll (Collection<Integer> c) {
count += c.size() ;

return super.addAll (c);

}

public int getCount () { return count; }

— what could possibly go wrong?
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Example 2: Tight Coupling Gone Wrong!

InstrumentedHashSet S = new InstrumentedHashSet () ;

System.out.println(S.getCount()); // O
S.addAll (Arrays.asList (1, 2));
System.out.println(S.getCount()); // 4?21?

— what does this print?

* What is printed depends on HashSet’s addAll:

— if it calls add, then this prints 4
— if it does not call add, then this prints 2

* Also possible to be dependent on order of calls
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Generalizing Examples 1 & 2

Creates tight coupling between super- and sub-class

Example 1: super-class needs to know about subclass
— direct field access in parent breaks subclass

Example 2: subclass needs to know about super-class
— subclass dependent on which methods call each other

But wait... There’'s more!
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Example 3: Tight Coupling

class WorkList {
// RI: len(names) =
protected Arraylist<String> names;

protected Arraylist<Integer> times;
protected int total;

len(times) and total = sum(times)

public addWork (Job job) {
addToLists (job.getName (), Job.getTime()):

total += job.getTime () ;
}
protected addTolists (String name, 1nt time) {

names .add (name) ;

times.add (time) ;
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Example 3: Tight Coupling ... Okay So Far ...

// Makes sure no task is too large compared to rest
class BalancedWorklList extends WorkList {
protected addTolists (String name, 1nt time) {

if (times.size () <= 3 || 2*time < total)
super.addTolLists (name, time); // okay
} else {

throw new ImbalancedWorkException (name, time);

— prevents item from being added if too big
— (also: this subclass is not a subtype!)
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Example 3: Tight Coupling Gone Wrong!

class WorkList {
// RI: len(names) = len(times) and total = sum(times)

protected Arraylist<String> names;
protected Arraylist<Integer> times;
protected int total;

public addWork (Job job) {

int time = job.getTime(); // just one call

total += time;
addTolLists (Job.getName (), time);
J Rl not true in method call

— reordering the updates breaks the subclass!
— subclass is using total that includes the new job
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Generalizing Example 3

 RI can be false in calls to non-public methods
— only needs to hold at end of the public method

* Requires extra care to get it right
— method is tightly coupled with the ones that call it

— needs to know what is true in those methods
not enough to just know the Rl

 Hard for multiple people to communicate this clearly
— can be okay when it’'s all your code
— very error prone when methods are written by others
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Subclassing Creates Tight Coupling

* Creates tight coupling between super- and sub-class
— direct field access can break subclass
— subclass dependent on which methods call each other
— subclass dependent on order of method calls
— subclass can be called when Rl is false

* Often see the “fragile base class” problem

* Subclassing is a surprisingly dangerous feature!

— up to you to verify subclass method specs are stronger

— up to you to prevent tight coupling
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Subclassing is Best Avoided

* Java advice: either design for subclassing or prohibit it
— from Josh Bloch, author of (much of) the Java libraries

 We haven’t used subclassing in TypeScript
— didn’t even describe how to do it!

we’ve just used classes as a quick way to create records

— these problems are the main reason why we avoided it

* Subclassing is not necessary anyway
— we have other ways to share code
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Equality



Equality of User-Defined Types

* For any type, useful to know which are “the same”

* TypeScript “==="is not useful on records:

{a: 1} === {a: 1} /J/ false!

— as in Java, this is “reference equality”
— tells you if they refer to the same object in memory

 deepStrictEquals would work here
— checks that the records have the same fields and values
— but that also is not perfect...
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Recall: Queue With Two Lists

// Implements a queue using two lists.

class ListPairQueue implements NumberQueue {

// AF: obj = this.front ++ rev(this.back)
readonly front: List<number>;
readonly back: List<number>;

— three ways of representing the same abstract state:

front back front # rev(back)
[1, 2] 1 [1, 2]

[1] 2] [1, 2]
1 [2,1] [1, 2]

— these should be considered equal!
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Defining Equality Methods

* Often useful / necessary to define your own equal
— check if references point to records that are “the same”

* Very important to get definitions correct

— reasoning uses definitions, so
if our definitions are wrong, our reasoning will be wrong

— only tools for checking definitions: simplicity & testing

 Sometimes we can also sanity check them
— Topic 8 Assoclist, e.g., get-value(x, set-value(x,v,L)) =v
— can do something similar here...
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Properties of Equality Functions

* Often useful / necessary to define your own equal
— check if references point to records that are “the same”

* Sensible definition should act like “=" in math:
1. equal(a,a)=T foranya:A reflexive
2. equal(a, b) =equal(b,a) foranya,b: A symmetric

3. if equal(a, b) and equal(b, c¢), then equal(a, c) for any ...

transitive
— (311 alert: this is an “equivalence relation”)
— Java has two more rules for Object.equal (see Java docs)
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Equality in Java

equals

public boolean equals(Object obj)

Indicates whether some other object is "equal to" this one.

The equals method implements an equivalence relation on non-null object references:

It is reflexive: for any non-null reference value x, x.equals(x) should return true.
It is symmetric: for any non-null reference values x and y, x.equals(y) should
return true if and only if y.equals(x) returns true.

It is transitive: for any non-null reference values X, y, and z, if x.equals(y) returns
true and y.equals(z) returns true, then x.equals(z) should return true.

It is consistent: for any non-null reference values x and y, multiple invocations of
x.equals(y) consistently return true or consistently return false, provided no
information used in equals comparisons on the objects is modified.

For any non-null reference value x, x.equals(null) should return false.

An equivalence relation partitions the elements it operates on into equivalence classes; all
the members of an equivalence class are equal to each other. Members of an equivalence
class are substitutable for each other, at least for some purposes.
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Example: Duration & Equality

e Define Duration to be an amount of time in seconds
type Duration = {min : Z, sec : Z} with 0 <sec < 60

— second part is a rep invariant

* Can define equality on Duration this way:
equal({min: m, sec: s}, {min: n, sec:t}) := (m=n)and (s=1t)

— true iff these are the same amount of time
(wouldn’t be true without the invariant)

50



Example: Duration & Checking Equality (1/2)

equal({min: m, sec: s}, {min: n, sec:t}) := (m=n)and (s=1t)

* Does this have the required properties?

— reflexive

equal({min: m, sec: s}, {min: m, sec: s})

=(m =m) and (s =5s) def of equal
=Tand T
=T proof by calculation

that it holds for any record
— Sym metric

equal({min: m, sec: s}, {min: n, sec: t})

=(m =n) and (s =t) def of equal
= (n=m) and (t =)
= equal ({min: n, sec: t}, {min: m, sec: s}) def of equal
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Example: Duration & Checking Equality (2/2)

equal({min: m, sec: s}, {min: n, sec:t}) := (m=n)and (s=1t)

* Does this have the required properties?

— reflexive yes
— symmetric yes
— transitive also yes (but a little long for a slide)

 Good evidence that this is a reasonable definition
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Non-Example: “==" in JavaScript

0O == "0 true
0 == true
0 == true

* Which property fails?

— transitivity: " !'= " "(and "0" != " ")

 Good evidence that this is not a reasonable definition
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Example: List Equality (1/3)

 Can define equality on List type this way:

equal(nil, nil)
equal(nil, b :: R)
equal(a:: L, nil)
equal(a:: L, b:: R)
equal(a::L,b:: R)

T
F
F
F ifa#b
equal(L,R) ifa=b

e Checks that the values in the list are all the same
— this is a definition, so we can only check it on examples...

equal( | 1 21,1 21) =equal(|2|,12))

= equal(nil, nil)

=T
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Example: List Equality (2/3)

 Can define equality on List type this way:

equal(nil, nil)
equal(nil, b :: R)
equal(a:: L, nil)
equal(a:: L, b:: R)
equal(a::L,b:: R)

T
F
F
F ifa#b
equal(L,R) ifa=b

e Checks that the values in the list are all the same
— this is a definition, so we can only check it on examples...

equal( | 1 2|, |1 31) =equal(|2],13))
=F
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Example: List Equality (3/3)

 Can define equality on List type this way:

equal(nil, nil)
equal(nil, b :: R)
equal(a:: L, nil)
equal(a:: L, b:: R)
equal(a::L,b:: R)

T
F
F
F ifa#b
equal(L,R) ifa=b

* Has all three required properties
— how would we prove equal(L, L) holds for any list L?

induction
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Recall: Abstract Data Types (ADTs)

 Abstraction over data

— hide the details of the data representation

— only give users a set of operations (the interface)
data abstraction via procedural abstraction

 Can define Duration as an ADT instead...
— hide the representation as two fields
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Example: Duration as an ADT

// Represents an amount of time measured in seconds

class Duration {

// RI: 0 <= sec < 60
// AF: obj = 60 * this.min + this.sec
readonly min: number;
readonly sec: number;

equal = (d: Duration): boolean => {

return this.min === d.min && this.sec === d.sec;

Y

— defines Duration as an ADT

getTime method not shown

equal still makes sense, just as before
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Recall: Subtypes vs Subclasses

* Subclasses are code sharing
— everything from the parent is copied into the subclass
— subclass can also replace (override) with its own versions

* Subtypes must be substitutable for supertype
— this is the “Liskov substitution principle”
— due to Barbra Liskov

* Not all subclasses are subtypes!
— it's dangerous whenever that happens
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Example: NanoDuration

 Suppose a subclass also measures nanoseconds

class NanoDuration extends Duration {

// min: number (inherited)
// sec: number (inherited)

readonly nano: number;

* How should we define equal?
— remember that it takes an argument of type Duration

we cannot accept fewer arguments
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Example: NanoDuration & Equality

class NanoDuration extends Duration {

// min: number (inherited)

// sec: number (inherited) Must take Duration

readonly nano: number;

equal = (d: Duration): boolean => {

if (d instanceof NanoDuration) {

return this.min === d.min &&
this.sec === d.sec &&
this.nano === d.nano;

} else {

return false;

Y

symmetry

— which property does this lack?

argument to be a subtype
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Example: NanoDuration & Equality, Gone Wrong

const d = new Duration (2, 10);

const n new NanoDuration (2, 10, 300);

console.log(n.equal(d)); // false
console.log(d.equal(n)); [/ true!

— NanoDuration is only equal to other NanoDurations

— Duration cah be equal to a NanoDuration
if they have the same minutes and seconds
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Example: NanoDuration & Equality, Round 2

class NanoDuration extends Duration {

// min (inherited)
// sec (inherited)

readonly nano: number;

equal = (d: Duration): boolean => {

if (d instanceof NanoDuration) {

return this.min === d.min &&
this.sec === d.sec &&
this.nano === d.nano;
} else {
return this.min == d.min && this.sec == d.sec;

Y

No! It lacks transitivity

— fixes symmetry! all good now?
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Example: NanoDuration & Equality, Still Wrong

const nl = new NanoDuration (2, 10, 300);
const d = new Duration (2, 10);

const n2 = new NanoDuration (2, 10, 400);
console.log(nl.equal(d)); // true

// true

console.log (d.equal (n2)) ;
console.log(nl.equal(n2)); // false!

— transitivity requires n1 to equal n2 (but it doesn’t)
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Subclasses and Equals Don’t Always Mix

* No good solution to this problem!

— inherent tension between subtyping and equality
subtyping wants subclasses to behave the same
equality wants to treat them differently (using extra information)

* This is a general problem for “binary operations”
— equality is just one example

* Real issue is that NanoDuration isn’'t a subtype...

— would have seen this if we documented the ADT carefully
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NanoDuration isn’t a Duration?

 Suppose a subclass also measures nanoseconds

// Represents an amount of time in nanoseconds

class NanoDuration extends Duration {

// RI: 0 <= sec < 60 and 0 <= nano < 10000
// AF: obj = 60,000,000 * this.min +

// 1,000,000 * this.sec +

// this.nano

readonly nano: number;

* Abstract states of the two types are different
— time in seconds vs hanoseconds

— abstract states of subtypes would need to be subtypes
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Administrivia (8/20)

HWS absolute late deadline is TONIGHT!
— a couple bugs found in Task 2 (see ed post)

course evals are out! please share your
perspective!

Jaela’s OH Friday are cancelled
— Email me if you'd like to meet

Final exam is Friday, 10:50-11.:50, in DEM 102
— bring a pencil & your husky ID

— practice materials posted on website
2 extra old exams posted yesterday (NOT in 255U exam style)

— section and OH tomorrow are exam prep!

68


https://edstem.org/us/courses/80024/discussion/6864705

Design Patterns



Recall: Design Patterns

acm D Mmo
Desien Patterns
Elements of Reusable
Object-Or jefited Software

 Popularized in 1994 book of that name
— written by the “Gang of Four”

Gamma, Helm, Johnson, Vlissides

— worked in C++ and SmallTalk
(SmaliTalk hugely influenced OOP in Java, etc.)

O

* Found that they independently developed
many of the same solutions to recurring problems
— wrote a book about them
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Parts of a Designh Patterns

Each pattern in the book includes

* Problem to be solved
 Description of the solution

« Name of the pattern
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Java Example: Iterator

« Java Collections use the lterator Designh Pattern
— enumerate a collection while hiding data structure details

— return another ADT that outputs the items
that object knows how to walk through the data structure

operations for retrieving the current item and moving on to the next one

* Clever idea that is now used everywhere
— huge improvement over code we were writing before
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Categories of Designh Patterns (1/2)

The book has three categories of patterns

 Creational: factory function, factory object,
builder, prototype, singleton, ...

 Structural: adapter, bridge, composite, decorator,
facade, flyweight, proxy

 Behavioral: command, interpreter, iterator, mediator,
observer, state, strategy, visitor, ...

— we will not cover all, just some highlights
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Categories of Designh Patterns (2/2)

The book has three categories of patterns

 Creational: factory function, factory object,
builder, prototype, singleton, ...

 Structural: adapter, bridge, composite, decorator,
facade, flyweight, proxy

 Behavioral: command, interpreter, iterator, mediator,
observer, state, strategy, visitor, ...

— green and underlined = mentioned already
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Creational Patterns

The book has three categories of patterns

 Creational: factory function, factory object,
builder, prototype, singleton, ...

 Structural: adapter, bridge, composite, decorator,
facade, flyweight, proxy

 Behavioral: command, interpreter, iterator, mediator,
observer, state, strategy, visitor, ...

— green and underlined = mentioned already
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Why Creational Patterns?

* One third of the patterns deal with object creation

* Why? constructors can be difficult!
— surprisingly error-prone

— several important limitations
1. Cannot return an existing object
2. Cannot return a different class
3. Does not have a name!
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Public Constructors

 Most Java classes have public constructors
— e.g., create an ArrayList With “new ArrayList<String> ()’

 For our ADTs, we didn’t do this
— class was hidden (not exported)

— we exported a “factory function” that used the constructor

e.g.,
const makeIntSet = (L: List<bigint>): IntSet => {
return new SimpleIntSet ()

}

— this was not accidental!

Wanted to give users access to data type without asking them to use a
constructor
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Recall: Tight Coupling (Example 3)

class WorkList {
// RI: len(names) =
protected Arraylist<String> names;

protected Arraylist<Integer> times;
protected int total;

len(times) and total = sum(times)

public addWork (Job job) {

int time = job.getTime(); // just one call

total += time;
addTolLists (Job.getName (), time);

Rl is not true in method call!
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Constructors are Error Prone: Method Calls

 method calls from a constructor are dangerous!

 called when Rl is false

— usually, the Rl does not hold until all fields are assighed
typically, that is the last line of the constructor

— hence, any methods are called with the RI still false

* Asking for trouble!
— method needs to know that some parts of Rl may be false
— eventually, someone changing code will mess this up
— better to avoid method calls in the constructor
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Limitations of Constructors

e Constructor is called after the object is created
— can’t decide, in the constructor, not to create it

 Limitations of constructors
1. Cannot return an existing object
2. Cannot return a different class

3. Does not have a name!
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Factory Function and Singleton

* Factory functions can return an existing object

e Common case: there is only one instance!
— factory function can avoid creating new objects each time
— called the “singleton” design pattern

 Example from before...
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Example Singleton

interface FastList {
cons (x: bigint): FastList;
getlast () : bigint|undefined;
toList () : List<bigint>;

I

const nillist: FastlList = new FastBackList(nil) ;

const makeFastlList = (): FastList => {

return nillList;

bi Note: only allowed because FastList is immutable
* No need to create a new object using “new” every time

— can reuse the same instance
— example of the “singleton” design pattern
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Returning a Subtype

* Factory functions can return a subtype
— declared to return A but returns subtype B instead
— allowed since every Bis an A

 Example:

// @returns an empty NumberSet that can be used to
// store numbers between min and max (inclusive)
const makeNumberSet = (min: number, max: number): NumberSet => {
if (0 <= min && max <= 100) {
return makeArrayNumberSet (); // only supports small sets
} else {

return makeSortedNumberSet (); // use a tree instead
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Recall: Multiple Constructors

* Java classes allow multiple constructors

class HashMap {
public HashMap() { .. } // initial capacity of 16
public HashMap (int initialCapacity) { .. }

* TypeScript classes do not, but
you can fake it with optional arguments

class HashMap {

constructor (initialCapacity?: number) { ... }
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Constructors Have No Name

* Do not get to name constructors
— in Java, same name as the class
— in TypeScript, called “constructor”

* Names are useful!

1. Let you distinguish between different cases
— use names to distinguish cases that otherwise look the same

2. Let you explain what it does

— the only thing you know the client will read!
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Example: Distinguishing Constructors (1/3)

e JavaScript's Array has multiple constructors

new Array () // creates []
new Array(al, .., aN) // creates [al, .., aN]
new Array (2) // creates [undefined, undefined]

— what does “new Array(al)” return when al is a number?
— how to make a 1-element array containing just al

const A = new Array (1)
A[0] = al;

— don’t have a name to distinguish these cases!
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Example: Distinguishing Constructors (2/3)

* Factory functions have names
— allow us to distinguish these cases

// Qreturns []
const makeEmptyArray = (): Array => { .. };

// Qreturns A with A.length = len and

// A[j] = undefined for any 0 <= j < len
const makeArray = (len: number): Array => { .. };
// @Qreturns [args[0], .., args[N-1]]

const makeArrayContaining = (...): Array => { .. };

— function name is also the one thing you know clients read!
best chance to tell them how to use it correctly
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Example: Distinguishing Constructors (3/3)

* Factory functions have names
— allow us to distinguish these cases

// Qreturns []
const makeEmptyArray = (): Array => { .. };

// @returns A with A.length = len and
// A[j] = undefined for any 0 <= j < len
const makeArray = (len: number): Array => { .. };

// @returns A with A.length = len and
// A[j] = val for any 0 <= j < len
const makeFilledArray =

(len: number, val: number): Array => { .. };
| )

Be very, very careful...



Common Error: Argument Order Bugs

// Q@returns A with A.length = len and
// A[j] = val for any 0 <= j < len
const makeFilledArray =

(len: number, val: number): Array => { .. };
| J

Be very, very careful...
Type checker won’t notice if client mixes these up!

« Some famous bugs due to mixing up argument order!

* If you program long enough, you will see this one
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Use Records to Force Call-By-Name

* Can use a record to make clients type names

// @returns A with A.length = len and
// A[j] = val for any 0 <= j < len
const makeFilledArray =

(desc: {len: number, value: number}): Array

— takes one argument, not two
— client writes “makeFilledArray ({len: 3, value: 0})”

much easierin JS than Java

* Think about mistakes clients might make
— be paranoid when debugging will be painful
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Creational Pattern: Builder

* Object that helps with creation of another object

— constructor / factory requires you to give info all at once
— builder lets you describe what you want bit by bit

 Java Example: StringBuilder

StringBullder buf = new StringBuilder();
buf.append("Total distance: ");
buf.append(distance);

buf.append (" meters.");

return buf.toString() ;

— each call adds more text / number to the final string

— we can’t do this with strings because strings are immutable
21



Builders and “Mutation XOR Aliasing”

* Object that helps with creation of another object
— constructor / factory requires you to give info all at once
— builder lets you describe what you want bit by bit

 Good pairing: mutable Builder for an immutable type

— must avoid aliasing with the mutable builder
e.g., never use it as a key in a BST or Map

— immutable object can be shared arbitrarily
no worries about aliasing
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Writing a Builder

 Builder is often written like this:

class FooBuilder {

public FooBuilder setX(int x) {
this.x = x;

return this;

public Foo build() { .. }

— can then use them like this

Foo £ = new FooBuilder () .setX(l) .set¥Y (2) .build() ;
| J
avoids worries about argument order
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Recall: Argument Order Bugs

// Q@returns A with A.length = len and
// A[j] = val for any 0 <= j < len
const makeFilledArray =

(len: number, val: number): Array => { .. };

Be very, very careful...
Type checker won’t notice if client mixes these up!

e Can fix with a record argument or a Builder
— Java does not have record types, so we need the latter
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Argument Builder

// Returns an array with length & value given in args.

public Integer[] makeFilledArray(args: Args) { .. }

class Args {
public int length;

public int value;

Args args = new Args () ;
args.length = 10;
args.value = 5;

. = makeFilledArray(args);

— code using the function is now more verbose...
can make this easier by giving them a Builder
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Writing an Argument Builder

// Returns an array with length & value given in args.

public Integer[] makeFilledArray(args: Args) { .. }
class ArgsBuilder {
public ArgsBuilder setlLength(int length) {

this.length = length;

return this;

public Args toArgs() { .. }

. = makeFilledArray (new ArgsBuilder ()
.setlLength(10) .setValue (5) .toArgs() ),
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Structural Patterns

The book has three categories of patterns

 Creational: factory function, factory object,
builder, prototype, singleton, ...

 Structural: adapter, bridge, composite, decorator,
facade, flyweight, proxy

 Behavioral: command, interpreter, iterator, mediator,
observer, state, strategy, visitor, ...

— green and underlined = mentioned already
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Recall: Java and Interoperability

 Mentioned this one in Topic 2...

* |n Java, these two classes are not interoperable:

interface Duration {
int getMinutes() ;

int getSeconds () ;

}

interface AmountOfTime {
int getMinutes() ;

int getSeconds () ;

}

— cannot pass one where the other is expected
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Structural Pattern: Adapter

 Mentioned this one in Topic 2...

* Get around this by creating an adapter

class DurationAdapter implements AmountOfTime {

private Duration d;

public DurationAdapter (Duration d) {

this.d = d;
}
int getMinutes () { return d.getMinutes(); }
int getSeconds () { return d.getSeconds(); }

— makes a Duration into an AmountOfTime
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Adapters and Type Systems

* Adapters are often needed with nominal typing
— design pattern working around a language issue

* With structural typing, these two interoperate:

type Duration = {min: number, sec: number};

type AmountOfTime = {min: number, sec: number};

— can pass either where the other is expected

— not an issue of concrete vs abstract
still interoperable if we have getMinutes and getSeconds methods
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Behavioral Patterns

The book has three categories of patterns

 Creational: factory function, factory object,
builder, prototype, singleton, ...

 Structural: adapter, bridge, composite, decorator,
facade, flyweight, proxy

 Behavioral: command, interpreter, iterator, mediator,
observer, state, strategy, visitor, ...

— green and underlined = mentioned already
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Trees

* Trees are inductive data types

— anything with a constructor that has 2+ recursive arguments
HWS tree (Square) has 4 recursive arguments

* They arise frequently in practice
— HTML: used to describe Ul
— JSON: used for client/server communication
— parse trees: represent code
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Parse Tree Example

* OQutput of parsing is a tree
— encodes the order of operations

e Example:parseof “x = a * 3 + b / 4"




Defining Parse Trees Inductively

* Output of parsing is a tree
— records the order of operations

* Parse tree is an inductive data type

type Expression := variable(name: §")
| constant(val : Z)
plus(left : Expr, right : Expr)

|

| times(left: Expr, right : Expr)

| divide(left: Expr, right : Expr)
| assign(name : §%, value : Expr)

— parseof“x = a * b + ¢ / &

assign("x", plus(times(constant(3), variable("a")),

divide(variable("b"), constant(4)))
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Operations on Parse Trees (1/2)

 Compilers perform various operations on expressions
— type check
— evaluate
— code generation

 Each operation defined for each type of expression

Type of Expr

Variable Plus Times

type check

Operation
evaluate

code gen

105




Operations on Parse Trees (2/2)

e Need to write code for each box
— each case is slightly different

 Two reasonable ways to organize into files

— file per expression type: Interpreter pattern
— file per operation: Procedural pattern
Type of Expr
/ValiabLe\ Plus Times
e [ — ‘
(Type check | [ \ I
Operation — ———
evaluate
code gen \ /
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Interpreter Pattern Example

interface Expr {

typeCheck = (c: Context) => Type,
evaluate = (c: Context) => number | undefined,
generate = (c: Context) => List<Instruction>

}

class Variable implements Expr
name: string;
typeCheck = (c: Context): Type => {
return c.get (this.name);
}
evaluate = (c: Context): number | undefined => {

return undefined;

Each type of expression is a class
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Dynamic Dispatch (good case in Java, Interpreter)

interface Expr {

boolean typeCheck (Context c);
}

class Variable implements Expr
public boolean typeCheck (Context c) { .. }
}

class Constant implements Expr ({
public boolean typeCheck (Context c) { .. }
}

e Java / TypeScript (or any O0) makes this case easy

Expr e = ..

e.typeCheck(c) ; // e could be any Expr

— automatically “dispatches” to the right method

108



Interpreter Pattern Tradeoffs O

interface Expr {

typeCheck = (c: Context) => Type,
evaluate = (c: Context) => number | undefined,
generate = (c: Context) => List<Instruction>

}

* Easy to add new types of expression
— new subtype of Expr
— goes into its own file

 Hard to add new operations
— new method of Expr
— changes every file
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Procedural Pattern Example .

interface Procedure<R> {
processVar = (v: Variable, c: Context) => R,

processConst = (n: Constant, c: Context) => R,

}

class TypeChecker implements Procedure<boolean> {
processVar = (v: Variable, c: Context): boolean => {
return c.has (v.name);
}
processConst = (n: Constant, c: Context): boolean => {

return true;

* Each type of procedure is a class

— ohe method for each type of expression 110



Procedural Pattern Tradeoffs O

interface Procedure<R> {
processVar = (v: Variable, c: Context) => R,

processConst = (n: Constant, c: Context) => R,

}

* Easy to add new types of operations
— new subtype of Procedure
— goes into its own file

 Hard to add new expressions
— new method of Procedure
— changes every file
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Dynamic Dispatch (bad case in Java, Procedural)

interface Procedure<R> { -

R process (Variable v, Context c);

R process (Constant n, Context c); overloading

}

class TypeChecker implements Procedure<Boolean> {
Boolean process (Variable v, Context c) { .. }

Boolean process (Constant ¢, Context c¢) { .. }

* This is impossible in Java:

TypeChecker t = new TypeChecker () ;
Expr e = ..
t.process (e, c); // e could be any Expr

// which method should we call?
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Problem with Procedural Pattern in OO

const process = (p: Procedure, e: Expr, c: Context) => {
if (e instanceof Variable) {
p.processVar (e, c);
} else if (e instanceof Constant) {
p.processConst (e, c);
} else if (e instanceof Plus) {
p.processPlus (e, c);

} else ..

* Not great, Bob!
— code is slow
— will call it enough times that this will matter

* There is a solution, but... buckle up!
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“Fixing” Impossible Dynamic Dispatch

* This is impossible in Java:

TypeChecker t = new TypeChecker();

Expr e = ..
t.process (e, c); // e could be any Expr
t |

* Need to put “c” before “.” to get dynamic dispatch

— here’s how we do that... (gulp)
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Implementing Double Dispatch

interface Procedure<R> {
R process (Variable v, Context c);

R process (Constant n, Context c);

}

interface Expr {
R perform(Procedure<R> p, Context c);

}

class Variable implements Expr
public R perform(Procedure<R> p, Context c) {
p.process (this, c);
} calls process (Variable, Context)
}

class Constant implements Expr ({
public R perform (Procedure<R> p, Context c) {

p.process (this, c);
} calls process (Constant, Context)

} 115



Using Double Dispatch

interface Procedure<R> {
R process (Variable v, Context c);

R process (Constant n, Context c);

}

interface Expr {

R perform (Procedure<R> p, Context c);

e We can now do this

Process p = new TypeChecker () ;
Expr e = ..
e.perform(p, c); // e could be any Expr

— calls Expr.perform, Which calls TypeChecker.process

— two function calls is still faster than all the “if”s 16



Multiple Dispatch?

* This works, but... why so hard?

* Other languages just let you do this:

Process p = new TypeChecker () ;
Expr e = .
p.process (e, cC); // e could be any Expr

— or even more general “multiple dispatch” cases
— use a better language?
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Interpreter vs Procedural Pattern

 Both patterns are reasonable
— best choice is problem-dependent

— worth considering that Dynamic Dispatch doesn’t work well
with Procedural
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Traversing Trees

e Same idea is used to traverse trees

type Expression := variable(name: §")
constant(val : Z)
plus(left : Expr, right : Expr)

divide(left : Expr, right : Expr)

|

|

| times(left : Expr, right : Expr)
|

| assign(name : S, value : Expr)

— parseof“x = 3 * a + b / 47

assign(“x”, plus(times(constant(3), variable(“a")),
divide(variable(“b”), constant(4)))

— would like to process (“visit”) each node in this tree
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Visitor Pattern

interface ExprVisitor {

visitVariable = (v: Variable) => wvoid,
visitConstant = (n: Constant) => wvoid,
visitPlus = (p: Plus) => wvoid,

}

interface Expr {

// Visits this node and all its children.

accept = (v: ExprVisitor) => wvoid

}

class Variable implements Expr {
name: string;
accept = (v: ExprVisitor): void => {

v.visitVariable (this) ;
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Visitor Pattern (with child nodes)

« Combines double dispatch with tree traversal

class Plus implements Expr {
left: Expr;
right: Expr;

accept = (v: ExprVisitor): void => {
left.accept (v);
right.accept(v);

v.visitVariable (this) ;

— traverses children before visiting parent
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Visitor Pattern (in steps)

p.accept (v)
t.accept (v)
h.accept (v)
v.visitConstant (h)
a.accept (v)
v.visitVariable (a)
v.visitTimes (t)

d.accept (v) P

v.visitDivide ()

v.visitPlus (p)

h
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Wrapping Up



Wrapping up: Design

* design patterns give us a name to a strategy and
the ability to reuse a known solution

« 331 is “Software Design & Implementation”

* Discussed designh considerations all along! e.g.,
— Maybe use a language with a type checker...
— Choosing mutable vs immutable data
— Practicing modularity

Web app organization, Abstraction

— Creating server routes
how do we allow a user to do or access __ ?

— Writing code for usability

documentation, code that is easy to read & show correct -



What We Hope You Got From 331: The Core

* A toolkit for reasoning about code correctness
— within 331: formalized “expert intuition” with math

— requires slow, careful, and rigorous thinking
— used before testing & debugging (~ complementary)

 Learning when to use this toolkit

— hot every problem requires it!

— treat reasoning as a spectrum
most experts reason informally for simple problems...
... use diagrams for difficult problems ...
... and bring out pencil & paper for brutal problems!
(or, “automated reasoning” tools, e.g. proof assistants)
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What We Hope You Got From 331: Bonuses

* |learning JavaScript & TypeScript

— different approaches to types & OOP than Java
— some issues are fundamental to both languages

* writing complex web applications
— async code is tricky!
— client-server interaction is complicated
— debugging client-server apps is hard!
— made some fun projects :)

« computer science is much more than writing code

— fundamental focus on reasoning & abstraction
— but also: many applications of “theoretical” CS & math
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If you want more...

* reasoning, math, and programming languages
— CSE 341 (PL), CSE 401 (Compilers), CSE 403 (SWE)
— CSE 505 (Grad PL), CSE 507 (Automated Reasoning)
— check out UW PLSE!

* interactive application development

— some great courses in CSE
CSE 340 (interaction programming, mobile dev), CSE 154 (web dev)*
more broadly: CSE 440 (HCI), CSE 442 (viz), CSE 443 (accessibility)

— but also, large culture of free self-paced resources
now have most of the vocabulary to learn reactive programming
largest barrier is time & practice, not “theory”

* build your own side project!

127


https://uwplse.org/

	Slide 1: Subtyping
	Slide 2: Administrivia (8/15)
	Slide 3: Administrivia (8/15)
	Slide 4: Object-Oriented Programming
	Slide 5: Subtypes
	Slide 6: Subtypes of Concrete Types (in math)
	Slide 7: Subtypes of Concrete Types (in TypeScript)
	Slide 8: Subtypes of Concrete Types (for records)
	Slide 9: Subtyping Used by TypeScript: Parameters
	Slide 10: Subtyping Used by TypeScript: Returns
	Slide 11: Subtyping Used by TypeScript: Invariants (1/2)
	Slide 12: Subtyping Used by TypeScript: Invariants (2/2)
	Slide 13: Subtypes of Abstract Types
	Slide 14: Subtypes Are Substitutable
	Slide 15: Liskov Substitution Principle
	Slide 17: Defining Substitutable Abstract Types
	Slide 18: Review: Stronger Assertions vs Specifications
	Slide 19: Strengthening a Specification (1/3)
	Slide 20: Strengthening a Specification (2/3)
	Slide 21: Strengthening a Specification (3/3)
	Slide 22: Example: Rectangle and Square
	Slide 23: Example: Immutable Rectangle and Square
	Slide 24: Example: Mutable Rectangle and Square (1/2)
	Slide 25: Example: Mutable Rectangle and Square (2/2)
	Slide 26: Subclasses & Equality
	Slide 27: Course Evals
	Slide 28: Subclasses & Subtyping
	Slide 29: Review: Subclasses
	Slide 30: Subclasses are not always Subtypes
	Slide 31: Subclasses in Java (and other OOP languages)
	Slide 32: Subclasses & Coupling
	Slide 33: Example 1: Tight Coupling
	Slide 34: Example 1: Tight Coupling Gone Wrong!
	Slide 35: Example 2: Tight Coupling
	Slide 36: Example 2: Tight Coupling Gone Wrong!
	Slide 37: Generalizing Examples 1 & 2
	Slide 38: Example 3: Tight Coupling
	Slide 39: Example 3: Tight Coupling … Okay So Far …
	Slide 40: Example 3: Tight Coupling Gone Wrong!
	Slide 41: Generalizing Example 3
	Slide 42: Subclassing Creates Tight Coupling
	Slide 43: Subclassing is Best Avoided
	Slide 44: Equality
	Slide 45: Equality of User-Defined Types
	Slide 46: Recall: Queue With Two Lists
	Slide 47: Defining Equality Methods
	Slide 48: Properties of Equality Functions
	Slide 49: Equality in Java
	Slide 50: Example: Duration & Equality
	Slide 51: Example: Duration & Checking Equality (1/2)
	Slide 52: Example: Duration & Checking Equality (2/2)
	Slide 53: Non-Example: “==” in JavaScript
	Slide 54: Example: List Equality (1/3)
	Slide 55: Example: List Equality (2/3)
	Slide 56: Example: List Equality (3/3)
	Slide 57: Recall: Abstract Data Types (ADTs)
	Slide 58: Example: Duration as an ADT
	Slide 59: Recall: Subtypes vs Subclasses
	Slide 60: Example: NanoDuration
	Slide 61: Example: NanoDuration & Equality
	Slide 62: Example: NanoDuration & Equality, Gone Wrong
	Slide 63: Example: NanoDuration & Equality, Round 2
	Slide 64: Example: NanoDuration & Equality, Still Wrong
	Slide 65: Subclasses and Equals Don’t Always Mix
	Slide 66: NanoDuration isn’t a Duration?
	Slide 67: Design Patterns
	Slide 68: Administrivia (8/20)
	Slide 69: Design Patterns
	Slide 70: Recall: Design Patterns
	Slide 71: Parts of a Design Patterns
	Slide 72: Java Example: Iterator
	Slide 73: Categories of Design Patterns (1/2)
	Slide 74: Categories of Design Patterns (2/2)
	Slide 75: Creational Patterns
	Slide 76: Why Creational Patterns?
	Slide 77: Public Constructors
	Slide 78: Recall: Tight Coupling (Example 3)
	Slide 79: Constructors are Error Prone: Method Calls
	Slide 80: Limitations of Constructors
	Slide 81: Factory Function and Singleton
	Slide 82: Example Singleton
	Slide 83: Returning a Subtype
	Slide 84: Recall: Multiple Constructors
	Slide 85: Constructors Have No Name
	Slide 86: Example: Distinguishing Constructors (1/3)
	Slide 87: Example: Distinguishing Constructors (2/3)
	Slide 88: Example: Distinguishing Constructors (3/3)
	Slide 89: Common Error: Argument Order Bugs
	Slide 90: Use Records to Force Call-By-Name
	Slide 91: Creational Pattern: Builder
	Slide 92: Builders and “Mutation XOR Aliasing”
	Slide 93: Writing a Builder
	Slide 94: Recall: Argument Order Bugs
	Slide 95: Argument Builder
	Slide 96: Writing an Argument Builder
	Slide 97: Structural Patterns
	Slide 98: Recall: Java and Interoperability
	Slide 99: Structural Pattern: Adapter
	Slide 100: Adapters and Type Systems
	Slide 101: Behavioral Patterns
	Slide 102: Trees
	Slide 103: Parse Tree Example
	Slide 104: Defining Parse Trees Inductively
	Slide 105: Operations on Parse Trees (1/2)
	Slide 106: Operations on Parse Trees (2/2)
	Slide 107: Interpreter Pattern Example
	Slide 108: Dynamic Dispatch (good case in Java, Interpreter)
	Slide 109: Interpreter Pattern Tradeoffs
	Slide 110: Procedural Pattern Example
	Slide 111: Procedural Pattern Tradeoffs
	Slide 112: Dynamic Dispatch (bad case in Java, Procedural)
	Slide 113: Problem with Procedural Pattern in OO
	Slide 114: “Fixing” Impossible Dynamic Dispatch
	Slide 115: Implementing Double Dispatch
	Slide 116: Using Double Dispatch
	Slide 117: Multiple Dispatch?
	Slide 118: Interpreter vs Procedural Pattern
	Slide 119: Traversing Trees
	Slide 120: Visitor Pattern
	Slide 121: Visitor Pattern (with child nodes)
	Slide 122: Visitor Pattern (in steps)
	Slide 123: Wrapping Up
	Slide 124: Wrapping up: Design
	Slide 125: What We Hope You Got From 331: The Core
	Slide 126: What We Hope You Got From 331: Bonuses
	Slide 127: If you want more…

