CSE 331
Summer 2025

Arrays |

Jaela Field

RESULTS OF ALGORITHM COMPLEXITY ANALYSIS:

AVERAGE
CASE

O(N LoG N)

BEST
CASE

ALGORITHM TURNS OUT TO BE
UNNECESSARY AND 1S HALTED, THEN
CONGRESS ENACTS SURPRISE DAYLIGHT
SAVING TIME AND WE GAIN AN HOUR

WORST
CASE

TOWN IN WHICH HARDWARE IS LOCATED
ENTERS A GROUNDHOG DAY SCENARIQ
ALGORITHM NEVER TERMINATES

xked #2939, thanks Matt

Administrivia (8/11)

« Exam page is out and linked on resources page

— Includes all logistical details
— Includes practice materials

25su Practice final to come

e Last section (8/21) will be final review
With additional practice materials

List Indexing

at: (List, N) - Z

at(nil , n) := undefined
at(x:: L, 0) = X
at(x:: L,n+1) = at(L, n)

* Retrieve an element of the list by index
— use "L[j]" as an abbreviation for at(j, L)

* Not an efficient operation on lists...

Linked Lists in Memory

 Must follow the "next" pointers to find elements
— at(L, n) is an O(n) operation
— no faster way to do this

Faster Implementation of at

1|2[3]4(5

L[4]

e Alternative: store the elements next to each other
— can find the n-th entry by arithmetic:

location of L[4] = (location of L) + 4 * sizeof(data)

* Resulting data structure is an array
— consider: arrays can be an implementation of the List ADT

Array Efficiency

1|2[3]4(5

L[4]
* Resulting data structure is an array

» Efficient to read L|i]

 [nefficient to...

— insert elements anywhere but the end
— write operations with an immutable ADT

— trees can do all of this in O(log n) time

Access By Index

* Easily access both L[0] and L|n-1], where n =len(L)

— can process a list in either direction

* “With great power, comes great responsibility”

— the Peter Parker Principle

* Whenever we write “Alj]”, we must check 0 <j<n
— hew bug just dropped!

with list, we only need to worry about nil and non-nil
once we know L is non-nil, we know L.hd exists

— TypeScript will not help us with this!

type checker does catch “could be nil” bugs, but not this

Recall: Sum List With a Loop

sum-acc(nil, r) =T
sum-acc(x:: L,r) :=sum-acc(L, X +r)

* Tail recursive version is a loop

const sum = (S: List<bigint>): bigint => {
let r = 0;
// Inv: sum(S,) = r + sum(S)
while (S.kind !== "nil") {
r = S.hd + r;
S = S.tl;

}

return r;

b

Change to a version that uses indexes...

8

Sum Array by Index

 Change to using an array and accessing by index

const sum = (S: Array<bigint>): bigint => {
let r = 0;
let 7 = 0;
// Inv: ..
while (j !== S.length) { // .. S.kind !== "nil"
r = S[3j] + r; // .. r=8.hd + r
J =3+t 1; // .. S = 8S.tl

}

return r;

}i Note that S is no longer changing

9

Sum Array by Index: compared to sum-acc

sum-acc : (List, N, Z) = Z
sum-acc(S,j,r) =T if j =len(S)
sum-acc(S,j,r) :=sum-acc(S,j+1,S[j] + 1) if j # len(S)

 Change to using an array and accessing by index

const sum = (S: Array<bigint>): bigint => {
let r = 0;
let 7 = 0;
// Inv: ..
while (j !== S.length) {

r =S[J] + x;
jo=9 + 1;
}

return r;

b

10

Sublists

 Use indexes to refer to a section of a list (a "sublist"):

sublist : (List<Z>, N, Z) - List<Z>
sublist(L, i, j) := nil ifj <i
sublist(L, i, j) := L[i] :: sublist(L, i+ 1,j) ifi<j

* Useful for reasoning about lists and indexes

 This includes both L[i] and LJj]

sublist(L, 0, 2) = L[0] :: sublist(L, 1, 2) def of sublist (since 0 < 2)
= L[0] :: L[1] :: sublist(L, 2, 2) def of sublist (since 1 < 2)
= L[0] :: L[1] :: L] 2] :: sublist(L, 3, 2) def of sublist (since 2 < 2)
= L[O] :: L[1] :: L[2] :: nil def of sublist (since 3 < 2)

= [L[O], L[1], L[2]]
11

Sublists and Edge Cases

 Use indexes to refer to a section of a list (a "sublist"):

sublist : (List<Z>, N, Z) - List<Z>

sublist(L, i, j) := nil if j <i
sublist(L, i, j) := L[i] :: sublist(L, i+ 1,j) ifi<j

* The sublist is empty when the range is empty

sublist(L, 3, 2) = nil

— weird-looking example that comes up a lot:

sublist(L, 0, -1) = nil

— not an array out of bonds error! (this is math, not Java)

12

Sublist Shorthands and Facts

sublist : (List<Z>, N, Z) — List<Z>

sublist(L,i,j) := nil ifj <i
sublist(L,i,j) := L[i] = sublist(L, i+ 1,{) ifi<j

* Will use "L[i .. j]" as shorthand for "sublist(L, i, j)"

— again, using an operator for most common operations

e Some useful facts about sublists:
L=1L[0.. len(L)-1]

Lli..jl=L[i.K] #Lk+1.j] foranykwithi-1<k<j (and 0<i<j<n)

13

Sum Array by Index: sum-acc, in math

sum-acc(S,j, r) =7 if j = len(S)
sum-acc(S,j,r) :=sum-acc(S,j+1,S[j] + 1) if j # len(S)

 Change to using an array and accessing by index

const sum = (S: Array<bigint>): bigint => {
let r = 0;
let 7 = 0;
// Inv: .. ?? ..
while (j != S.length) {
r = S[J] + r;
3] =3+ L
}
return rj Still need to fill in Inv...

bi Need a version using indexes.

14

Recall: Sum List With a Loop, with Invariant

* Tail recursive version is a loop

const sum = (S: List<bigint>): bigint => {
let r = 0;
// Inv: sum(S,) = r + sum(S)
while (S.kind !== "nil") {
r = S.hd + r;
S = S.tl;

}

return r;

I Inv says sum(S,) is r plus sum of rest (S)

Not the most explicit way of explaining "r"...

15

Visual Intuition for Sum List Loop Invariant

S, S

sum(S,) = r + sum(S)

e "r'" contains sum of the part of the list seen so far

e Can explain this more simply with indexes...
— no longer need to move S

16

Visual Intuition for Index & Sublist Loop Invariant

S

sum(S) = r + sum(S[j ..n-1])

* Sum is the partin "r" plus the part leftin S[j .. n-1]

e What sum isin"r"?
r = sum(S[0..j-1])

— we can use just this as our invariant! (it's all we need)

17

Sum of an Array: Loop Invariant

* Array version uses access by index

const sum (S: Array<bigint>): bigint => {

let r = 0;
let J = 0;
// Inv: r = sum(S[0 .. j-1])
while (j != S.length) {
r = S[J] + r;
J =3+t 1

}

return r;

b Are we sure this is right?

Let's think it through...

18

Sum of an Array Floyd Logic: Initialization

const sum = (S: Array<bigint>): bigint => {
let r = 0;

let 7 = 0;

{{r=0andj=0}}

_ Does Inv hold initially?
{{ Inv:r =sum(S[0 ..j-1]) }}

while (j != S.length) {
r = S[j] + r;
J =3+ 1
} sum(S[0 ..j-1])
return rj = sum(S[0 .. -1]) sincej =0
¥ = sum(([])

=0 def of sum
=r

19

Sum of an Array Floyd Logic: Postcondition

const sum =
let r = 0;
let 7 = 0;
{{ Inv: r = sum(S[0 ..j-1]) }}
while (j !'= S.length) {
r = S[J] + r;

(S: Array<bigint>): bigint => {

3 =31+ 1;
}
{{ r =sum(S[0..j-1]) and j =len(S) }}
{{r=sum(S) }}

return r;

Does the postcondition hold?

r =sum(S[0..j-1])
=sum(S[0 ..len(S)-1]) since j =len(S)
= sum(S)

20

Sum of an Array Floyd Logic: Loop Body (1/4)

const sum =
let r = 0;

let j = 0;
{{ Inv: r = sum(S[0 ..j-1]) }}
while (j !'= S.length) {

{{ r=sum(S[0..j-1]) and j # len(S) }}
r = S[]] + r;
=3+ 1;
{{ r=sum(5[0..j-1]) }}
}

return r;

(S: Array<bigint>) :

bigint => {

21

Sum of an Array Floyd Logic: Loop Body (2/4)

const sum = (S: Array<bigint>): bigint => {
let r = 0;
let j = 0;
{{ Inv: r = sum(S[0 ..j-1]) }}
while (j !'= S.length) {

{{ r=sum(S[0 ..j-1]) and j # len(S) }}
r = S[]] + r;
{{ r=sum(S[0..j]) }}
3 =3+ 1;
{{r=sum(S[0..j-1D }}
}

return r;

Y

22

Sum of an Array Floyd Logic: Loop Body (3/4)

const sum = (S: Array<bigint>): bigint => {
let r = 0;
let j = 0;
{{ Inv: r = sum(S[0 ..j-1]) }}
while (j !'= S.length) {

{{ r=sum(S[0 ..j-1]) and j # len(S) }}
{{ S[i] + r=sum(S[0..j]) }}
r = S[J] + r;
{{ r=sum(S[0..j]) }}
J =3+ 1;
{{r=sum(S[0.j-1]) }}
}

return r;

b

23

Sum of an Array Floyd Logic: Loop Body (4/4)

const sum = (S: Array<bigint>): bigint => {

let r = 0;

let j = 0;

{{ Inv: r = sum(S[0 ..j-1]) }}

while (j !'= S.length) {
{{r=sum(S[0..j-1]) and j # len(S) }}
{{ S[] + r =sum(S[0..j]) }}
r = S[]J]] + r;
{{ r=sum(S[0..j]) }}
J =3+ 1;
{{r=sum(S[0..j-1]) }}

}

return r;

b

Is this valid?

24

Proving Loop Body “Preservation” (1/3)

{{r=sum(S[0..j-1]) and j #1en(S) }}
{ Shi] + r = sum(S[0..j]) }}

Sl +r
= S[j] + sum(S[0 .. j-1]) since r = sum(S[0 .. j-1])
= sum(SJ[0 ..j-1]) + S[j]
= sum(SJ[0 ..j-1]) + sum([S[j]]) def of sum
= sum(S[0 ..j-1]) + sum(SJj ..j])

sﬁm(S[o D

25

Proving Loop Body “Preservation” (2/3)

{{ r =sum(S[0..j-1]) and j # len(S) }}
{ S[j] + r = sum(S[0..j]) }}

Sl +r
= S[j] + sum(S[0 .. j-1]) since r = sum(SJ[0.. j-1])
= sum(SJ[0 ..j-1]) + S[j]
= sum(SJ[0 ..j-1]) + sum([S[j]]) def of sum
= sum(S[0 ..j-1]) + sum(SJj ..j])

= sum(S[0 ..j-1] # S[j .. i])
= sum(S[0 ..j])

 We saw that len(L # R) =len(L) + len(R)

* Does sum(L # R) =sum(L) + sum(R)?

— Yes! Very similar proof by structural induction. (Call this Lemma 3) 26

Proving Loop Body “Preservation” (3/3)

{{r=sum(S[0..j-1]) and j #1en(S) }}
{ Shi] + r = sum(S[0..j]) }}

Sl +r
= S[j] + sum(S[0 .. j-1]) since r = sum(S[0 .. j-1])
= sum(SJ[0 ..j-1]) + S[j]
= sum(SJ[0 ..j-1]) + sum([S[j]]) def of sum
= sum(S[0 ..j-1]) + sum(SJj ..j])
=sum(S[0 ..j-1] # S[j .. j]) by Lemma 3
= sum(S[0 ..j])

(The need to reason by induction comes up all the time.)

27

Linear Search of a List

contains(nil, y) := false
contains(x :: L,y) :=true ifx=y
contains(x:: L,y) :=contains(L,y) ifx#y

 Tail-recursive definition

const contains =
(S: List<bigint>, y: bigint): bigint => {

// Inv: contains(S,, y) = contains(S, y)
while (S.kind !== "nil" && S.hd !== y) {
S = S.tl;
}
return S.kind !== "nil"; // implies S.hd ===y

} 7
Change to a version that uses indexes...

35

Linear Search of an Array

contains(nil, y) := false
contains(x :: L,y) :=true ifx=y
contains(x:: L,y) :=contains(L,y) ifx#y

 Change to using an array and accessing by index

const contains =

(S: Array<bigint>, y: bigint): bigint => ({

let 7 = 0;
// Inv: ..
while (j !== S.length && S[]j] '==vy) {
Jj =73 + 1;
} S.hd with s changing becomes
return j !== S.length; S[31 with j changing

bi What is the invariant now?

36

Linear Search of an Array: Loop Invariant

contains(nil, y) := false
contains(x :: L,y) :=true ifx=y
contains(x:: L,y) :=contains(L,y) ifx#y

 Change to using an array and accessing by index

const contains =

(S: Array<bigint>, y: bigint): bigint => ({

let § = 0;
// Inv: contains (S, y) = contains(S[j .. n-1], y)
while (j !== S.length && S[j] !== y) f{

3] =3+ L

}
return j !== S.length; Can we explain this better?
Yy

37

Linear Search of an Array: Visual Intuition

J
contains(S,y) = contains(S[j ..n-1],y)
« What do we know about the left segment?

— it does not contain "y"
— that's why we kept searching

38

Linear Search of an Array: Refined Invariant

S :/;y

* Update the invariant to be more informative

const contains =
(S: Array<bigint>, y: bigint): bigint => {

let § = 0;

// Inv: S[i] # y for any i = 0 .. j-1

while (§ !== S.length s&& S[3] !== vy) {
J =3+ 1;

}
return j !== S.length;

Y

39

Sublist “For any” Facts

* “With great power, comes great responsibility”

* Since we can easily access any LJj],
may need to keep track of facts about it

— may heed facts about every element in the list
applies to preconditions, postconditions, and intermediate assertions

* We can write facts about several elements at once:
— this says that elements at indexes 0 ..j-1 are not y

S[i] #y forany 0 <i<j

— shorthand for j facts: S[0] #y, ..., S[j-1] #y

40

Reasoning Toolkit

no mutation full coverage type checker calculation
induction

o o

local variable mutation Floyd logic

o o

heap state rep invariants

o o

arrays for-any facts

41

Sublist “For any” Facts & Pictures

* “With great power, comes great responsibility”
— since we can easily access any L[j], may need facts about it

« We can write facts about several elements at once:
— this says that elements at indexes 0 ..j-1 are not y

S[i] #y forany 0 <i<j

* These facts get hard to write down!
— we will need to find ways to make this easier
— a common trick is to draw pictures instead...

42

Visual Presentation of Facts

* Just saw this example

 But we have seen "for any" facts with BSTs...

contains-key(y, L) — (y <X) X
contains-key(z, R) —» (x<1z)

L R

— "for any" facts are common in more complex code
— drawing pictures is a typical coping mechanism

43

Proving Linear Search of an Array: Initialization

S :/:y

const contains =
(S: Array<bigint>, y: bigint): boolean => ({

let 7 = 0;
{{i=0}}
{{Inv:S[i] #y forany 0 <i<j-11}}
while (j !== S.length && S[j] !== vy) {
3 =31+ L
} , What is the picture when j = 0?
return] !== S.length;
}; Inv holds because noiisin [0, -1]

(“vacuously true”)

] 44

Linear Search of an Array: Preservation (1/4)

S ;&y

const contains =

(S: Array<bigint>, y: bigint): boolean => ({

let 7 = 0;

{Inv: §[i] #y forany0<i<j-1}}

while (j !== S.length && S[j] !== vy) {
{{ (Sli] #y forany0<i<j-1)andj+# len(S) and S[j] #y }}
3 =31+ L

{S[i]#y forany0<i<j-11}}
}
return j !== S.length;

45

Linear Search of an Array: Preservation (2/4)

S ;&y

const contains =
(S: Array<bigint>, y: bigint): boolean => ({

let 7 = 0;
{Inv: §[i] #y forany0<i<j-1}}
while (j !== S.length && S[j] !== vy) {

(
{{ (Sli] #y forany0<i<j-1)andj+# len(S) and S[j] #y }}
{{S[i]#y forany0 <i<j}}
3 =3+ 1;
{{S[i]#y forany0<i<j-1}}
}
return] !== S.length;
bi

Is this valid?

46

Linear Search of an Array: Preservation (3/4)

S :/;y

j

{{ (Sli] #y forany0<i<j-1)andj+#len(S)and S[j] #y }}
{{S[i]#y forany0 <i<j}}

* What does the top assertion say about S|j|?
— itisnoty

47

Linear Search of an Array: Preservation (4/4)

S :/;y

j

{{ (Sli] #y forany0<i<j-1)andj+#len(S)and S[j] #y }}
{{S[i]#y forany0 <i<j}}

 What is the picture for the bottom assertion?

S . =+ y
j o j+1
* Do the facts above imply this holds?
— Yes! It's the same picture

48

Array Indexing & Off-By-One Bugs (1/2)

S :/;y

j

{{ (Sli]#y forany0<i<j-1)andj+#len(S) and S[j] #y }}
{{S[i]#y forany0 <i<j}}

 What is the picture for the bottom assertion?

S ;ty

j o j+1

* Most likely bug is an off-by-one error
— must check S|j|, not S|j-1] or S|j+1]

49

Array Indexing & Off-By-One Bugs (2/2)

S :/;y

J o j+1
while (3 !== S.length && S[j+1] '=vy) {

{{(S[li] #y forany0<i<j-1)andj#len(S)and S[j+1] #y }}
{{S[i]#y forany 0 <i<j}}

 What is the picture for the bottom assertion?

S 7‘:y

j o j+1

* Reasoning would verify that this is not correct

50

Proving Linear Search of an Array: Exit (1/2)

=y

const contains =

}s

(S: Array<bigint>, y: bigint): boolean => ({
let 7 = 0;
{Inv: §[i] #y forany0<i<j-1}}
while (j !== S.length && S[j] !== vy) {

J =31+ 1L
}
{{Invand (j =len(S) or S[j] =vy) }}
{{ contains(S,y) = (j# len(S))}} ~ MusthaveS[j|=y.
return j !== S.length; What is the picture now?

"or" means cases...

Case j # len(S):

Code should and does return true.

_FYy y

51

Proving Linear Search of an Array: Exit (2/2)

=y

const contains =

}s

(S: Array<bigint>, y: bigint): boolean => {
let 7 = 0;
{Inv: §[i] #y forany0<i<j-1}}
while (j !== S.length && S[j] !== vy) {

44 1,
J J ’ "or" means cases...

Case j = len(S):

}
{{Invand (j =len(S) or S[j] =vy) }}
{{ contains(S, y) = (j # len(S)) 1} What does Inv say now?
return j !== S.length; Says y is not in the array!
Code should and does return false.

52

Finding an Element in an Array

* Can search for an element in an array as follows

contains(nil, y) := false
contains(x :: L,y) :=true ifx=y
contains(x:: L,y) :=contains(L,y) ifx#y

* Searches through the array in linear time
— did the same on lists

 Can be done more quickly if the list is sorted
— binary search!

55

Finding an Element in a Sorted Array

e Can search more quickly if the list is sorted
— precondition is A[0] < A[1] £..<A[n-1] (informal)
— write this formally as

A[j] £ A[j+1]forany0<j<n-2

* Not easy to describe this visually...
— how about a gradient?

56

Binary Search of an Array

S _ <y y <

const bsearch = (S: .., y: ..): boolean => {
let 7 = 0, k = S.length;
{{Inv: (S[i] <y forany 0 <i<j)and (y < S[i] forany k<i<n) }}
while (j !== k) {
const m = (J + k) / 2n;
if (S[m] < vy) |
J =m + 1;

} else { Inv includes facts about two regions.

Let's check that this is right...

}
return (S[k] === y);
Y

57

CSE 331 Summer 2025
Arrays I

Jaela Field

Recall: Binary Search of an Array

S _ <y y=
] k
const bsearch = (S: .., y: ..): boolean => {
let j = 0, k = S.length;
{{Inv: (S[i] <y forany 0 <i<j)and (y < S[i] forany k<i<n) }}
while (j !== k) {
const m = (J + k) / 2n;
if (S[m] < y) |
J =m + 1;

} else {

}
return (S[k] === vy);

Y

59

Binary Search of an Array: Initialization

S _ <y y <
J k
const bsearch = (S: .., y: ..): boolean => {
let 7 = 0, k = S.length;
{{j=0andk=n}}
{{Inv: (S[i] <y forany 0 <i<j)and (y < S[i] forany k<i<n) }}

* What does the picture look like with j = 0 and k = n?

e Does this hold?

— Yes! It's vacuously true o

Binary Search of an Array: Exit Condition (1/3)

S — =W y =
] k
const bsearch = (S: .., y: ..): boolean => {
let 7 = 0, k = S.length;
{{Inv: (S[i] <y forany 0 <i<j)and (y < S[i] forany k<i<n) }}
while (§ !== k) {

}
{{Invand j =K) }}

{{ contains(S,y) = (S[y] =y) }}
return (S[k] === vy);

61

Binary Search of an Array: Exit Condition (2/3)

S _ <y y <
J k

{{Invand (j =Kk) }}

{{ contains(S,y) = (S[yl =y) }}
return (S[k] === vy);

Y

* What does the picture look like with j = k?

<y y <

What case are we missing?

* Does S contain y iff S|k| = y?
— If S[k] =y, then contains(S, y) = true

— If S[k] #y, then S[k] <y and S[i] <y for every k < i, so contains(S, y) = false
62

Binary Search of an Array: Exit Condition (3/3)

S <y y=<

{{Invand (j =Kk) }}

{{ contains(S,y) = (S[yl =y) }}
return (S[k] === vy);

I
 What does the picture look like with j = k = n?

<Yy

 |n this case...

— we see that contains(S, y) = false

— and the code returns false because "undefined === y"is false
(Okay, but yuck.) 63

Binary Search of an Array: Preservation (1/5)

S _ <y y=_
J k
{{Inv: (S[i] <y forany 0 <i<j)and (y < S[i] forany k<i<n) }}
while (5 !== k) {
{{ Invand (j <Kk) }}
const m = (j + k) / 2n;

if (S[m] < y) A
J =m + 1;
} else {
k = m;
}
{{ (S[i] <y forany 0 <i<j)and (y < S[i] forany k<i<n) }}

Reason through both paths...

64

Binary Search of an Array: Preservation (2/5)

}

<y y <

j k
{{Invand (j <Kk) }}
const m = (j + k) / 2n;

if (S[m] < y) |

_» {{Invand (j <k)and (Sim] <y) }}

J =m + 1;

} else {

L, {{Invand (j <Kk) and (S[m] > y) }}

k = m;
}
{{ (S[i] <y forany 0 <i<j)and (y < S[i] forany k<i<n) }}

65

Binary Search of an Array: Preservation (3/5)

S _ <y y=
J k
const m = (J + k) / 2n;
if (S[m] < y) A
{{ Invand (j <k)and (S[m] <y) }}
— {{(S][i] <y forany 0 <i<m+1)and (y < S[i] forany k<i<n) }}
J =m + 1;

} else {
{{Invand (j <k)and (S[m] >y) }}

—— {{ (S[i] <y forany0 <i<j)and (y <S[i]foranym<i<n) }}
k = m;

}

{{ (S[i] <y forany 0 <i<j)and (y < S[i] forany k<i<n) }}

66

Binary Search of an Array: Preservation (4/5)

S <y y=<

J m k
const m = (J + k) / 2n;
if (S[m] < y) A
{{Invand (j <k)and (Sim] <y) }}
{{ (S[i] <y forany 0 <i<m+1)and (y < SJ[i] forany k<i<n) }}
J =m + 1;
| -

« What does the picture look like in the bottom assertion?

<y y=_

* Does this hold?
— Yes! Because the array is sorted (everything before S[m] is even smallerg7

Binary Search of an Array: Preservation (5/5)

S <y y=<

J m k
const m = (J + k) / 2n;
.. else {
{{ Invand (j <k)and (S[m] > vy) }}
{{ (S[i] <y forany 0 <i<j)and (y < S[i] forany m <i<n) }}
k = m;

}

« What does the picture look like in the bottom assertion?

<y y=<

* Does this hold?
— Yes! Because the array is sorted (everything after S|[m] is even larger)

Binary Search of an Array: Termination

S <y y=_

const bsearch = (S: .., y: ..): boolean => {
let 7 = 0, k = S.length;
{{Inv: (S[i] <y forany 0 <i<j)and (y < S[i] forany k<i<n) }}
while (j !== k) {
const m = (J + k) / 2n;
if (S[m] < vy) |

o= m o+ 1; Does this terminate?

} else | Need to check that k - j decreases
k = m; Cansee thatj <m <k, so
} the "then" branch is fine.
) Can see that j < k implies m < k

(integer division rounds down), so

return (S[k] === y); . .
the "else" branch is also fine

Y

69

Binary Search really can be tricky!

Extra, Extra - Read All About
It: Nearly All Binary Searches Google Research

and Mergesorts are Broken

June 2, 2006 - Posted by Joshua Bloch, Software Engineer

QUICK LINKS

I remember vividly Jon Bentley's first Algorithms lecture at CMU, where he asked all of us incoming Ph.D. students to °<§ Share
write a binary search, and then dissected one of our implementations in front of the class. Of course it was broken, as

were most of our implementations. This made a real impression on me, as did the treatment of this material in his

wonderful Programming Pearls (Addison-Wesley, 1986; Second Edition, 2000). The key lesson was to carefully consider

the invariants in your programs.

Fast forward to 2006. | was shocked to learn that the binary search program that Bentley proved correct and
subsequently tested in Chapter 5 of Programming Pearls contains a bug. Once | tell you what it is, you will understand
why it escaped detection for two decades. Lest you think I'm picking on Bentley, let me tell you how | discovered the
bug: The version of binary search that | wrote for the JDK contained the same bug. It was reported to Sun recently
when it broke someone's program, after lying in wait for nine years or so.

70

A Sketch of a More Rigorous Approach

e can convert visuals into rigorous proofs

— requires some math machinery in 311 (and onwards)
proving “for any” facts (related: “strong induction”)
more complicated reasoning for non-contiguous facts

— sketches for you to ponder:
P(i) foranyj<i<kandP(k) - P(i) foranyj<i<k
P(i) foranyj<i<kandP(j) - P(i) foranyj<i<k

 homework & exam:

— won’t require you to draw pictures or formally prove
will ask you to write assertions & describe proof intuition (in English)
general conceptual questions are fair game!

— all array problems can be treated “as a list”

71

Why Should You Care?

* To justify practicing reasoning, we’ve said:

— professional programmers do formal reasoning for
really tricky problems

— it can help identify and prevent hard bugs
code review

* Also, it can help you get a job!
— interviews are intentionally tricky

interviewers won’t expect line-by-line reasoning or formal proofs

— being able to precisely define loop invariants and pre
and post conditions will go a long way
pictures count!

72

Creating Loop Invariants

Code Reviews vs Writing Loops

 Examples so far have been code reviews
— checking correctness of given code

* Steps to write a loop to solve a problem:
1. Come up with an idea for the loop
2. Formalize the idea in the invariant

74

Loop Invariants with Arrays (1/3)

* Previous example:

{{Inv: s =sum(S[0..j-1]) ... }} sum of array
{{ Post: s=sum(S[0..n-1]) }}

— in this case, Post is a special case of Inv (where j = n)
— in other words, Inv is a weakening of Post

* Heuristic for loop invariants: weaken the postcondition
— assertion that allows postcondition as a special case
— must also allow states that are easy to prepare

75

Heuristic for Loop Invariants

* Loop Invariant allows both start and stop states
— describing more states = weakening

{P}

{Inv:1}}
while (cond) {

S
}

€op @ . @

— usually are many ways to weaken it...

76

Loop Invariants with Arrays (2/3)

* Previous example

{{Inv:s=sum(S[0..j-1]) ... }}
{{ Post: s=sum(S[0..n-1]) }}

* Linear search also fits this pattern:

{{Inv:S[i] #yforany 0 <i<j}}
{{ Post: (S[i] =y) or (S[i] #y forany 0 <i<n) }}

— a weakening of second part

sum of array

search an array

77

Searching a Sorted Array: Starting Invariant

 Suppose we require A to be sorted:
— precondition includes

Afj-1] <A[j]forany1<j<n (where n := A.length)

« Want to find the index k where “x” would be...
— picture would look like this:

78

Searching a Sorted Array: Weakened Invariant

* End with complete knowledge of A[i] vs x
— how can we describe partial knowledge?
— know some elements are smaller and some larger

0 j k n
Ali] <yforany 0 <i<] y < Ali] foranyk<i<n

79

Loop Invariants with Arrays (3/3)

* Previous example

{{Inv: s =sum(S[0..j-1]) ... }} sum of array
{{ Post: s=sum(S[0..n-1]) }}

* Linear search also fits this pattern:

{{Inv: S[i] #yforany 0 <i<j}} search an array
{{ Post: (S[i] =y) or (S[i] #y forany 0 <i<n) }}

e Binary search also still fits this pattern

{{Inv: (S[i]<y forany 0 <i<j)and (y <SJ[i] forany k<i<n) }}
{{ Post: (S[i] <y forany 0 <i<Kk)and (y <S[i]forany k<i<n)}}

80

Loop Invariants in the Wild

* Heuristic for loop invariants: weaken the postcondition
— assertion that allows postcondition as a special case
— must also allow states that are easy to prepare

* 421 covers complex heuristics for finding invariants...

— for 331, this heuristic is enough
— (will give you the invariant for anything more complex)

81

Writing Loops

Code Reviews vs Writing Loops

 Examples so far have been code reviews
— checking correctness of given code

* Steps to write a loop to solve a problem:
1. Come up with an idea for the loop
2. Formalize the idea in the invariant
3. Write the code so that it is correct with that invariant

* Let's see some examples...

83

Max of an Array (1/7)

S
m = max(S[0 ..j-1]))
const max = (S: Array<bigint>): bigint => {
let m = 2?7
let 7 = 27
// Inv: m = max(S[0 .. j-1])
while (?27?) {
27
Io= 9 + 1; How do we initialize m & j?
} m = max(S[0 .. 0]) is easiest

return m; What case is missing?
I

84

Max of an Array (2/7)

S
m = max(S[0 ..j-1]))
const max = (S: Array<bigint>): bigint => {
if (S.length === 0) throw new Error ('no elements);
let m = S[0];
let 7 = 727
// Inv: m = max(S[0 .. j-1])
while (?27?) {
?7?

How do we initialize j?

J =3 + 1; Want m = max(S[0 .. 0])
}

return m;

}s

85

Max of an Array (3/7)

S
m = max(S[0 ..j-1]))
const max = (S: Array<bigint>): bigint => {
if (S.length === 0) throw new Error ('no elements);
let m = S[0];
let 7 = 1;
// Inv: m = max(S[0 .. j-1])
while (?27?) {
?7?

When do we exit?

J =3 + 1; Want m = max(S[0 .. n-1])
}

return m;

}s

86

Max of an Array (4/7)

S
m = max(S[0 ..j-1])]
const max = (S: Array<bigint>): bigint => {
if (S.length === 0) throw new Error ('no elements);
let m = S[0];
let 7 = 1;
// Inv: m = max(S[0 .. j-1])
while (j !== S.length) {
?7?
J =31+ 1

}

return m;

}s

87

Max of an Array (5/7)

S
m = max(S[0 ..j-1])]
const max = (S: Array<bigint>): bigint => {
if (S.length === 0) throw new Error ('no elements);
let m = S[0];
let 7 = 1;
// Inv: m = max(S[0 .. j-1])
while (j !== S.length) {
{{ m = max(S[0 ..j-1]) and j # n }}
?7?

{{ m = max(S[0 ..j]) }}
j =3 + 1;

88

Max of an Array (6/7)

m = max(S[0 ..j-1])

{{ m = max(§[0 ..j-1]) and j # n }}

2?7

{{ m = max(S[0 ..j]) }}

m = max(S[0 ..j])

How do we make the second one hold?
Set m = S[j] iff S[j| > m

89

Max of an Array (7/7)

m = max(S[0 ..j-1])

const max = (S: Array<bigint>): bigint => {

if (S.length === 0) throw new Error ('no elements);
let m = S[0];
let 7 = 1;
// Inv: m = max(S[0 .. j-1])
while (j !== S.length) {

if (S[3] > m)

m = S[j];
J =3+ 1

}

return m;

Y

90

Example: Sorting Negative, Zero, Positive

* Reorder an array so that

— negative numbers come first, then zeros, then positives
(not necessarily fully sorted)

/**
* Reorders A into negatives, then 0Os, then positive
* @modifies A
* @deffects leaves same integers in A but with
* A[jJ] < 0 for 0 <=3 < 1
* A[jJ] = 0 for i <= j < k
* A[j] > 0 for k <= jJ < n
* @returns the indexes (i, k) above
*/
const sortPosNeg = (A: bigint[]): [bigint,bigint] =>

91

sortPosNeg on Wikipedia

Dutch national flag problem A 4languages -

Article Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

The Dutch national flag problem!'! is a computational problem proposed by Edsger
Dijkstra.[2] The flag of the Netherlands consists of three colors: red, white, and blue. Given

balls of these three colors arranged randomly in a line (it does not matter how many balls _

there are), the task is to arrange them such that all balls of the same color are together and
their collective color groups are in the correct order.

The solution to this problem is of interest for designing sorting algorithms; in particular,
variants of the quicksort algorithm that must be robust to repeated elements may use a three-
way partitioning function that groups items less than a given key (red), equal to the key (white)
and greater than the key (blue). Several solutions exist that have varying performance
characteristics, tailored to sorting arrays with either small or large numbers of repeated elements.®]

The Dutch national flag

92

sortPosNeg on LeetCode

rA

] Description Editorial Solutions Submissions CJ

75.Sort Colors

© Topics Q Hint

Given an array nums with n objects colored red, white, or blue, sort them in-place so that objects of the
same color are adjacent, with the colors in the order red, white, and blue.

We will use the integers @, 1, and 2 to represent the color red, white, and blue, respectively.

You must solve this problem without using the library's sort function.

93

<

Drawing sortPosNeg (~ “Dutch flag problem”)

// Reffects leaves same numbers in A but with
// A[j] < 0 for 0 <= j < i
// A[§j] =0 for i <= j < k
// A[j] > 0 for k <= j < n

Let’s implement this...

— what was our heuristic for guessing an invariant?
— weaken the postcondition

94

Potential Weaker sortPosNeg Invariants

How should we weaken this for the invariant?

— heeds allow elements with unknown values
initially, we don’t know anything about the array values

-~J
Vv
o

95

Formalizing a “Visual Invariant”

Our Invariant:

0 i j

A[f] <0Oforany 0 <?¢<i
A[f]=0foranyi<?¥ <]

A[f] >0foranyk<¥f<n

96

Sketching sortPosNeg: Loop Components

0 i j

* Let’s try figuring out the code to make it correct

* Figure out the code for
— how to initialize
— when to exit
— loop body

97

Sketching sortPosNeg: Initialization

0 i j k n

* Will have variables i, j, and k withi <j <k

 How do we set these to make it true initially?
— we start out not knowing anything about the array values
— seti=j=0andk=n

98

Sketching sortPosNeg: Exit Condition

0 i]

* Seti=j=0andk =n to make this hold initially

* When do we exit?
— purple is emptyif j=k

99

Filling In sortPosNeg’s Implementation

let 1 = 0;

let 7 = 0;

let k = A.length;

{{Inv: A[f] <Oforany 0 < ¢ <iand A[#] =0foranyi<?¥ <j
A[f] >0foranyk<f<nand 0<i<j<k<n}}
while (§ < k) {

}

{{A[f] <Oforany 0 <f<iand A[f] =0foranyi<¥ <j
A[f] >0foranyj<¥<n}}

return [i, 7],

100

Sketching sortPosNeg: Progress by Shrinking

0 i]

 How do we make progress?
— try toincrease j by 1 or decrease k by 1

* Look at A[j] and figure out where it goes

* What to do depends on A[j]
— couldbe<0,=0,0r>0

101

Sketching sortPosNeg: Progress by Cases

Setj=j,+ 1

0 i j

Swap Ali] and A[j]
and j=j,+1

Swap A[j] and A[k-1]
Set k — ko - 1

102

Full sortPosNeg Implementation

{Inv: A[f] <Oforany 0 < ¢ <iand A[f] =0foranyi<¥ <j
A[f]>0foranyk<f<nand0<i<j<k<n}}
while (5 !== k) {
if (A[J] === 0) {
J =3+ 1
} else if (A[3] < 0) {
swap (A, 1, 7J);
i =1+ 1;
3] =3+ L
} else ({

103

Sorted Matrix Search

Given a sorted matrix M, with m rows and n cols,
where every row and every column is sorted,
find out whether a given number x is in the matrix

(darker color means larger)

104

Sorted Matrix Search: Solution Idea

Given a sorted matrix M, with m rows and n cols,
where every row and every column is sorted,
find out whether a given number x is in the matrix

Idea: Trace the contour between the numbers £ x and > x
in each row to see if x appears.

105

Sorted Matrix Search: Idea as Invariant

Given a sorted matrix M, with m rows and n cols,
where every row and every column is sorted,
find out whether a given number x is in the matrix

j

|

Invariant: at the left-most entry with x < __ in the row
— for each row i, this holds for exactly one column |

106

Sorted Matrix Search: Initialization

Invariant: at the left-most entry with x < __in the row
— for each row i, this holds for exactly one column j

Initialization: how do we get this to hold for i = 0?

— could be anywhere in the first row
J

Need to search to find this location

107

Sorted Matrix Search: Row Subgoal

New Goal: find smallest j with x < M[0,Kk] for anyj<k <n
— will need a loop...

How do we find an invariant for that loop?
— try weakening this assertion (allow any j, not just smallest)
— decrease j until x < M|0, j-1] does not hold

108

Sorted Matrix Search: Row Subgoal Initialization

New Goal: find smallest j with x < M[0,Kk] for anyj<k <n

j

let i = 0; i
let § = 29
{{ Inv: x < M[0, k] foranyj <k <n }}

while (?27?)

27

{{ Post: M[0,k] <xforany 0 <k <jandx <M][0, k] foranyj<k<n }}

How do we set j to make Inv hold initially?
— range is empty when j = n

109

Sorted Matrix Search: Row Subgoal Exit

New Goal: find smallest j with x < M[0,Kk] for anyj<k <n

j

let i = 0; i
let] = n;

{{ Inv: x < M[0, k] foranyj <k <n }}
while (?7?)

27

{{ Post: M[0,k] <xforany 0 <k <jandx <M][0, k] foranyj<k<n }}

How do we exit so that the postcondition holds?
— can no longer decrease jwhen j =0 or M[0, j-1] <x

110

Sorted Matrix Search: Row Subgoal Loop (1/4)

New Goal: find smallest j with x < M[0,Kk] for anyj<k <n

:

{{ Post: M[0,k] <xforany 0 <k <jandx <M][0, k] foranyj<k<n }}

let i = 0; i
let] = n;
{{ Inv: x < M[0, k] foranyj <k <n }}

while (>0 && x <= M[O0][3-11)
??

Anything needed in the loop body?
(That is, otherthan § = 57 - 1?)

111

Sorted Matrix Search: Row Subgoal Loop (2/4)

New Goal: find smallest j with x < M[0,Kk] for anyj<k <n

{{Inv: x <MJ0, K] foranyj<k<n}}

while (>0 && x <= M[O0][3-11) {
{x<M]|0,k]foranyj<k<nandj>0andx<M|O0,j-1] }}
?7?
3 =3 - L
{x<M[0,k]foranyj<k<n}}

112

Sorted Matrix Search: Row Subgoal Loop (3/4)

New Goal: find smallest j with x < M[0,Kk] for anyj<k <n

{{ Inv: x < M[0, k] foranyj<k<n}}
while (>0 && x <= M[O0][3-11) {
{x<M|[0, k] foranyj<k<nandj>0andx<M|0,j-1] }}

?7?
{x<M|[0,Kk]foranyj-1<k<n}}
3 =3 - 1L

{x<M|[0,Kk]foranyj<k<n}}

113

Sorted Matrix Search: Row Subgoal Loop (4/4)

New Goal: find smallest j with x < M[0,Kk] for anyj<k <n

j

{x<M[0,Kk] foranyj<k<nandj>0andx <M|0,j-1] }}

?7?

{x<M|[0,Kk]foranyj-1<k<n}}

j

Nothing is missing!

114

Sorted Matrix Search: Row Subgoal Done!

New Goal: find smallest j with x < M[0,Kk] for anyj<k <n

j

let 1 = 0; i
let 7 = n;
{ Inv: x < M|0, k] foranyj<k<n}}

while (§>0 && x <= M[0][j-1]) ‘
Y

J =]
{{ Post: M[0,k] < x forany 0 <k <jand x < M[0, K] foranyj <k <n }}

Can now check if M|[0, j] =x

— if not, then it is not in the first row

— move on to the second row...
115

Sorted Matrix Search: Moving Rows (1/3)

Moving from row i to row i+1

What does vertical sorting tell us about row i+1?

— right side is guaranteed to satisfy "x < _ "
— left side not guaranteed to satisfy " _ <x"

116

Sorted Matrix Search: Moving Rows (2/3)

Moving from row i to row i+1

j

I
>
IA A

i+1

What does vertical sorting tell us about row i+1?

— right side is guaranteed to satisfy "x < _ "
— left side not guaranteed to satisfy " _ <x"

117

Sorted Matrix Search: Moving Rows (3/3)

Moving from row i to row i+1

i+1 X <

How do we restore the invariant?
— find the index j with M[i+1,j-1] < x < MJi+1,]

This is the same problem as before!
— move left until begining or M[i+1, j-1] < x holds

118

Sorted Matrix Search: Moving Columns (1/3)

let 1 = 0;
let 7 = n;
. move j to left...
if (M[1][3J] === x) return true;
{{Inv: (xisnotinrowk forany 0 <k <i) and
(M[i, k] < xforany 0 <k <j) and (x < M[j, K] foranyj <k <n) }}
while (i+1 !== n) {

}

return false;

Inv says we ruled out rows O .. i
and col j is line between _<xand x < _

119

Sorted Matrix Search: Moving Columns (2/3)

)

let 1 = 0;
let 7 = n;

move J to left... i

if (M[1][3J] === x) return true;

{{Inv: (xisnotinrowk forany 0 <k <i) and
(M[i, k] < xforany 0 <k <j) and (x < M[j, K] foranyj <k <n) }}
while (i+1 !== n) {

i =14+ 1;

move J to the left...
if (M[1][3J] === x) return true;
}

We can avoid writing this code twice
return false;

(without writing a separate function)...

Don't try this at home!
120

Sorted Matrix Search: Moving Columns (3/3)

let 1 = 0;
let J = n; Loop condition was also changed
while (i !== n) {

. move jJ to left...
if (M[1][]] === x) return true;
{{Inv: (xisnotinrowk forany 0 <k <i) and
(M[i, k] < xforany 0 <k <j) and (x < M[j, k] foranyj <k <n) }}
i =1+ 1;
}

return false;

Inv is now checked in the middle of the loop!

121

Sorted Matrix Search: Full Code & Assertions

let 1 = 0; Final version is 9 lines of code.
let 7 = n; Requires 6 lines of invariant assertions!
while (1 !'== n) {

{{Inv:x <M[ij, k] foranyj<k<n}}
while (§ > 0 && x <= M[i][3-11)
3 =3 - 1;
if (M[1]1[3] === x)
return true;
{{Inv: (xisnotin rowk forany 0 <k <i) and
(M[i, k] < xforany 0 <k <j) and (x < M[j, k] foranyj <k <n) }}
1 =1 + 1;
}

return false;
122

Wrapping Up Arrays

* We design invariants to tell us everything we need
to know to prove our post condition
— Precondition facts aren’t (explicitly) copied in

— Instead, we prove (P implies Invl) and
(Invl and ! cond implies Q)

{P}}
(Invl}}

{
_while (cond) {
{{ P1: Invl and cond }}

S

|—> {{Q1:Invl }}
}

{Q}

123

Reasoning with Multiple Loops

* Applies with multiple loops also
— Can treat them as distinct units, except in the middle

{{ Inv1l }}
while (condl) {

S

}
{{Invland !condl }}

{{ Inv2 }}
{_ﬁéile (cond?2) {
{{ Inv2 and cond? }}

S

Must show this holds

124

Reasoning with Nested Loops

 and nested loops
— still need to prove Invl holds at the end of outer loop

{{ Inv1 }}
while (cond) {

{{Invl and condl }}
{ Inv2 }}

\‘while (cond?2) {
{{ Inv2 and cond?2 }}
S

}
{{Inv2 and ! cond?2 }}

|—> {{Q1: Invl }}
}

Must show this holds

] Must show this holds

125

	reasoning about arrays
	Slide 1: Arrays I
	Slide 2: Administrivia (8/11)
	Slide 3: List Indexing
	Slide 4: Linked Lists in Memory
	Slide 5: Faster Implementation of at
	Slide 6: Array Efficiency
	Slide 7: Access By Index
	Slide 8: Recall: Sum List With a Loop
	Slide 9: Sum Array by Index
	Slide 10: Sum Array by Index: compared to sum-acc
	Slide 11: Sublists
	Slide 12: Sublists and Edge Cases
	Slide 13: Sublist Shorthands and Facts
	Slide 14: Sum Array by Index: sum-acc, in math
	Slide 15: Recall: Sum List With a Loop, with Invariant
	Slide 16: Visual Intuition for Sum List Loop Invariant
	Slide 17: Visual Intuition for Index & Sublist Loop Invariant
	Slide 18: Sum of an Array: Loop Invariant
	Slide 19: Sum of an Array Floyd Logic: Initialization
	Slide 20: Sum of an Array Floyd Logic: Postcondition
	Slide 21: Sum of an Array Floyd Logic: Loop Body (1/4)
	Slide 22: Sum of an Array Floyd Logic: Loop Body (2/4)
	Slide 23: Sum of an Array Floyd Logic: Loop Body (3/4)
	Slide 24: Sum of an Array Floyd Logic: Loop Body (4/4)
	Slide 25: Proving Loop Body “Preservation” (1/3)
	Slide 26: Proving Loop Body “Preservation” (2/3)
	Slide 27: Proving Loop Body “Preservation” (3/3)
	Slide 35: Linear Search of a List
	Slide 36: Linear Search of an Array
	Slide 37: Linear Search of an Array: Loop Invariant
	Slide 38: Linear Search of an Array: Visual Intuition
	Slide 39: Linear Search of an Array: Refined Invariant
	Slide 40: Sublist “For any” Facts
	Slide 41: Reasoning Toolkit
	Slide 42: Sublist “For any” Facts & Pictures
	Slide 43: Visual Presentation of Facts
	Slide 44: Proving Linear Search of an Array: Initialization
	Slide 45: Linear Search of an Array: Preservation (1/4)
	Slide 46: Linear Search of an Array: Preservation (2/4)
	Slide 47: Linear Search of an Array: Preservation (3/4)
	Slide 48: Linear Search of an Array: Preservation (4/4)
	Slide 49: Array Indexing & Off-By-One Bugs (1/2)
	Slide 50: Array Indexing & Off-By-One Bugs (2/2)
	Slide 51: Proving Linear Search of an Array: Exit (1/2)
	Slide 52: Proving Linear Search of an Array: Exit (2/2)
	Slide 55: Finding an Element in an Array
	Slide 56: Finding an Element in a Sorted Array
	Slide 57: Binary Search of an Array
	Slide 58
	Slide 59: Recall: Binary Search of an Array
	Slide 60: Binary Search of an Array: Initialization
	Slide 61: Binary Search of an Array: Exit Condition (1/3)
	Slide 62: Binary Search of an Array: Exit Condition (2/3)
	Slide 63: Binary Search of an Array: Exit Condition (3/3)
	Slide 64: Binary Search of an Array: Preservation (1/5)
	Slide 65: Binary Search of an Array: Preservation (2/5)
	Slide 66: Binary Search of an Array: Preservation (3/5)
	Slide 67: Binary Search of an Array: Preservation (4/5)
	Slide 68: Binary Search of an Array: Preservation (5/5)
	Slide 69: Binary Search of an Array: Termination
	Slide 70: Binary Search really can be tricky!
	Slide 71: A Sketch of a More Rigorous Approach

	writing loop invariants
	Slide 72: Why Should You Care?
	Slide 73: Creating Loop Invariants
	Slide 74: Code Reviews vs Writing Loops
	Slide 75: Loop Invariants with Arrays (1/3)
	Slide 76: Heuristic for Loop Invariants
	Slide 77: Loop Invariants with Arrays (2/3)
	Slide 78: Searching a Sorted Array: Starting Invariant
	Slide 79: Searching a Sorted Array: Weakened Invariant
	Slide 80: Loop Invariants with Arrays (3/3)
	Slide 81: Loop Invariants in the Wild

	writing loops to be correct with invariant
	Slide 82: Writing Loops
	Slide 83: Code Reviews vs Writing Loops
	Slide 84: Max of an Array (1/7)
	Slide 85: Max of an Array (2/7)
	Slide 86: Max of an Array (3/7)
	Slide 87: Max of an Array (4/7)
	Slide 88: Max of an Array (5/7)
	Slide 89: Max of an Array (6/7)
	Slide 90: Max of an Array (7/7)

	dutch national flag problem
	Slide 91: Example: Sorting Negative, Zero, Positive
	Slide 92: sortPosNeg on Wikipedia
	Slide 93: sortPosNeg on LeetCode
	Slide 94: Drawing sortPosNeg (~ “Dutch flag problem”)
	Slide 95: Potential Weaker sortPosNeg Invariants
	Slide 96: Formalizing a “Visual Invariant”
	Slide 97: Sketching sortPosNeg: Loop Components
	Slide 98: Sketching sortPosNeg: Initialization
	Slide 99: Sketching sortPosNeg: Exit Condition
	Slide 100: Filling In sortPosNeg’s Implementation
	Slide 101: Sketching sortPosNeg: Progress by Shrinking
	Slide 102: Sketching sortPosNeg: Progress by Cases
	Slide 103: Full sortPosNeg Implementation

	sorted matrix search
	Slide 104: Sorted Matrix Search
	Slide 105: Sorted Matrix Search: Solution Idea
	Slide 106: Sorted Matrix Search: Idea as Invariant
	Slide 107: Sorted Matrix Search: Initialization
	Slide 108: Sorted Matrix Search: Row Subgoal
	Slide 109: Sorted Matrix Search: Row Subgoal Initialization
	Slide 110: Sorted Matrix Search: Row Subgoal Exit
	Slide 111: Sorted Matrix Search: Row Subgoal Loop (1/4)
	Slide 112: Sorted Matrix Search: Row Subgoal Loop (2/4)
	Slide 113: Sorted Matrix Search: Row Subgoal Loop (3/4)
	Slide 114: Sorted Matrix Search: Row Subgoal Loop (4/4)
	Slide 115: Sorted Matrix Search: Row Subgoal Done!
	Slide 116: Sorted Matrix Search: Moving Rows (1/3)
	Slide 117: Sorted Matrix Search: Moving Rows (2/3)
	Slide 118: Sorted Matrix Search: Moving Rows (3/3)
	Slide 119: Sorted Matrix Search: Moving Columns (1/3)
	Slide 120: Sorted Matrix Search: Moving Columns (2/3)
	Slide 121: Sorted Matrix Search: Moving Columns (3/3)
	Slide 122: Sorted Matrix Search: Full Code & Assertions
	Slide 123: Wrapping Up Arrays
	Slide 124: Reasoning with Multiple Loops
	Slide 125: Reasoning with Nested Loops

