CSE 331 Summer 2025
Subtyping

Jaela Field

Administrivia (8/15)

e HWS8 released last night

— 4 tasks total
2 written (probably harder), 2 coding (probably easier)

— Use Ed & OH!

New assignment, let us know if you see bugs!

— Due next Wednesday @11pm

— NO USUAL 48-HOUR FREE
EXTENSION!

Administrivia (8/15)

* Final is one week from today!

* Jaelais behind on sample final - SO sorry!
— will make an Ed post when available

Object-Oriented Programming

 We haven’t done any OO this quarter
— this week, we will see some reasons why!

 Plan for this week:

— focus on topics that are good to know but not needed for HW
usually, mistakes you want to avoid

— every lecture will include one related to OO

Subtypes

Subtypes of Concrete Types (in math)

 We initially defined types as sets

* |n math, a subtype can be thought of as a subset
— e.g., the even integers are a subtype of Z
— e.g., the numbers {1, 2, 3, 4, 5, 6} are a subtype of Z
— likewise, a superset would be a supertype

* Any even integer “is an” integer
— “is a” is often (but not always) good intuition for subtypes

Subtypes of Concrete Types (in TypeScript)

 We initially defined types as sets

* In TypeScript, some subtypes are also subsets
— number has a set of allowed values
— it is a subtype of types that allow those values + more

unknown

I

number | string

I

number

Subtypes of Concrete Types (for records)

 We initially defined types as sets

* In TypeScript, some subtypes are also subsets
— record types require certain fields but allow more
— record type with a superset of the fields is a subtype

{name: string}

I

{name: string, completed: boolean}

Subtyping Used by TypeScript: Parameters

* TypeScript uses subtyping in function calls
const f = (s: number | string): number => { .. };

const x: number = 3;
. T(x) .

— types are not the same (number VS number | string)

— subtype can be passed where super-type is expected
any element of the subtype “is an” element of the super-type

 Similar rules in Java

Subtyping Used by TypeScript: Returns

* TypeScript uses subtyping in function calls
const g = (n: number): number => { .. };

const x: number | string = g(3);

— types are not the same (number VS number | string)

— subtype can be returned where super-type is expected
any element of the subtype “is an” element of the super-type

 Similar rules in Java

10

Subtyping Used by TypeScript: Invariants (1/2)

* TypeScript only sees the declared types
— any other behavior is left to reasoning

 Example: invariants

// RI: 0 <= index < options.length
type OptionState = {
options: stringl[],

index: number

11

Subtyping Used by TypeScript: Invariants (2/2)

{options: string[], 1index: number}

N

OptionState

 OptionState is a subtype of the bare record type

— it is a record with those fields
— but reverse is not true

* TypeScript will see these as the same

— will let you pass the top where the bottom is expected

up to us to make sure this doesn’t happen
12

Subtypes of Abstract Types

* Recall: ADTs are collections of functions
— hide the concrete representation

— pass functions that operate on the data
create, observe, mutate

* “Subtypes are subsets” does not work well here
— set of all possible functions with ... yuck

 Would be nice to find a cleaner approach

13

Subtypes Are Substitutable

* If Bis a subtype of A, can send B where A is expected:

const £f = (s: A): void => { .. }
const g = (): B => { ..}
A
const x: B = ...; I
f(x); // oka
Y B
const y: A = g(); // okay

— okay to “substitute” a B where an A is expected

14

Liskov Substitution Principle

* Subtypes are substitutable for supertype
— this is the “Liskov substitution principle”
— due to Barbara Liskov

photo courtesy MIT

* For ADTs, we use this as our definition of subtypes
— (for concrete types, subsets are usually easier)

15

Defining Substitutable Abstract Types

e When is ADT B substitutable for A?

* Must satisfy two conditions:

1. B must provide all the methods of A
If A has a method “f”, then B must have a method called “f”

2. B’s corresponding method must...
must accept all the inputs that A’s does
must also promise everything in A’s postcondition

l.e., B must have the same or a "stronger" spec

17

Review: Stronger Assertions vs Specifications

 Assertion is stronger iff it holds in a subset of states

 Stronger assertion implies the weaker one
— stronger is a synonym for “implies”

— weaker is a synonym for “is implied by”

18

Strengthening a Specification (1/3)

Q,

interface A {
f: (x: number) => number

// Qrequires x >= 0
g: (x: number) => number

}

e Stronger specs promise more (or same) outputs
— more specific return type (or thrown type)

interface D extends A {
f: (x: number) => 0 | 1 | 2 | 3
}

19

Strengthening a Specification (2/3)

Q,

interface A {
f: (x: number) => number

// Qrequires x >= 0
g: (x: number) => number

}

e Stronger specs promise more (or same) outputs
— more specific return type (or thrown type)
— more facts included in @returns and @effects

interface E extends A {
// @Qrequires x >= 0
// Qreturns an even integer
g: (x: number) => number

}

— fewer objects listed in @modifies

20

Strengthening a Specification (3/3)

Q,

interface A {
f: (x: number) => number

// Qrequires x >= 0
g: (x: number) => number

}

e Stronger specs allow more (or same) inputs
— allowed argument types are supersets

interface B extends A {
f: (x: number | string) => number

}

— fewer requirements on arguments

interface C extends A {

g: (x: number) => number // x can be negative

}

21

Example: Rectangle and Square

* Is Square a subtype of Rectangle?
— math intuition says yes
— asquare “is a” rectangle

* Let’'s check this with substitutability...

22

Example: Immutable Rectangle and Square

interface Rectangle {

getWidth: () => number,
getHeight: () => number
}
// A rectangle with width = height extra invariant

on abstract state

interface Square extends Rectangle {))) ,
(an “abstract invariant”)

getSideLength: () => number

Yes
* |s Square substitutable for Rectangle?

— allows the same inputs (hone)
— makes the same promises about outputs (numbers)
— adds another promise: both methods return same number

23

Example: Mutable Rectangle and Square (1/2)

interface Rectangle {
getWidth: () => number,
getHeight: () => number

resize: (width: number, height: number) => wvoid

// A rectangle with width = height
interface Square extends Rectangle {
// @requires width = height
resize: (width: number, height: number) => wvoid

* Is Square substitutable for Rectangle? No!
— allows fewer inputs to resize!

24

Example: Mutable Rectangle and Square (2/2)

e None of these work:

weaker spec
// @requires width = height

resize: (width: number, height: number) => void

// Qthrows Error if width != height

resize: (width: number, height: number) => wvoid

incomparable specs
// Sets height = width also

resize: (width: number , height: number) => wvoid

 Mutation sometimes makes subtyping impossible
— yet another reason to avoid it

25

CSE 331 Summer 2025

Subclasses & P —

To MINUS T,
E lit ’
q u a I y EVENT #1 THEN EVENT HOW WoULD YOoU
HAPPENED #2 HAPPENED | | CALCULATE HOW ’
AT TME T, AT TIME T, MUCH TiME ELAPSED
2
\ OK?K MHMM. BETUEE)N T, AND T,7
/
ANYONE \JHO'S WORKED
ON DATETIME SYSTEMS:
\ IT 15 IMPOSSIBLE
To KNOW AND
A SIN TO ASK!

it

xkecd #2867, thanks Matt

Jaela Field

Course Evals

* course evals are out! (link)
— One for lecture & one for section. See email!

* Please give us feedback!
— your perspective is valuable; we read everything!

— one request: please be specific and actionable
specificity helps us understand problems
actionable suggestions scope out the solution space

* This iteration of 331 is still relatively new

— some things probably (?) went well
We already tried to apply some of your feedback mid-quarter

— some things could still be better!

big picture course feedback is most useful if recorded in official eval
27

https://urldefense.com/v3/__https:/uw.iasystem.org/survey/311918__;!!K-Hz7m0Vt54!l1CcBQfLUsHMSgQP48CuxPvbx7CUf4HsmN_IRpD_dLRoQHxv0GlN2qDDri8OgBPLinunaZDpC8SwqkALJg$

Subclasses & Subtyping

Review: Subclasses

* Subclassing is a means of sharing code
— subclass gets parent fields & methods (unless overridden)

class Product ({
private String name;
private int price;
public String getName () {return name; }

public int getPrice() { return price; }

}

class SaleProduct extends Product {
private float discount;

public int getPrice () {
return (1 - discount) * super.getPrice();

29

Subclasses are not always Subtypes

* Subclassing does not guarantee subtyping relationship

class Product {
public int getPrice() { ... }

// @returns true iff obj’s price < p’s price
public boolean i1sCheaperThan (Product p) {
return getPrice() < p.getPricel();

}

class WackyProduct extends Product {
// @returns some boolean value
public boolean isCheaperThan (Product p) {

return false;

Legal Java, but not a subtype
30

Subclasses in Java (and other OOP languages)

Java subclassing is a means of sharing code
— subclass gets parent fields & methods (unless overridden)

Does not guarantee subtyping
— up to you to check that method specs are stronger

* Java treats it as a subtype
— will let you pass subclasses where superclass is expected

Subclassing is a surprisingly dangerous feature
— that’s not the only reason...

31

Subclasses & Coupling

e Subclassing is a surprisingly dangerous feature

e Subclassing tends to break modularity

— creates tight coupling between super- and sub-class

— often see the “fragile base class” problem
changes to super class often break subclasses

* Let’s see some Java examples...

32

Example 1: Tight Coupling

class Product {
private int price;

public int getPrice() { return price; }

// Qreturns true iff obj’s price < p’s price
public boolean i1sCheaperThan (Product p) {
return getPrice () < p.getPrice();

}

class SaleProduct extends Product {
public int getPrice () {

return (1 - discount) * super.getPrice();

— looks okay so far...

33

Example 1: Tight Coupling Gone Wrong!

class Product ({
private int price;

public int getPrice() { return price; }

// @returns true iff obj’s price < p’s price
public boolean 1sCheaperThan (Product p) {
return this.price < p.price;

} Made it “faster” by eliminating a method call!

class SaleProduct extends Product {
public int getPrice () {

return (1 - discount) * super.getPrice();

What’s wrong?

Oops! Broke the subclass
34

Example 2: Tight Coupling

class InstrumentedHashSet extends HashSet<Integer> {

private static int count = 0;

public boolean add(Integer e) {
count += 1;
return super.add(e);

}

public boolean addAll (Collection<Integer> c) {
count += c.size() ;

return super.addAll (c);

}

public int getCount () { return count; }

— what could possibly go wrong?
35

Example 2: Tight Coupling Gone Wrong!

InstrumentedHashSet S = new InstrumentedHashSet () ;

System.out.println(S.getCount()); // O
S.addAll (Arrays.asList (1, 2));
System.out.println(S.getCount()); // 4?21?

— what does this print?

* What is printed depends on HashSet’s addAll:

— if it calls add, then this prints 4
— if it does not call add, then this prints 2

* Also possible to be dependent on order of calls

36

Generalizing Examples 1 & 2

Creates tight coupling between super- and sub-class

Example 1: super-class needs to know about subclass
— direct field access in parent breaks subclass

Example 2: subclass needs to know about super-class
— subclass dependent on which methods call each other

But wait... There’'s more!

37

Example 3: Tight Coupling

class WorkList {
// RI: len(names) =
protected Arraylist<String> names;

protected Arraylist<Integer> times;
protected int total;

len(times) and total = sum(times)

public addWork (Job job) {
addToLists (job.getName (), Job.getTime()):

total += job.getTime () ;
}
protected addTolists (String name, 1nt time) {

names .add (name) ;

times.add (time) ;

38

Example 3: Tight Coupling ... Okay So Far ...

// Makes sure no task is too large compared to rest
class BalancedWorklList extends WorkList {
protected addTolists (String name, 1nt time) {

if (times.size () <= 3 || 2*time < total)
super.addTolLists (name, time); // okay
} else {

throw new ImbalancedWorkException (name, time);

— prevents item from being added if too big
— (also: this subclass is not a subtype!)

39

Example 3: Tight Coupling Gone Wrong!

class WorkList {
// RI: len(names) = len(times) and total = sum(times)

protected Arraylist<String> names;
protected Arraylist<Integer> times;
protected int total;

public addWork (Job job) {

int time = job.getTime(); // just one call

total += time;
addTolLists (Job.getName (), time);
J Rl not true in method call

— reordering the updates breaks the subclass!
— subclass is using total that includes the new job

40

Generalizing Example 3

 RI can be false in calls to non-public methods
— only needs to hold at end of the public method

* Requires extra care to get it right
— method is tightly coupled with the ones that call it

— needs to know what is true in those methods
not enough to just know the Rl

 Hard for multiple people to communicate this clearly
— can be okay when it’'s all your code
— very error prone when methods are written by others

41

Subclassing Creates Tight Coupling

* Creates tight coupling between super- and sub-class
— direct field access can break subclass
— subclass dependent on which methods call each other
— subclass dependent on order of method calls
— subclass can be called when Rl is false

* Often see the “fragile base class” problem

* Subclassing is a surprisingly dangerous feature!

— up to you to verify subclass method specs are stronger

— up to you to prevent tight coupling

42

Subclassing is Best Avoided

* Java advice: either design for subclassing or prohibit it
— from Josh Bloch, author of (much of) the Java libraries

 We haven’t used subclassing in TypeScript
— didn’t even describe how to do it!

we’ve just used classes as a quick way to create records

— these problems are the main reason why we avoided it

* Subclassing is not necessary anyway
— we have other ways to share code

43

Equality

Equality of User-Defined Types

* For any type, useful to know which are “the same”

* TypeScript “==="is not useful on records:

{a: 1} === {a: 1} /J/ false!

— as in Java, this is “reference equality”
— tells you if they refer to the same object in memory

 deepStrictEquals would work here
— checks that the records have the same fields and values
— but that also is not perfect...

45

Recall: Queue With Two Lists

// Implements a queue using two lists.

class ListPairQueue implements NumberQueue {

// AF: obj = this.front ++ rev(this.back)
readonly front: List<number>;
readonly back: List<number>;

— three ways of representing the same abstract state:

front back front # rev(back)
[1, 2] 1 [1, 2]

[1] 2] [1, 2]
1 [2,1] [1, 2]

— these should be considered equal!

46

Defining Equality Methods

* Often useful / necessary to define your own equal
— check if references point to records that are “the same”

* Very important to get definitions correct

— reasoning uses definitions, so
if our definitions are wrong, our reasoning will be wrong

— only tools for checking definitions: simplicity & testing

 Sometimes we can also sanity check them
— Topic 8 Assoclist, e.g., get-value(x, set-value(x,v,L)) =v
— can do something similar here...

47

Properties of Equality Functions

* Often useful / necessary to define your own equal
— check if references point to records that are “the same”

* Sensible definition should act like “=" in math:
1. equal(a,a)=T foranya:A reflexive
2. equal(a, b) =equal(b,a) foranya,b: A symmetric

3. if equal(a, b) and equal(b, c¢), then equal(a, c) for any ...

transitive
— (311 alert: this is an “equivalence relation”)
— Java has two more rules for Object.equal (see Java docs)

48

Equality in Java

equals

public boolean equals(Object obj)

Indicates whether some other object is "equal to" this one.

The equals method implements an equivalence relation on non-null object references:

It is reflexive: for any non-null reference value x, x.equals(x) should return true.
It is symmetric: for any non-null reference values x and y, x.equals(y) should
return true if and only if y.equals(x) returns true.

It is transitive: for any non-null reference values X, y, and z, if x.equals(y) returns
true and y.equals(z) returns true, then x.equals(z) should return true.

It is consistent: for any non-null reference values x and y, multiple invocations of
x.equals(y) consistently return true or consistently return false, provided no
information used in equals comparisons on the objects is modified.

For any non-null reference value x, x.equals(null) should return false.

An equivalence relation partitions the elements it operates on into equivalence classes; all
the members of an equivalence class are equal to each other. Members of an equivalence
class are substitutable for each other, at least for some purposes.

49

Example: Duration & Equality

e Define Duration to be an amount of time in seconds
type Duration = {min : Z, sec : Z} with 0 <sec < 60

— second part is a rep invariant

* Can define equality on Duration this way:
equal({min: m, sec: s}, {min: n, sec:t}) := (m=n)and (s=1t)

— true iff these are the same amount of time
(wouldn’t be true without the invariant)

50

Example: Duration & Checking Equality (1/2)

equal({min: m, sec: s}, {min: n, sec:t}) := (m=n)and (s=1t)

* Does this have the required properties?

— reflexive

equal({min: m, sec: s}, {min: m, sec: s})

=(m =m) and (s =5s) def of equal
=Tand T
=T proof by calculation

that it holds for any record
— Sym metric

equal({min: m, sec: s}, {min: n, sec: t})

=(m =n) and (s =t) def of equal
= (n=m) and (t =)
= equal ({min: n, sec: t}, {min: m, sec: s}) def of equal

51

Example: Duration & Checking Equality (2/2)

equal({min: m, sec: s}, {min: n, sec:t}) := (m=n)and (s=1t)

* Does this have the required properties?

— reflexive yes
— symmetric yes
— transitive also yes (but a little long for a slide)

 Good evidence that this is a reasonable definition

52

Non-Example: “==" in JavaScript

0O == "0 true
0 == true
0 == true

* Which property fails?

— transitivity: " !'= " "(and "0" != " ")

 Good evidence that this is not a reasonable definition

53

Example: List Equality (1/3)

 Can define equality on List type this way:

equal(nil, nil)
equal(nil, b :: R)
equal(a:: L, nil)
equal(a:: L, b:: R)
equal(a::L,b:: R)

T
F
F
F ifa#b
equal(L,R) ifa=b

e Checks that the values in the list are all the same
— this is a definition, so we can only check it on examples...

equal(| 1 21,1 21) =equal(|2|,12))

= equal(nil, nil)

=T

54

Example: List Equality (2/3)

 Can define equality on List type this way:

equal(nil, nil)
equal(nil, b :: R)
equal(a:: L, nil)
equal(a:: L, b:: R)
equal(a::L,b:: R)

T
F
F
F ifa#b
equal(L,R) ifa=b

e Checks that the values in the list are all the same
— this is a definition, so we can only check it on examples...

equal(| 1 2|, |1 31) =equal(|2],13))
=F

55

Example: List Equality (3/3)

 Can define equality on List type this way:

equal(nil, nil)
equal(nil, b :: R)
equal(a:: L, nil)
equal(a:: L, b:: R)
equal(a::L,b:: R)

T
F
F
F ifa#b
equal(L,R) ifa=b

* Has all three required properties
— how would we prove equal(L, L) holds for any list L?

induction

56

Recall: Abstract Data Types (ADTs)

 Abstraction over data

— hide the details of the data representation

— only give users a set of operations (the interface)
data abstraction via procedural abstraction

 Can define Duration as an ADT instead...
— hide the representation as two fields

57

Example: Duration as an ADT

// Represents an amount of time measured in seconds

class Duration {

// RI: 0 <= sec < 60
// AF: obj = 60 * this.min + this.sec
readonly min: number;
readonly sec: number;

equal = (d: Duration): boolean => {

return this.min === d.min && this.sec === d.sec;

Y

— defines Duration as an ADT

getTime method not shown

equal still makes sense, just as before
58

Recall: Subtypes vs Subclasses

* Subclasses are code sharing
— everything from the parent is copied into the subclass
— subclass can also replace (override) with its own versions

* Subtypes must be substitutable for supertype
— this is the “Liskov substitution principle”
— due to Barbra Liskov

* Not all subclasses are subtypes!
— it's dangerous whenever that happens

59

Example: NanoDuration

 Suppose a subclass also measures nanoseconds

class NanoDuration extends Duration {

// min: number (inherited)
// sec: number (inherited)

readonly nano: number;

* How should we define equal?
— remember that it takes an argument of type Duration

we cannot accept fewer arguments

60

Example: NanoDuration & Equality

class NanoDuration extends Duration {

// min: number (inherited)

// sec: number (inherited) Must take Duration

readonly nano: number;

equal = (d: Duration): boolean => {

if (d instanceof NanoDuration) {

return this.min === d.min &&
this.sec === d.sec &&
this.nano === d.nano;

} else {

return false;

Y

symmetry

— which property does this lack?

argument to be a subtype

61

Example: NanoDuration & Equality, Gone Wrong

const d = new Duration (2, 10);

const n new NanoDuration (2, 10, 300);

console.log(n.equal(d)); // false
console.log(d.equal(n)); [/ true!

— NanoDuration is only equal to other NanoDurations

— Duration cah be equal to a NanoDuration
if they have the same minutes and seconds

62

Example: NanoDuration & Equality, Round 2

class NanoDuration extends Duration {

// min (inherited)
// sec (inherited)

readonly nano: number;

equal = (d: Duration): boolean => {

if (d instanceof NanoDuration) {

return this.min === d.min &&
this.sec === d.sec &&
this.nano === d.nano;
} else {
return this.min == d.min && this.sec == d.sec;

Y

No! It lacks transitivity

— fixes symmetry! all good now?
63

Example: NanoDuration & Equality, Still Wrong

const nl = new NanoDuration (2, 10, 300);
const d = new Duration (2, 10);

const n2 = new NanoDuration (2, 10, 400);
console.log(nl.equal(d)); // true

// true

console.log (d.equal (n2)) ;
console.log(nl.equal(n2)); // false!

— transitivity requires n1 to equal n2 (but it doesn’t)

64

Subclasses and Equals Don’t Always Mix

* No good solution to this problem!

— inherent tension between subtyping and equality
subtyping wants subclasses to behave the same
equality wants to treat them differently (using extra information)

* This is a general problem for “binary operations”
— equality is just one example

* Real issue is that NanoDuration isn’'t a subtype...

— would have seen this if we documented the ADT carefully

65

NanoDuration isn’t a Duration?

 Suppose a subclass also measures nanoseconds

// Represents an amount of time in nanoseconds

class NanoDuration extends Duration {

// RI: 0 <= sec < 60 and 0 <= nano < 10000
// AF: obj = 60,000,000 * this.min +

// 1,000,000 * this.sec +

// this.nano

readonly nano: number;

* Abstract states of the two types are different
— time in seconds vs hanoseconds

— abstract states of subtypes would need to be subtypes
66

CSE 331
Summer 2025

Designh Patterns

Jaela Field

CLASS BALL EXTENDS THROWABLE {}
CLASS Pt
P TARGET;
P(P TRRGET) {
THIS. TARGET = TARGET
}
VOID AM([3ALL BALL) §
TRY {
THROW BALL;

}
CATeH (BALL B){
TARGET.AM(B);

}
PUBLIC STATIC VOID MAIN(STRINGL] ARGS) §
P PARENT =NEW P(NULL);
P CHILD =NEW P(PFRENT}
PARENT. TARGET = CHILD;
! PARENT.AIM(NEW BH-L(}}'
}

xked #1188 & matt

Administrivia (8/20)

HWS absolute late deadline is TONIGHT!
— a couple bugs found in Task 2 (see ed post)

course evals are out! please share your
perspective!

Jaela’s OH Friday are cancelled
— Email me if you'd like to meet

Final exam is Friday, 10:50-11.:50, in DEM 102
— bring a pencil & your husky ID

— practice materials posted on website
2 extra old exams posted yesterday (NOT in 255U exam style)

— section and OH tomorrow are exam prep!

68

https://edstem.org/us/courses/80024/discussion/6864705

Design Patterns

Recall: Design Patterns

acm D Mmo
Desien Patterns
Elements of Reusable
Object-Or jefited Software

 Popularized in 1994 book of that name
— written by the “Gang of Four”

Gamma, Helm, Johnson, Vlissides

— worked in C++ and SmallTalk
(SmaliTalk hugely influenced OOP in Java, etc.)

O

* Found that they independently developed
many of the same solutions to recurring problems
— wrote a book about them

70

Parts of a Designh Patterns

Each pattern in the book includes

* Problem to be solved
 Description of the solution

« Name of the pattern

71

Java Example: Iterator

« Java Collections use the lterator Designh Pattern
— enumerate a collection while hiding data structure details

— return another ADT that outputs the items
that object knows how to walk through the data structure

operations for retrieving the current item and moving on to the next one

* Clever idea that is now used everywhere
— huge improvement over code we were writing before

72

Categories of Designh Patterns (1/2)

The book has three categories of patterns

 Creational: factory function, factory object,
builder, prototype, singleton, ...

 Structural: adapter, bridge, composite, decorator,
facade, flyweight, proxy

 Behavioral: command, interpreter, iterator, mediator,
observer, state, strategy, visitor, ...

— we will not cover all, just some highlights

73

Categories of Designh Patterns (2/2)

The book has three categories of patterns

 Creational: factory function, factory object,
builder, prototype, singleton, ...

 Structural: adapter, bridge, composite, decorator,
facade, flyweight, proxy

 Behavioral: command, interpreter, iterator, mediator,
observer, state, strategy, visitor, ...

— green and underlined = mentioned already

74

Creational Patterns

The book has three categories of patterns

 Creational: factory function, factory object,
builder, prototype, singleton, ...

 Structural: adapter, bridge, composite, decorator,
facade, flyweight, proxy

 Behavioral: command, interpreter, iterator, mediator,
observer, state, strategy, visitor, ...

— green and underlined = mentioned already

75

Why Creational Patterns?

* One third of the patterns deal with object creation

* Why? constructors can be difficult!
— surprisingly error-prone

— several important limitations
1. Cannot return an existing object
2. Cannot return a different class
3. Does not have a name!

76

Public Constructors

 Most Java classes have public constructors
— e.g., create an ArrayList With “new ArrayList<String> ()’

 For our ADTs, we didn’t do this
— class was hidden (not exported)

— we exported a “factory function” that used the constructor

e.g.,
const makeIntSet = (L: List<bigint>): IntSet => {
return new SimpleIntSet ()

}

— this was not accidental!

Wanted to give users access to data type without asking them to use a
constructor

77

Recall: Tight Coupling (Example 3)

class WorkList {
// RI: len(names) =
protected Arraylist<String> names;

protected Arraylist<Integer> times;
protected int total;

len(times) and total = sum(times)

public addWork (Job job) {

int time = job.getTime(); // just one call

total += time;
addTolLists (Job.getName (), time);

Rl is not true in method call!

78

Constructors are Error Prone: Method Calls

 method calls from a constructor are dangerous!

 called when Rl is false

— usually, the Rl does not hold until all fields are assighed
typically, that is the last line of the constructor

— hence, any methods are called with the RI still false

* Asking for trouble!
— method needs to know that some parts of Rl may be false
— eventually, someone changing code will mess this up
— better to avoid method calls in the constructor

79

Limitations of Constructors

e Constructor is called after the object is created
— can’t decide, in the constructor, not to create it

 Limitations of constructors
1. Cannot return an existing object
2. Cannot return a different class

3. Does not have a name!

80

Factory Function and Singleton

* Factory functions can return an existing object

e Common case: there is only one instance!
— factory function can avoid creating new objects each time
— called the “singleton” design pattern

 Example from before...

81

Example Singleton

interface FastList {
cons (x: bigint): FastList;
getlast () : bigint|undefined;
toList () : List<bigint>;

I

const nillist: FastlList = new FastBackList(nil) ;

const makeFastlList = (): FastList => {

return nillList;

bi Note: only allowed because FastList is immutable
* No need to create a new object using “new” every time

— can reuse the same instance
— example of the “singleton” design pattern

82

Returning a Subtype

* Factory functions can return a subtype
— declared to return A but returns subtype B instead
— allowed since every Bis an A

 Example:

// @returns an empty NumberSet that can be used to
// store numbers between min and max (inclusive)
const makeNumberSet = (min: number, max: number): NumberSet => {
if (0 <= min && max <= 100) {
return makeArrayNumberSet (); // only supports small sets
} else {

return makeSortedNumberSet (); // use a tree instead

83

Recall: Multiple Constructors

* Java classes allow multiple constructors

class HashMap {
public HashMap() { .. } // initial capacity of 16
public HashMap (int initialCapacity) { .. }

* TypeScript classes do not, but
you can fake it with optional arguments

class HashMap {

constructor (initialCapacity?: number) { ... }

84

Constructors Have No Name

* Do not get to name constructors
— in Java, same name as the class
— in TypeScript, called “constructor”

* Names are useful!

1. Let you distinguish between different cases
— use names to distinguish cases that otherwise look the same

2. Let you explain what it does

— the only thing you know the client will read!

85

Example: Distinguishing Constructors (1/3)

e JavaScript's Array has multiple constructors

new Array () // creates []
new Array(al, .., aN) // creates [al, .., aN]
new Array (2) // creates [undefined, undefined]

— what does “new Array(al)” return when al is a number?
— how to make a 1-element array containing just al

const A = new Array (1)
A[0] = al;

— don’t have a name to distinguish these cases!

86

Example: Distinguishing Constructors (2/3)

* Factory functions have names
— allow us to distinguish these cases

// Qreturns []
const makeEmptyArray = (): Array => { .. };

// Qreturns A with A.length = len and

// A[j] = undefined for any 0 <= j < len
const makeArray = (len: number): Array => { .. };
// @Qreturns [args[0], .., args[N-1]]

const makeArrayContaining = (...): Array => { .. };

— function name is also the one thing you know clients read!
best chance to tell them how to use it correctly

87

Example: Distinguishing Constructors (3/3)

* Factory functions have names
— allow us to distinguish these cases

// Qreturns []
const makeEmptyArray = (): Array => { .. };

// @returns A with A.length = len and
// A[j] = undefined for any 0 <= j < len
const makeArray = (len: number): Array => { .. };

// @returns A with A.length = len and
// A[j] = val for any 0 <= j < len
const makeFilledArray =

(len: number, val: number): Array => { .. };
|)

Be very, very careful...

Common Error: Argument Order Bugs

// Q@returns A with A.length = len and
// A[j] = val for any 0 <= j < len
const makeFilledArray =

(len: number, val: number): Array => { .. };
| J

Be very, very careful...
Type checker won’t notice if client mixes these up!

« Some famous bugs due to mixing up argument order!

* If you program long enough, you will see this one

89

Use Records to Force Call-By-Name

* Can use a record to make clients type names

// @returns A with A.length = len and
// A[j] = val for any 0 <= j < len
const makeFilledArray =

(desc: {len: number, value: number}): Array

— takes one argument, not two
— client writes “makeFilledArray ({len: 3, value: 0})”

much easierin JS than Java

* Think about mistakes clients might make
— be paranoid when debugging will be painful

90

Creational Pattern: Builder

* Object that helps with creation of another object

— constructor / factory requires you to give info all at once
— builder lets you describe what you want bit by bit

 Java Example: StringBuilder

StringBullder buf = new StringBuilder();
buf.append("Total distance: ");
buf.append(distance);

buf.append (" meters.");

return buf.toString() ;

— each call adds more text / number to the final string

— we can’t do this with strings because strings are immutable
21

Builders and “Mutation XOR Aliasing”

* Object that helps with creation of another object
— constructor / factory requires you to give info all at once
— builder lets you describe what you want bit by bit

 Good pairing: mutable Builder for an immutable type

— must avoid aliasing with the mutable builder
e.g., never use it as a key in a BST or Map

— immutable object can be shared arbitrarily
no worries about aliasing

92

Writing a Builder

 Builder is often written like this:

class FooBuilder {

public FooBuilder setX(int x) {
this.x = x;

return this;

public Foo build() { .. }

— can then use them like this

Foo £ = new FooBuilder () .setX(l) .set¥Y (2) .build() ;
| J
avoids worries about argument order

93

Recall: Argument Order Bugs

// Q@returns A with A.length = len and
// A[j] = val for any 0 <= j < len
const makeFilledArray =

(len: number, val: number): Array => { .. };

Be very, very careful...
Type checker won’t notice if client mixes these up!

e Can fix with a record argument or a Builder
— Java does not have record types, so we need the latter

94

Argument Builder

// Returns an array with length & value given in args.

public Integer[] makeFilledArray(args: Args) { .. }

class Args {
public int length;

public int value;

Args args = new Args () ;
args.length = 10;
args.value = 5;

. = makeFilledArray(args);

— code using the function is now more verbose...
can make this easier by giving them a Builder

95

Writing an Argument Builder

// Returns an array with length & value given in args.

public Integer[] makeFilledArray(args: Args) { .. }
class ArgsBuilder {
public ArgsBuilder setlLength(int length) {

this.length = length;

return this;

public Args toArgs() { .. }

. = makeFilledArray (new ArgsBuilder ()
.setlLength(10) .setValue (5) .toArgs()),

96

Structural Patterns

The book has three categories of patterns

 Creational: factory function, factory object,
builder, prototype, singleton, ...

 Structural: adapter, bridge, composite, decorator,
facade, flyweight, proxy

 Behavioral: command, interpreter, iterator, mediator,
observer, state, strategy, visitor, ...

— green and underlined = mentioned already

97

Recall: Java and Interoperability

 Mentioned this one in Topic 2...

* |n Java, these two classes are not interoperable:

interface Duration {
int getMinutes() ;

int getSeconds () ;

}

interface AmountOfTime {
int getMinutes() ;

int getSeconds () ;

}

— cannot pass one where the other is expected

98

Structural Pattern: Adapter

 Mentioned this one in Topic 2...

* Get around this by creating an adapter

class DurationAdapter implements AmountOfTime {

private Duration d;

public DurationAdapter (Duration d) {

this.d = d;
}
int getMinutes () { return d.getMinutes(); }
int getSeconds () { return d.getSeconds(); }

— makes a Duration into an AmountOfTime

99

Adapters and Type Systems

* Adapters are often needed with nominal typing
— design pattern working around a language issue

* With structural typing, these two interoperate:

type Duration = {min: number, sec: number};

type AmountOfTime = {min: number, sec: number};

— can pass either where the other is expected

— not an issue of concrete vs abstract
still interoperable if we have getMinutes and getSeconds methods

100

Behavioral Patterns

The book has three categories of patterns

 Creational: factory function, factory object,
builder, prototype, singleton, ...

 Structural: adapter, bridge, composite, decorator,
facade, flyweight, proxy

 Behavioral: command, interpreter, iterator, mediator,
observer, state, strategy, visitor, ...

— green and underlined = mentioned already

101

Trees

* Trees are inductive data types

— anything with a constructor that has 2+ recursive arguments
HWS tree (Square) has 4 recursive arguments

* They arise frequently in practice
— HTML: used to describe Ul
— JSON: used for client/server communication
— parse trees: represent code

102

Parse Tree Example

* OQutput of parsing is a tree
— encodes the order of operations

e Example:parseof “x = a * 3 + b / 4"

Defining Parse Trees Inductively

* Output of parsing is a tree
— records the order of operations

* Parse tree is an inductive data type

type Expression := variable(name: §")
| constant(val : Z)
plus(left : Expr, right : Expr)

|

| times(left: Expr, right : Expr)

| divide(left: Expr, right : Expr)
| assign(name : §%, value : Expr)

— parseof“x = a * b + ¢ / &

assign("x", plus(times(constant(3), variable("a")),

divide(variable("b"), constant(4)))
104

Operations on Parse Trees (1/2)

 Compilers perform various operations on expressions
— type check
— evaluate
— code generation

 Each operation defined for each type of expression

Type of Expr

Variable Plus Times

type check

Operation
evaluate

code gen

105

Operations on Parse Trees (2/2)

e Need to write code for each box
— each case is slightly different

 Two reasonable ways to organize into files

— file per expression type: Interpreter pattern
— file per operation: Procedural pattern
Type of Expr
/ValiabLe\ Plus Times
e [— ‘
(Type check | [\ I
Operation — ———
evaluate
code gen \ /

\/ 106

Interpreter Pattern Example

interface Expr {

typeCheck = (c: Context) => Type,
evaluate = (c: Context) => number | undefined,
generate = (c: Context) => List<Instruction>

}

class Variable implements Expr
name: string;
typeCheck = (c: Context): Type => {
return c.get (this.name);
}
evaluate = (c: Context): number | undefined => {

return undefined;

Each type of expression is a class

107

Dynamic Dispatch (good case in Java, Interpreter)

interface Expr {

boolean typeCheck (Context c);
}

class Variable implements Expr
public boolean typeCheck (Context c) { .. }
}

class Constant implements Expr ({
public boolean typeCheck (Context c) { .. }
}

e Java / TypeScript (or any O0) makes this case easy

Expr e = ..

e.typeCheck(c) ; // e could be any Expr

— automatically “dispatches” to the right method

108

Interpreter Pattern Tradeoffs O

interface Expr {

typeCheck = (c: Context) => Type,
evaluate = (c: Context) => number | undefined,
generate = (c: Context) => List<Instruction>

}

* Easy to add new types of expression
— new subtype of Expr
— goes into its own file

 Hard to add new operations
— new method of Expr
— changes every file

109

Procedural Pattern Example .

interface Procedure<R> {
processVar = (v: Variable, c: Context) => R,

processConst = (n: Constant, c: Context) => R,

}

class TypeChecker implements Procedure<boolean> {
processVar = (v: Variable, c: Context): boolean => {
return c.has (v.name);
}
processConst = (n: Constant, c: Context): boolean => {

return true;

* Each type of procedure is a class

— ohe method for each type of expression 110

Procedural Pattern Tradeoffs O

interface Procedure<R> {
processVar = (v: Variable, c: Context) => R,

processConst = (n: Constant, c: Context) => R,

}

* Easy to add new types of operations
— new subtype of Procedure
— goes into its own file

 Hard to add new expressions
— new method of Procedure
— changes every file

111

Dynamic Dispatch (bad case in Java, Procedural)

interface Procedure<R> { -

R process (Variable v, Context c);

R process (Constant n, Context c); overloading

}

class TypeChecker implements Procedure<Boolean> {
Boolean process (Variable v, Context c) { .. }

Boolean process (Constant ¢, Context c¢) { .. }

* This is impossible in Java:

TypeChecker t = new TypeChecker () ;
Expr e = ..
t.process (e, c); // e could be any Expr

// which method should we call?
112

Problem with Procedural Pattern in OO

const process = (p: Procedure, e: Expr, c: Context) => {
if (e instanceof Variable) {
p.processVar (e, c);
} else if (e instanceof Constant) {
p.processConst (e, c);
} else if (e instanceof Plus) {
p.processPlus (e, c);

} else ..

* Not great, Bob!
— code is slow
— will call it enough times that this will matter

* There is a solution, but... buckle up!

113

“Fixing” Impossible Dynamic Dispatch

* This is impossible in Java:

TypeChecker t = new TypeChecker();

Expr e = ..
t.process (e, c); // e could be any Expr
t |

* Need to put “c” before “.” to get dynamic dispatch

— here’s how we do that... (gulp)

114

Implementing Double Dispatch

interface Procedure<R> {
R process (Variable v, Context c);

R process (Constant n, Context c);

}

interface Expr {
R perform(Procedure<R> p, Context c);

}

class Variable implements Expr
public R perform(Procedure<R> p, Context c) {
p.process (this, c);
} calls process (Variable, Context)
}

class Constant implements Expr ({
public R perform (Procedure<R> p, Context c) {

p.process (this, c);
} calls process (Constant, Context)

} 115

Using Double Dispatch

interface Procedure<R> {
R process (Variable v, Context c);

R process (Constant n, Context c);

}

interface Expr {

R perform (Procedure<R> p, Context c);

e We can now do this

Process p = new TypeChecker () ;
Expr e = ..
e.perform(p, c); // e could be any Expr

— calls Expr.perform, Which calls TypeChecker.process

— two function calls is still faster than all the “if”s 16

Multiple Dispatch?

* This works, but... why so hard?

* Other languages just let you do this:

Process p = new TypeChecker () ;
Expr e = .
p.process (e, cC); // e could be any Expr

— or even more general “multiple dispatch” cases
— use a better language?

117

Interpreter vs Procedural Pattern

 Both patterns are reasonable
— best choice is problem-dependent

— worth considering that Dynamic Dispatch doesn’t work well
with Procedural

118

Traversing Trees

e Same idea is used to traverse trees

type Expression := variable(name: §")
constant(val : Z)
plus(left : Expr, right : Expr)

divide(left : Expr, right : Expr)

|

|

| times(left : Expr, right : Expr)
|

| assign(name : S, value : Expr)

— parseof“x = 3 * a + b / 47

assign(“x”, plus(times(constant(3), variable(“a")),
divide(variable(“b”), constant(4)))

— would like to process (“visit”) each node in this tree

119

Visitor Pattern

interface ExprVisitor {

visitVariable = (v: Variable) => wvoid,
visitConstant = (n: Constant) => wvoid,
visitPlus = (p: Plus) => wvoid,

}

interface Expr {

// Visits this node and all its children.

accept = (v: ExprVisitor) => wvoid

}

class Variable implements Expr {
name: string;
accept = (v: ExprVisitor): void => {

v.visitVariable (this) ;

120

Visitor Pattern (with child nodes)

« Combines double dispatch with tree traversal

class Plus implements Expr {
left: Expr;
right: Expr;

accept = (v: ExprVisitor): void => {
left.accept (v);
right.accept(v);

v.visitVariable (this) ;

— traverses children before visiting parent

121

Visitor Pattern (in steps)

p.accept (v)
t.accept (v)
h.accept (v)
v.visitConstant (h)
a.accept (v)
v.visitVariable (a)
v.visitTimes (t)

d.accept (v) P

v.visitDivide ()

v.visitPlus (p)

h

122

Wrapping Up

Wrapping up: Design

* design patterns give us a name to a strategy and
the ability to reuse a known solution

« 331 is “Software Design & Implementation”

* Discussed designh considerations all along! e.g.,
— Maybe use a language with a type checker...
— Choosing mutable vs immutable data
— Practicing modularity

Web app organization, Abstraction

— Creating server routes
how do we allow a user to do or access __ ?

— Writing code for usability

documentation, code that is easy to read & show correct -

What We Hope You Got From 331: The Core

* A toolkit for reasoning about code correctness
— within 331: formalized “expert intuition” with math

— requires slow, careful, and rigorous thinking
— used before testing & debugging (~ complementary)

 Learning when to use this toolkit

— hot every problem requires it!

— treat reasoning as a spectrum
most experts reason informally for simple problems...
... use diagrams for difficult problems ...
... and bring out pencil & paper for brutal problems!
(or, “automated reasoning” tools, e.g. proof assistants)

125

What We Hope You Got From 331: Bonuses

* |learning JavaScript & TypeScript

— different approaches to types & OOP than Java
— some issues are fundamental to both languages

* writing complex web applications
— async code is tricky!
— client-server interaction is complicated
— debugging client-server apps is hard!
— made some fun projects :)

« computer science is much more than writing code

— fundamental focus on reasoning & abstraction
— but also: many applications of “theoretical” CS & math

126

If you want more...

* reasoning, math, and programming languages
— CSE 341 (PL), CSE 401 (Compilers), CSE 403 (SWE)
— CSE 505 (Grad PL), CSE 507 (Automated Reasoning)
— check out UW PLSE!

* interactive application development

— some great courses in CSE
CSE 340 (interaction programming, mobile dev), CSE 154 (web dev)*
more broadly: CSE 440 (HCI), CSE 442 (viz), CSE 443 (accessibility)

— but also, large culture of free self-paced resources
now have most of the vocabulary to learn reactive programming
largest barrier is time & practice, not “theory”

* build your own side project!

127

https://uwplse.org/

	Slide 1: Subtyping
	Slide 2: Administrivia (8/15)
	Slide 3: Administrivia (8/15)
	Slide 4: Object-Oriented Programming
	Slide 5: Subtypes
	Slide 6: Subtypes of Concrete Types (in math)
	Slide 7: Subtypes of Concrete Types (in TypeScript)
	Slide 8: Subtypes of Concrete Types (for records)
	Slide 9: Subtyping Used by TypeScript: Parameters
	Slide 10: Subtyping Used by TypeScript: Returns
	Slide 11: Subtyping Used by TypeScript: Invariants (1/2)
	Slide 12: Subtyping Used by TypeScript: Invariants (2/2)
	Slide 13: Subtypes of Abstract Types
	Slide 14: Subtypes Are Substitutable
	Slide 15: Liskov Substitution Principle
	Slide 17: Defining Substitutable Abstract Types
	Slide 18: Review: Stronger Assertions vs Specifications
	Slide 19: Strengthening a Specification (1/3)
	Slide 20: Strengthening a Specification (2/3)
	Slide 21: Strengthening a Specification (3/3)
	Slide 22: Example: Rectangle and Square
	Slide 23: Example: Immutable Rectangle and Square
	Slide 24: Example: Mutable Rectangle and Square (1/2)
	Slide 25: Example: Mutable Rectangle and Square (2/2)
	Slide 26: Subclasses & Equality
	Slide 27: Course Evals
	Slide 28: Subclasses & Subtyping
	Slide 29: Review: Subclasses
	Slide 30: Subclasses are not always Subtypes
	Slide 31: Subclasses in Java (and other OOP languages)
	Slide 32: Subclasses & Coupling
	Slide 33: Example 1: Tight Coupling
	Slide 34: Example 1: Tight Coupling Gone Wrong!
	Slide 35: Example 2: Tight Coupling
	Slide 36: Example 2: Tight Coupling Gone Wrong!
	Slide 37: Generalizing Examples 1 & 2
	Slide 38: Example 3: Tight Coupling
	Slide 39: Example 3: Tight Coupling … Okay So Far …
	Slide 40: Example 3: Tight Coupling Gone Wrong!
	Slide 41: Generalizing Example 3
	Slide 42: Subclassing Creates Tight Coupling
	Slide 43: Subclassing is Best Avoided
	Slide 44: Equality
	Slide 45: Equality of User-Defined Types
	Slide 46: Recall: Queue With Two Lists
	Slide 47: Defining Equality Methods
	Slide 48: Properties of Equality Functions
	Slide 49: Equality in Java
	Slide 50: Example: Duration & Equality
	Slide 51: Example: Duration & Checking Equality (1/2)
	Slide 52: Example: Duration & Checking Equality (2/2)
	Slide 53: Non-Example: “==” in JavaScript
	Slide 54: Example: List Equality (1/3)
	Slide 55: Example: List Equality (2/3)
	Slide 56: Example: List Equality (3/3)
	Slide 57: Recall: Abstract Data Types (ADTs)
	Slide 58: Example: Duration as an ADT
	Slide 59: Recall: Subtypes vs Subclasses
	Slide 60: Example: NanoDuration
	Slide 61: Example: NanoDuration & Equality
	Slide 62: Example: NanoDuration & Equality, Gone Wrong
	Slide 63: Example: NanoDuration & Equality, Round 2
	Slide 64: Example: NanoDuration & Equality, Still Wrong
	Slide 65: Subclasses and Equals Don’t Always Mix
	Slide 66: NanoDuration isn’t a Duration?
	Slide 67: Design Patterns
	Slide 68: Administrivia (8/20)
	Slide 69: Design Patterns
	Slide 70: Recall: Design Patterns
	Slide 71: Parts of a Design Patterns
	Slide 72: Java Example: Iterator
	Slide 73: Categories of Design Patterns (1/2)
	Slide 74: Categories of Design Patterns (2/2)
	Slide 75: Creational Patterns
	Slide 76: Why Creational Patterns?
	Slide 77: Public Constructors
	Slide 78: Recall: Tight Coupling (Example 3)
	Slide 79: Constructors are Error Prone: Method Calls
	Slide 80: Limitations of Constructors
	Slide 81: Factory Function and Singleton
	Slide 82: Example Singleton
	Slide 83: Returning a Subtype
	Slide 84: Recall: Multiple Constructors
	Slide 85: Constructors Have No Name
	Slide 86: Example: Distinguishing Constructors (1/3)
	Slide 87: Example: Distinguishing Constructors (2/3)
	Slide 88: Example: Distinguishing Constructors (3/3)
	Slide 89: Common Error: Argument Order Bugs
	Slide 90: Use Records to Force Call-By-Name
	Slide 91: Creational Pattern: Builder
	Slide 92: Builders and “Mutation XOR Aliasing”
	Slide 93: Writing a Builder
	Slide 94: Recall: Argument Order Bugs
	Slide 95: Argument Builder
	Slide 96: Writing an Argument Builder
	Slide 97: Structural Patterns
	Slide 98: Recall: Java and Interoperability
	Slide 99: Structural Pattern: Adapter
	Slide 100: Adapters and Type Systems
	Slide 101: Behavioral Patterns
	Slide 102: Trees
	Slide 103: Parse Tree Example
	Slide 104: Defining Parse Trees Inductively
	Slide 105: Operations on Parse Trees (1/2)
	Slide 106: Operations on Parse Trees (2/2)
	Slide 107: Interpreter Pattern Example
	Slide 108: Dynamic Dispatch (good case in Java, Interpreter)
	Slide 109: Interpreter Pattern Tradeoffs
	Slide 110: Procedural Pattern Example
	Slide 111: Procedural Pattern Tradeoffs
	Slide 112: Dynamic Dispatch (bad case in Java, Procedural)
	Slide 113: Problem with Procedural Pattern in OO
	Slide 114: “Fixing” Impossible Dynamic Dispatch
	Slide 115: Implementing Double Dispatch
	Slide 116: Using Double Dispatch
	Slide 117: Multiple Dispatch?
	Slide 118: Interpreter vs Procedural Pattern
	Slide 119: Traversing Trees
	Slide 120: Visitor Pattern
	Slide 121: Visitor Pattern (with child nodes)
	Slide 122: Visitor Pattern (in steps)
	Slide 123: Wrapping Up
	Slide 124: Wrapping up: Design
	Slide 125: What We Hope You Got From 331: The Core
	Slide 126: What We Hope You Got From 331: Bonuses
	Slide 127: If you want more…

