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RESULTS OF ALGORITHM COMPLEXITY ANALYSIS:

AVERAGE
CASE

O(N LoG N)

BEST
CASE

ALGORITHM TURNS OUT TO BE
UNNECESSARY AND 1S HALTED, THEN
CONGRESS ENACTS SURPRISE DAYLIGHT
SAVING TIME AND WE GAIN AN HOUR

WORST
CASE

TOWN IN WHICH HARDWARE IS LOCATED
ENTERS A GROUNDHOG DAY SCENARIQ
ALGORITHM NEVER TERMINATES

xked #2939, thanks Matt




Administrivia (8/11)

« Exam page is out and linked on resources page

— Includes all logistical details
— Includes practice materials

25su Practice final to come

e Last section (8/21) will be final review
With additional practice materials



List Indexing

at: (List, N) - Z

at(nil , n) := undefined
at(x:: L, 0) = X
at(x:: L,n+1) = at(L, n)

* Retrieve an element of the list by index
— use "L[j]" as an abbreviation for at(j, L)

* Not an efficient operation on lists...



Linked Lists in Memory

 Must follow the "next" pointers to find elements
— at(L, n) is an O(n) operation
— no faster way to do this



Faster Implementation of at

1|2[3]4(5

L[4]

e Alternative: store the elements next to each other
— can find the n-th entry by arithmetic:

location of L[4] = (location of L) + 4 * sizeof(data)

* Resulting data structure is an array
— consider: arrays can be an implementation of the List ADT



Array Efficiency

1|2[3]4(5

L[4]
* Resulting data structure is an array

» Efficient to read L|i]

 [nefficient to...

— insert elements anywhere but the end
— write operations with an immutable ADT

— trees can do all of this in O(log n) time



Access By Index

* Easily access both L[0] and L|n-1], where n =len(L)

— can process a list in either direction

* “With great power, comes great responsibility”

— the Peter Parker Principle

* Whenever we write “Alj]”, we must check 0 <j<n
— hew bug just dropped!

with list, we only need to worry about nil and non-nil
once we know L is non-nil, we know L.hd exists

— TypeScript will not help us with this!

type checker does catch “could be nil” bugs, but not this



Recall: Sum List With a Loop

sum-acc(nil, r) =T
sum-acc(x:: L,r) :=sum-acc(L, X +r)

* Tail recursive version is a loop

const sum = (S: List<bigint>): bigint => {
let r = 0;
// Inv: sum(S,) = r + sum(S)
while (S.kind !== "nil") {
r = S.hd + r;
S = S.tl;

}

return r;

b

Change to a version that uses indexes...
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Sum Array by Index

 Change to using an array and accessing by index

const sum = (S: Array<bigint>): bigint => {
let r = 0;
let 7 = 0;
// Inv: ..
while (j !== S.length) { // .. S.kind !== "nil"
r = S[3j] + r; // .. r=8.hd + r
J =3+t 1; // .. S = 8S.tl

}

return r;

}i Note that S is no longer changing
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Sum Array by Index: compared to sum-acc

sum-acc : (List, N, Z) = Z
sum-acc(S,j,r) =T if j =len(S)
sum-acc(S,j,r)  :=sum-acc(S,j+1,S[j] + 1) if j # len(S)

 Change to using an array and accessing by index

const sum = (S: Array<bigint>): bigint => {
let r = 0;
let 7 = 0;
// Inv: ..
while (j !== S.length) {

r =S[J] + x;
jo=9 + 1;
}

return r;

b
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Sublists

 Use indexes to refer to a section of a list (a "sublist"):

sublist : (List<Z>, N, Z) - List<Z>
sublist(L, i, j) := nil ifj <i
sublist(L, i, j) := L[i] :: sublist(L, i+ 1,j) ifi<j

* Useful for reasoning about lists and indexes

 This includes both L[i] and LJj]

sublist(L, 0, 2) = L[0] :: sublist(L, 1, 2) def of sublist (since 0 < 2)
= L[0] :: L[1] :: sublist(L, 2, 2) def of sublist (since 1 < 2)
= L[0] :: L[1] :: L] 2] :: sublist(L, 3, 2) def of sublist (since 2 < 2)
= L[O] :: L[1] :: L[2] :: nil def of sublist (since 3 < 2)

= [L[O], L[1], L[2]]
11



Sublists and Edge Cases

 Use indexes to refer to a section of a list (a "sublist"):

sublist : (List<Z>, N, Z) - List<Z>

sublist(L, i, j) := nil if j <i
sublist(L, i, j) := L[i] :: sublist(L, i+ 1,j) ifi<j

* The sublist is empty when the range is empty

sublist(L, 3, 2) = nil

— weird-looking example that comes up a lot:

sublist(L, 0, -1) = nil

— not an array out of bonds error! (this is math, not Java)

12



Sublist Shorthands and Facts

sublist : (List<Z>, N, Z) — List<Z>

sublist(L,i,j)  := nil ifj <i
sublist(L,i,j)  := L[i] = sublist(L, i+ 1,{) ifi<j

* Will use "L[i .. j]" as shorthand for "sublist(L, i, j)"

— again, using an operator for most common operations

e Some useful facts about sublists:
L=1L[0.. len(L)-1]

Lli..jl=L[i.K] #Lk+1.j] foranykwithi-1<k<j (and 0<i<j<n)

13



Sum Array by Index: sum-acc, in math

sum-acc(S,j, r) =7 if j = len(S)
sum-acc(S,j,r)  :=sum-acc(S,j+1,S[j] + 1) if j # len(S)

 Change to using an array and accessing by index

const sum = (S: Array<bigint>): bigint => {
let r = 0;
let 7 = 0;
// Inv: .. ?? ..
while (j != S.length) {
r = S[J] + r;
3] =3+ L
}
return rj Still need to fill in Inv...

bi Need a version using indexes.
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Recall: Sum List With a Loop, with Invariant

* Tail recursive version is a loop

const sum = (S: List<bigint>): bigint => {
let r = 0;
// Inv: sum(S,) = r + sum(S)
while (S.kind !== "nil") {
r = S.hd + r;
S = S.tl;

}

return r;

I Inv says sum(S,) is r plus sum of rest (S)

Not the most explicit way of explaining "r"...
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Visual Intuition for Sum List Loop Invariant

S, S

sum(S,) = r + sum(S)

e "r'" contains sum of the part of the list seen so far

e Can explain this more simply with indexes...
— no longer need to move S

16



Visual Intuition for Index & Sublist Loop Invariant

S

sum(S) = r + sum(S[j ..n-1])

* Sum is the partin "r" plus the part leftin S[j .. n-1]

e What sum isin"r"?
r = sum(S[0..j-1])

— we can use just this as our invariant! (it's all we need)
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Sum of an Array: Loop Invariant

* Array version uses access by index

const sum (S: Array<bigint>): bigint => {

let r = 0;
let J = 0;
// Inv: r = sum(S[0 .. j-1])
while (j != S.length) {
r = S[J] + r;
J =3+t 1

}

return r;

b Are we sure this is right?

Let's think it through...
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Sum of an Array Floyd Logic: Initialization

const sum = (S: Array<bigint>): bigint => {
let r = 0;

let 7 = 0;

{{r=0andj=0}}

_ Does Inv hold initially?
{{ Inv:r =sum(S[0 ..j-1]) }}

while (j != S.length) {
r = S[j] + r;
J =3+ 1
} sum(S[0 ..j-1])
return rj = sum(S[0 .. -1]) sincej =0
¥ = sum(([])

=0 def of sum
=r
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Sum of an Array Floyd Logic: Postcondition

const sum =
let r = 0;
let 7 = 0;
{{ Inv: r = sum(S[0 ..j-1]) }}
while (j !'= S.length) {
r = S[J] + r;

(S: Array<bigint>): bigint => {

3 =31+ 1;
}
{{ r =sum(S[0..j-1]) and j =len(S) }}
{{r=sum(S) }}

return r;

Does the postcondition hold?

r =sum(S[0..j-1])
=sum(S[0 ..len(S)-1])  since j =len(S)
= sum(S)
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Sum of an Array Floyd Logic: Loop Body (1/4)

const sum =
let r = 0;

let j = 0;
{{ Inv: r = sum(S[0 ..j-1]) }}
while (j !'= S.length) {

{{ r=sum(S[0..j-1]) and j # len(S) }}
r = S[]] + r;
=3+ 1;
{{ r=sum(5[0..j-1]) }}
}

return r;

(S: Array<bigint>) :

bigint => {

21



Sum of an Array Floyd Logic: Loop Body (2/4)

const sum = (S: Array<bigint>): bigint => {
let r = 0;
let j = 0;
{{ Inv: r = sum(S[0 ..j-1]) }}
while (j !'= S.length) {

{{ r=sum(S[0 ..j-1]) and j # len(S) }}
r = S[]] + r;
{{ r=sum(S[0..j]) }}
3 =3+ 1;
{{r=sum(S[0..j-1D }}
}

return r;

Y
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Sum of an Array Floyd Logic: Loop Body (3/4)

const sum = (S: Array<bigint>): bigint => {
let r = 0;
let j = 0;
{{ Inv: r = sum(S[0 ..j-1]) }}
while (j !'= S.length) {

{{ r=sum(S[0 ..j-1]) and j # len(S) }}
{{ S[i] + r=sum(S[0..j]) }}
r = S[J] + r;
{{ r=sum(S[0..j]) }}
J =3+ 1;
{{r=sum(S[0.j-1]) }}
}

return r;

b
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Sum of an Array Floyd Logic: Loop Body (4/4)

const sum = (S: Array<bigint>): bigint => {

let r = 0;

let j = 0;

{{ Inv: r = sum(S[0 ..j-1]) }}

while (j !'= S.length) {
{{r=sum(S[0..j-1]) and j # len(S) }}
{{ S[] + r =sum(S[0..j]) }}
r = S[]J]] + r;
{{ r=sum(S[0..j]) }}
J =3+ 1;
{{r=sum(S[0..j-1]) }}

}

return r;

b

Is this valid?

24



Proving Loop Body “Preservation” (1/3)

{{r=sum(S[0..j-1]) and j #1en(S) }}
{ Shi] + r = sum(S[0..j]) }}

Sl +r
= S[j] + sum(S[0 .. j-1]) since r = sum(S[0 .. j-1])
= sum(SJ[0 ..j-1]) + S[j]
= sum(SJ[0 ..j-1]) + sum([S[j]]) def of sum
= sum(S[0 ..j-1]) + sum(SJj ..j])

sﬁm(S[o D

25



Proving Loop Body “Preservation” (2/3)

{{ r =sum(S[0..j-1]) and j # len(S) }}
{ S[j] + r = sum(S[0..j]) }}

Sl +r
= S[j] + sum(S[0 .. j-1]) since r = sum(SJ[0.. j-1])
= sum(SJ[0 ..j-1]) + S[j]
= sum(SJ[0 ..j-1]) + sum([S[j]]) def of sum
= sum(S[0 ..j-1]) + sum(SJj ..j])

= sum(S[0 ..j-1] # S[j .. i])
= sum(S[0 ..j])

 We saw that len(L # R) =len(L) + len(R)

* Does sum(L # R) =sum(L) + sum(R)?

— Yes! Very similar proof by structural induction. (Call this Lemma 3) 26



Proving Loop Body “Preservation” (3/3)

{{r=sum(S[0..j-1]) and j #1en(S) }}
{ Shi] + r = sum(S[0..j]) }}

Sl +r
= S[j] + sum(S[0 .. j-1]) since r = sum(S[0 .. j-1])
= sum(SJ[0 ..j-1]) + S[j]
= sum(SJ[0 ..j-1]) + sum([S[j]]) def of sum
= sum(S[0 ..j-1]) + sum(SJj ..j])
=sum(S[0 ..j-1] # S[j .. j]) by Lemma 3
= sum(S[0 ..j])

(The need to reason by induction comes up all the time.)

27



Linear Search of a List

contains(nil, y) := false
contains(x :: L,y) :=true ifx=y
contains(x:: L,y) :=contains(L,y) ifx#y

 Tail-recursive definition

const contains =
(S: List<bigint>, y: bigint): bigint => {

// Inv: contains(S,, y) = contains(S, y)
while (S.kind !== "nil" && S.hd !== y) {
S = S.tl;
}
return S.kind !== "nil"; // implies S.hd ===y

} 7
Change to a version that uses indexes...

35



Linear Search of an Array

contains(nil, y) := false
contains(x :: L,y) :=true ifx=y
contains(x:: L,y) :=contains(L,y) ifx#y

 Change to using an array and accessing by index

const contains =

(S: Array<bigint>, y: bigint): bigint => ({

let 7 = 0;
// Inv: ..
while (j !== S.length && S[]j] '==vy) {
Jj =73 + 1;
} S.hd with s changing becomes
return j !== S.length; S[31 with j changing

bi What is the invariant now?

36



Linear Search of an Array: Loop Invariant

contains(nil, y) := false
contains(x :: L,y) :=true ifx=y
contains(x:: L,y) :=contains(L,y) ifx#y

 Change to using an array and accessing by index

const contains =

(S: Array<bigint>, y: bigint): bigint => ({

let § = 0;
// Inv: contains (S, y) = contains(S[j .. n-1], y)
while (j !== S.length && S[j] !== y) f{

3] =3+ L

}
return j !== S.length; Can we explain this better?
Yy

37



Linear Search of an Array: Visual Intuition

J
contains(S,y) = contains(S[j ..n-1],y)
« What do we know about the left segment?

— it does not contain "y"
— that's why we kept searching

38



Linear Search of an Array: Refined Invariant

S :/;y

* Update the invariant to be more informative

const contains =
(S: Array<bigint>, y: bigint): bigint => {

let § = 0;

// Inv: S[i] # y for any i = 0 .. j-1

while (§ !== S.length s&& S[3] !== vy) {
J =3+ 1;

}
return j !== S.length;

Y

39



Sublist “For any” Facts

* “With great power, comes great responsibility”

* Since we can easily access any LJj],
may need to keep track of facts about it

— may heed facts about every element in the list
applies to preconditions, postconditions, and intermediate assertions

* We can write facts about several elements at once:
— this says that elements at indexes 0 ..j-1 are not y

S[i] #y forany 0 <i<j

— shorthand for j facts: S[0] #y, ..., S[j-1] #y

40



Reasoning Toolkit

no mutation full coverage type checker calculation
induction

o o

local variable mutation Floyd logic

o o

heap state rep invariants

o o

arrays for-any facts

41



Sublist “For any” Facts & Pictures

* “With great power, comes great responsibility”
— since we can easily access any L[j], may need facts about it

« We can write facts about several elements at once:
— this says that elements at indexes 0 ..j-1 are not y

S[i] #y forany 0 <i<j

* These facts get hard to write down!
— we will need to find ways to make this easier
— a common trick is to draw pictures instead...

42



Visual Presentation of Facts

* Just saw this example

 But we have seen "for any" facts with BSTs...

contains-key(y, L) — (y <X) X
contains-key(z, R) —» (x<1z)

L R

— "for any" facts are common in more complex code
— drawing pictures is a typical coping mechanism

43



Proving Linear Search of an Array: Initialization

S :/:y

const contains =
(S: Array<bigint>, y: bigint): boolean => ({

let 7 = 0;
{{i=0}}
{{Inv:S[i] #y forany 0 <i<j-11}}
while (j !== S.length && S[j] !== vy) {
3 =31+ L
} , What is the picture when j = 0?
return ] !== S.length;
}; Inv holds because noiisin [0, -1]

(“vacuously true”)

] 44



Linear Search of an Array: Preservation (1/4)

S ;&y

const contains =

(S: Array<bigint>, y: bigint): boolean => ({

let 7 = 0;

{Inv: §[i] #y forany0<i<j-1}}

while (j !== S.length && S[j] !== vy) {
{{ (Sli] #y forany0<i<j-1)andj+# len(S) and S[j] #y }}
3 =31+ L

{S[i]#y forany0<i<j-11}}
}
return j !== S.length;

45



Linear Search of an Array: Preservation (2/4)

S ;&y

const contains =
(S: Array<bigint>, y: bigint): boolean => ({

let 7 = 0;
{Inv: §[i] #y forany0<i<j-1}}
while (j !== S.length && S[j] !== vy) {

(
{{ (Sli] #y forany0<i<j-1)andj+# len(S) and S[j] #y }}
{{S[i]#y forany0 <i<j}}
3 =3+ 1;
{{S[i]#y forany0<i<j-1}}
}
return ] !== S.length;
bi

Is this valid?

46



Linear Search of an Array: Preservation (3/4)

S :/;y

j

{{ (Sli] #y forany0<i<j-1)andj+#len(S)and S[j] #y }}
{{S[i]#y forany0 <i<j}}

* What does the top assertion say about S|j|?
— itisnoty

47



Linear Search of an Array: Preservation (4/4)

S :/;y

j

{{ (Sli] #y forany0<i<j-1)andj+#len(S)and S[j] #y }}
{{S[i]#y forany0 <i<j}}

 What is the picture for the bottom assertion?

S . =+ y
j o j+1
* Do the facts above imply this holds?
— Yes! It's the same picture

48



Array Indexing & Off-By-One Bugs (1/2)

S :/;y

j

{{ (Sli]#y forany0<i<j-1)andj+#len(S) and S[j] #y }}
{{S[i]#y forany0 <i<j}}

 What is the picture for the bottom assertion?

S ;ty

j o j+1

* Most likely bug is an off-by-one error
— must check S|j|, not S|j-1] or S|j+1]

49



Array Indexing & Off-By-One Bugs (2/2)

S :/;y

J o j+1
while (3 !== S.length && S[j+1] '=vy) {

{{(S[li] #y forany0<i<j-1)andj#len(S)and S[j+1] #y }}
{{S[i]#y forany 0 <i<j}}

 What is the picture for the bottom assertion?

S 7‘:y

j o j+1

* Reasoning would verify that this is not correct

50



Proving Linear Search of an Array: Exit (1/2)

=y

const contains =

}s

(S: Array<bigint>, y: bigint): boolean => ({
let 7 = 0;
{Inv: §[i] #y forany0<i<j-1}}
while (j !== S.length && S[j] !== vy) {

J =31+ 1L
}
{{Invand (j =len(S) or S[j] =vy) }}
{{ contains(S,y) = (j# len(S))}} ~ MusthaveS[j|=y.
return j !== S.length; What is the picture now?

"or" means cases...

Case j # len(S):

Code should and does return true.

_FYy y
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Proving Linear Search of an Array: Exit (2/2)

=y

const contains =

}s

(S: Array<bigint>, y: bigint): boolean => {
let 7 = 0;
{Inv: §[i] #y forany0<i<j-1}}
while (j !== S.length && S[j] !== vy) {

44 1,
J J ’ "or" means cases...

Case j = len(S):

}
{{Invand (j =len(S) or S[j] =vy) }}
{{ contains(S, y) = (j # len(S)) 1} What does Inv say now?
return j !== S.length; Says y is not in the array!
Code should and does return false.

52



Finding an Element in an Array

* Can search for an element in an array as follows

contains(nil, y) := false
contains(x :: L,y) :=true ifx=y
contains(x:: L,y) :=contains(L,y) ifx#y

* Searches through the array in linear time
— did the same on lists

 Can be done more quickly if the list is sorted
— binary search!
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Finding an Element in a Sorted Array

e Can search more quickly if the list is sorted
— precondition is A[0] < A[1] £..<A[n-1] (informal)
— write this formally as

A[j] £ A[j+1]forany0<j<n-2

* Not easy to describe this visually...
— how about a gradient?

56



Binary Search of an Array

S _ <y y <

const bsearch = (S: .., y: ..): boolean => {
let 7 = 0, k = S.length;
{{Inv: (S[i] <y forany 0 <i<j)and (y < S[i] forany k<i<n) }}
while (j !== k) {
const m = (J + k) / 2n;
if (S[m] < vy) |
J =m + 1;

} else { Inv includes facts about two regions.

Let's check that this is right...

}
return (S[k] === y);
Y
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Recall: Binary Search of an Array

S _ <y y=
] k
const bsearch = (S: .., y: ..): boolean => {
let j = 0, k = S.length;
{{Inv: (S[i] <y forany 0 <i<j)and (y < S[i] forany k<i<n) }}
while (j !== k) {
const m = (J + k) / 2n;
if (S[m] < y) |
J =m + 1;

} else {

}
return (S[k] === vy);

Y
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Binary Search of an Array: Initialization

S _ <y y <
J k
const bsearch = (S: .., y: ..): boolean => {
let 7 = 0, k = S.length;
{{j=0andk=n}}
{{Inv: (S[i] <y forany 0 <i<j)and (y < S[i] forany k<i<n) }}

* What does the picture look like with j = 0 and k = n?

e Does this hold?

— Yes! It's vacuously true o



Binary Search of an Array: Exit Condition (1/3)

S — =W y =
] k
const bsearch = (S: .., y: ..): boolean => {
let 7 = 0, k = S.length;
{{Inv: (S[i] <y forany 0 <i<j)and (y < S[i] forany k<i<n) }}
while (§ !== k) {

}
{{Invand j =K) }}

{{ contains(S,y) = (S[y] =y) }}
return (S[k] === vy);

61



Binary Search of an Array: Exit Condition (2/3)

S _ <y y <
J k

{{Invand (j =Kk) }}

{{ contains(S,y) = (S[yl =y) }}
return (S[k] === vy);

Y

* What does the picture look like with j = k?

<y y <

What case are we missing?

* Does S contain y iff S|k| = y?
— If S[k] =y, then contains(S, y) = true

— If S[k] #y, then S[k] <y and S[i] <y for every k < i, so contains(S, y) = false
62



Binary Search of an Array: Exit Condition (3/3)

S <y y=<

{{Invand (j =Kk) }}

{{ contains(S,y) = (S[yl =y) }}
return (S[k] === vy);

I
 What does the picture look like with j = k = n?

<Yy

 |n this case...

— we see that contains(S, y) = false

— and the code returns false because "undefined === y"is false
(Okay, but yuck.) 63



Binary Search of an Array: Preservation (1/5)

S _ <y y=_
J k
{{Inv: (S[i] <y forany 0 <i<j)and (y < S[i] forany k<i<n) }}
while (5 !== k) {
{{ Invand (j <Kk) }}
const m = (j + k) / 2n;

if (S[m] < y) A
J =m + 1;
} else {
k = m;
}
{{ (S[i] <y forany 0 <i<j)and (y < S[i] forany k<i<n) }}

Reason through both paths...
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Binary Search of an Array: Preservation (2/5)

}

<y y <

j k
{{Invand (j <Kk) }}
const m = (j + k) / 2n;

if (S[m] < y) |

_» {{Invand (j <k)and (Sim] <y) }}

J =m + 1;

} else {

L, {{Invand (j <Kk) and (S[m] > y) }}

k = m;
}
{{ (S[i] <y forany 0 <i<j)and (y < S[i] forany k<i<n) }}

65



Binary Search of an Array: Preservation (3/5)

S _ <y y=
J k
const m = (J + k) / 2n;
if (S[m] < y) A
{{ Invand (j <k)and (S[m] <y) }}
— {{(S][i] <y forany 0 <i<m+1)and (y < S[i] forany k<i<n) }}
J =m + 1;

} else {
{{Invand (j <k)and (S[m] >y) }}

—— {{ (S[i] <y forany0 <i<j)and (y <S[i]foranym<i<n) }}
k = m;

}

{{ (S[i] <y forany 0 <i<j)and (y < S[i] forany k<i<n) }}
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Binary Search of an Array: Preservation (4/5)

S <y y=<

J m k
const m = (J + k) / 2n;
if (S[m] < y) A
{{Invand (j <k)and (Sim] <y) }}
{{ (S[i] <y forany 0 <i<m+1)and (y < SJ[i] forany k<i<n) }}
J =m + 1;
| -

« What does the picture look like in the bottom assertion?

<y y=_

* Does this hold?
— Yes! Because the array is sorted (everything before S[m] is even smallerg7



Binary Search of an Array: Preservation (5/5)

S <y y=<

J m k
const m = (J + k) / 2n;
.. else {
{{ Invand (j <k)and (S[m] > vy) }}
{{ (S[i] <y forany 0 <i<j)and (y < S[i] forany m <i<n) }}
k = m;

}

« What does the picture look like in the bottom assertion?

<y y=<

* Does this hold?
— Yes! Because the array is sorted (everything after S|[m] is even larger)



Binary Search of an Array: Termination

S <y y=_

const bsearch = (S: .., y: ..): boolean => {
let 7 = 0, k = S.length;
{{Inv: (S[i] <y forany 0 <i<j)and (y < S[i] forany k<i<n) }}
while (j !== k) {
const m = (J + k) / 2n;
if (S[m] < vy) |

o= m o+ 1; Does this terminate?

} else | Need to check that k - j decreases
k = m; Cansee thatj <m <k, so
} the "then" branch is fine.
) Can see that j < k implies m < k

(integer division rounds down), so

return (S[k] === y); . .
the "else" branch is also fine

Y
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Binary Search really can be tricky!

Extra, Extra - Read All About
It: Nearly All Binary Searches Google Research

and Mergesorts are Broken

June 2, 2006 - Posted by Joshua Bloch, Software Engineer

QUICK LINKS

I remember vividly Jon Bentley's first Algorithms lecture at CMU, where he asked all of us incoming Ph.D. students to °<§ Share
write a binary search, and then dissected one of our implementations in front of the class. Of course it was broken, as

were most of our implementations. This made a real impression on me, as did the treatment of this material in his

wonderful Programming Pearls (Addison-Wesley, 1986; Second Edition, 2000). The key lesson was to carefully consider

the invariants in your programs.

Fast forward to 2006. | was shocked to learn that the binary search program that Bentley proved correct and
subsequently tested in Chapter 5 of Programming Pearls contains a bug. Once | tell you what it is, you will understand
why it escaped detection for two decades. Lest you think I'm picking on Bentley, let me tell you how | discovered the
bug: The version of binary search that | wrote for the JDK contained the same bug. It was reported to Sun recently
when it broke someone's program, after lying in wait for nine years or so.
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A Sketch of a More Rigorous Approach

e can convert visuals into rigorous proofs

— requires some math machinery in 311 (and onwards)
proving “for any” facts (related: “strong induction”)
more complicated reasoning for non-contiguous facts

— sketches for you to ponder:
P(i) foranyj<i<kandP(k) - P(i) foranyj<i<k
P(i) foranyj<i<kandP(j) - P(i) foranyj<i<k

 homework & exam:

— won’t require you to draw pictures or formally prove
will ask you to write assertions & describe proof intuition (in English)
general conceptual questions are fair game!

— all array problems can be treated “as a list”
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Why Should You Care?

* To justify practicing reasoning, we’ve said:

— professional programmers do formal reasoning for
really tricky problems

— it can help identify and prevent hard bugs
code review

* Also, it can help you get a job!
— interviews are intentionally tricky

interviewers won’t expect line-by-line reasoning or formal proofs

— being able to precisely define loop invariants and pre
and post conditions will go a long way
pictures count!
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Creating Loop Invariants



Code Reviews vs Writing Loops

 Examples so far have been code reviews
— checking correctness of given code

* Steps to write a loop to solve a problem:
1. Come up with an idea for the loop
2. Formalize the idea in the invariant
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Loop Invariants with Arrays (1/3)

* Previous example:

{{Inv: s =sum(S[0..j-1]) ... }} sum of array
{{ Post: s=sum(S[0..n-1]) }}

— in this case, Post is a special case of Inv (where j = n)
— in other words, Inv is a weakening of Post

* Heuristic for loop invariants: weaken the postcondition
— assertion that allows postcondition as a special case
— must also allow states that are easy to prepare
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Heuristic for Loop Invariants

* Loop Invariant allows both start and stop states
— describing more states = weakening

{P}

{Inv:1}}
while (cond) {

S
}

€op @ . @

— usually are many ways to weaken it...
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Loop Invariants with Arrays (2/3)

* Previous example

{{Inv:s=sum(S[0..j-1]) ... }}
{{ Post: s=sum(S[0..n-1]) }}

* Linear search also fits this pattern:

{{Inv:S[i] #yforany 0 <i<j}}
{{ Post: (S[i] =y) or (S[i] #y forany 0 <i<n) }}

— a weakening of second part

sum of array

search an array
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Searching a Sorted Array: Starting Invariant

 Suppose we require A to be sorted:
— precondition includes

Afj-1] <A[j]forany1<j<n (where n := A.length)

« Want to find the index k where “x” would be...
— picture would look like this:
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Searching a Sorted Array: Weakened Invariant

* End with complete knowledge of A[i] vs x
— how can we describe partial knowledge?
— know some elements are smaller and some larger

0 j k n
Ali] <yforany 0 <i<] y < Ali] foranyk<i<n
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Loop Invariants with Arrays (3/3)

* Previous example

{{Inv: s =sum(S[0..j-1]) ... }} sum of array
{{ Post: s=sum(S[0..n-1]) }}

* Linear search also fits this pattern:

{{Inv: S[i] #yforany 0 <i<j}} search an array
{{ Post: (S[i] =y) or (S[i] #y forany 0 <i<n) }}

e Binary search also still fits this pattern

{{Inv: (S[i]<y forany 0 <i<j)and (y <SJ[i] forany k<i<n) }}
{{ Post: (S[i] <y forany 0 <i<Kk)and (y <S[i]forany k<i<n)}}

80



Loop Invariants in the Wild

* Heuristic for loop invariants: weaken the postcondition
— assertion that allows postcondition as a special case
— must also allow states that are easy to prepare

* 421 covers complex heuristics for finding invariants...

— for 331, this heuristic is enough
— (will give you the invariant for anything more complex)
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Writing Loops



Code Reviews vs Writing Loops

 Examples so far have been code reviews
— checking correctness of given code

* Steps to write a loop to solve a problem:
1. Come up with an idea for the loop
2. Formalize the idea in the invariant
3. Write the code so that it is correct with that invariant

* Let's see some examples...

83



Max of an Array (1/7)

S
m = max(S[0 ..j-1]) )
const max = (S: Array<bigint>): bigint => {
let m = 2?7
let 7 = 27
// Inv: m = max(S[0 .. j-1])
while (?27?) {
27
Io= 9 + 1; How do we initialize m & j?
} m = max(S[0 .. 0]) is easiest

return m; What case is missing?
I
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Max of an Array (2/7)

S
m = max(S[0 ..j-1]) )
const max = (S: Array<bigint>): bigint => {
if (S.length === 0) throw new Error ('no elements);
let m = S[0];
let 7 = 727
// Inv: m = max(S[0 .. j-1])
while (?27?) {
?7?

How do we initialize j?

J =3 + 1; Want m = max(S[0 .. 0])
}

return m;

}s
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Max of an Array (3/7)

S
m = max(S[0 ..j-1]) )
const max = (S: Array<bigint>): bigint => {
if (S.length === 0) throw new Error ('no elements);
let m = S[0];
let 7 = 1;
// Inv: m = max(S[0 .. j-1])
while (?27?) {
?7?

When do we exit?

J =3 + 1; Want m = max(S[0 .. n-1])
}

return m;

}s
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Max of an Array (4/7)

S
m = max(S[0 ..j-1]) ]
const max = (S: Array<bigint>): bigint => {
if (S.length === 0) throw new Error ('no elements);
let m = S[0];
let 7 = 1;
// Inv: m = max(S[0 .. j-1])
while (j !== S.length) {
?7?
J =31+ 1

}

return m;

}s
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Max of an Array (5/7)

S
m = max(S[0 ..j-1]) ]
const max = (S: Array<bigint>): bigint => {
if (S.length === 0) throw new Error ('no elements);
let m = S[0];
let 7 = 1;
// Inv: m = max(S[0 .. j-1])
while (j !== S.length) {
{{ m = max(S[0 ..j-1]) and j # n }}
?7?

{{ m = max(S[0 ..j]) }}
j =3 + 1;
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Max of an Array (6/7)

m = max(S[0 ..j-1])

{{ m = max(§[0 ..j-1]) and j # n }}

2?7

{{ m = max(S[0 ..j]) }}

m = max(S[0 ..j])

How do we make the second one hold?
Set m = S[j] iff S[j| > m
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Max of an Array (7/7)

m = max(S[0 ..j-1])

const max = (S: Array<bigint>): bigint => {

if (S.length === 0) throw new Error ('no elements);
let m = S[0];
let 7 = 1;
// Inv: m = max(S[0 .. j-1])
while (j !== S.length) {

if (S[3] > m)

m = S[j];
J =3+ 1

}

return m;

Y
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Example: Sorting Negative, Zero, Positive

* Reorder an array so that

— negative numbers come first, then zeros, then positives
(not necessarily fully sorted)

/**
* Reorders A into negatives, then 0Os, then positive
* @modifies A
* @deffects leaves same integers in A but with
* A[jJ] < 0 for 0 <=3 < 1
* A[jJ] = 0 for i <= j < k
* A[j] > 0 for k <= jJ < n
* @returns the indexes (i, k) above
*/
const sortPosNeg = (A: bigint[]): [bigint,bigint] =>
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sortPosNeg on Wikipedia

Dutch national flag problem A 4languages -

Article Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

The Dutch national flag problem!'! is a computational problem proposed by Edsger
Dijkstra.[2] The flag of the Netherlands consists of three colors: red, white, and blue. Given

balls of these three colors arranged randomly in a line (it does not matter how many balls _

there are), the task is to arrange them such that all balls of the same color are together and
their collective color groups are in the correct order.

The solution to this problem is of interest for designing sorting algorithms; in particular,
variants of the quicksort algorithm that must be robust to repeated elements may use a three-
way partitioning function that groups items less than a given key (red), equal to the key (white)
and greater than the key (blue). Several solutions exist that have varying performance
characteristics, tailored to sorting arrays with either small or large numbers of repeated elements.®]

The Dutch national flag
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sortPosNeg on LeetCode

rA

] Description Editorial Solutions Submissions CJ

75.Sort Colors

© Topics Q Hint

Given an array nums with n objects colored red, white, or blue, sort them in-place so that objects of the
same color are adjacent, with the colors in the order red, white, and blue.

We will use the integers @, 1, and 2 to represent the color red, white, and blue, respectively.

You must solve this problem without using the library's sort function.

93

<



Drawing sortPosNeg (~ “Dutch flag problem”)

// Reffects leaves same numbers in A but with
// A[j] < 0 for 0 <= j < i
// A[§j] =0 for i <= j < k
// A[j] > 0 for k <= j < n

Let’s implement this...

— what was our heuristic for guessing an invariant?
— weaken the postcondition
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Potential Weaker sortPosNeg Invariants

How should we weaken this for the invariant?

— heeds allow elements with unknown values
initially, we don’t know anything about the array values

-~J
Vv
o
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Formalizing a “Visual Invariant”

Our Invariant:

0 i j

A[f] <0Oforany 0 <?¢<i
A[f]=0foranyi<?¥ <]

A[f] >0foranyk<¥f<n
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Sketching sortPosNeg: Loop Components

0 i j

* Let’s try figuring out the code to make it correct

* Figure out the code for
— how to initialize
— when to exit
— loop body
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Sketching sortPosNeg: Initialization

0 i j k n

* Will have variables i, j, and k withi <j <k

 How do we set these to make it true initially?
— we start out not knowing anything about the array values
— seti=j=0andk=n
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Sketching sortPosNeg: Exit Condition

0 i ]

* Seti=j=0andk =n to make this hold initially

* When do we exit?
— purple is emptyif j=k
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Filling In sortPosNeg’s Implementation

let 1 = 0;

let 7 = 0;

let k = A.length;

{{Inv: A[f] <Oforany 0 < ¢ <iand A[#] =0foranyi<?¥ <j
A[f] >0foranyk<f<nand 0<i<j<k<n}}
while (§ < k) {

}

{{A[f] <Oforany 0 <f<iand A[f] =0foranyi<¥ <j
A[f] >0foranyj<¥<n}}

return [i, 7],
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Sketching sortPosNeg: Progress by Shrinking

0 i ]

 How do we make progress?
— try toincrease j by 1 or decrease k by 1

* Look at A[j] and figure out where it goes

* What to do depends on A[j]
— couldbe<0,=0,0r>0
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Sketching sortPosNeg: Progress by Cases

Setj=j,+ 1

0 i j

Swap Ali] and A[j]
and j=j,+1

Swap A[j] and A[k-1]
Set k — ko - 1
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Full sortPosNeg Implementation

{Inv: A[f] <Oforany 0 < ¢ <iand A[f] =0foranyi<¥ <j
A[f]>0foranyk<f<nand0<i<j<k<n}}
while (5 !== k) {
if (A[J] === 0) {
J =3+ 1
} else if (A[3] < 0) {
swap (A, 1, 7J);
i =1+ 1;
3] =3+ L
} else ({
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Sorted Matrix Search

Given a sorted matrix M, with m rows and n cols,
where every row and every column is sorted,
find out whether a given number x is in the matrix

(darker color means larger)
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Sorted Matrix Search: Solution Idea

Given a sorted matrix M, with m rows and n cols,
where every row and every column is sorted,
find out whether a given number x is in the matrix

Idea: Trace the contour between the numbers £ x and > x
in each row to see if x appears.
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Sorted Matrix Search: Idea as Invariant

Given a sorted matrix M, with m rows and n cols,
where every row and every column is sorted,
find out whether a given number x is in the matrix

j

|

Invariant: at the left-most entry with x < __ in the row
— for each row i, this holds for exactly one column |
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Sorted Matrix Search: Initialization

Invariant: at the left-most entry with x < __in the row
— for each row i, this holds for exactly one column j

Initialization: how do we get this to hold for i = 0?

— could be anywhere in the first row
J

Need to search to find this location
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Sorted Matrix Search: Row Subgoal

New Goal: find smallest j with x < M[0,Kk] for anyj<k <n
— will need a loop...

How do we find an invariant for that loop?
— try weakening this assertion (allow any j, not just smallest)
— decrease j until x < M|0, j-1] does not hold
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Sorted Matrix Search: Row Subgoal Initialization

New Goal: find smallest j with x < M[0,Kk] for anyj<k <n

j

let i = 0; i
let § = 29
{{ Inv: x < M[0, k] foranyj <k <n }}

while (?27?)

27

{{ Post: M[0,k] <xforany 0 <k <jandx <M][0, k] foranyj<k<n }}

How do we set j to make Inv hold initially?
— range is empty when j = n
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Sorted Matrix Search: Row Subgoal Exit

New Goal: find smallest j with x < M[0,Kk] for anyj<k <n

j

let i = 0; i
let ] = n;

{{ Inv: x < M[0, k] foranyj <k <n }}
while (?7?)

27

{{ Post: M[0,k] <xforany 0 <k <jandx <M][0, k] foranyj<k<n }}

How do we exit so that the postcondition holds?
— can no longer decrease jwhen j =0 or M[0, j-1] <x
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Sorted Matrix Search: Row Subgoal Loop (1/4)

New Goal: find smallest j with x < M[0,Kk] for anyj<k <n

:

{{ Post: M[0,k] <xforany 0 <k <jandx <M][0, k] foranyj<k<n }}

let i = 0; i
let ] = n;
{{ Inv: x < M[0, k] foranyj <k <n }}

while (>0 && x <= M[O0][3-11)
??

Anything needed in the loop body?
(That is, otherthan § = 57 - 1?)
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Sorted Matrix Search: Row Subgoal Loop (2/4)

New Goal: find smallest j with x < M[0,Kk] for anyj<k <n

{{Inv: x <MJ0, K] foranyj<k<n}}

while (>0 && x <= M[O0][3-11) {
{x<M]|0,k]foranyj<k<nandj>0andx<M|O0,j-1] }}
?7?
3 =3 - L
{x<M[0,k]foranyj<k<n}}
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Sorted Matrix Search: Row Subgoal Loop (3/4)

New Goal: find smallest j with x < M[0,Kk] for anyj<k <n

{{ Inv: x < M[0, k] foranyj<k<n}}
while (>0 && x <= M[O0][3-11) {
{x<M|[0, k] foranyj<k<nandj>0andx<M|0,j-1] }}

?7?
{x<M|[0,Kk]foranyj-1<k<n}}
3 =3 - 1L

{x<M|[0,Kk]foranyj<k<n}}
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Sorted Matrix Search: Row Subgoal Loop (4/4)

New Goal: find smallest j with x < M[0,Kk] for anyj<k <n

j

{x<M[0,Kk] foranyj<k<nandj>0andx <M|0,j-1] }}

?7?

{x<M|[0,Kk]foranyj-1<k<n}}

j

Nothing is missing!
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Sorted Matrix Search: Row Subgoal Done!

New Goal: find smallest j with x < M[0,Kk] for anyj<k <n

j

let 1 = 0; i
let 7 = n;
{ Inv: x < M|0, k] foranyj<k<n}}

while (§>0 && x <= M[0][j-1]) ‘
Y

J =]
{{ Post: M[0,k] < x forany 0 <k <jand x < M[0, K] foranyj <k <n }}

Can now check if M|[0, j] =x

— if not, then it is not in the first row

— move on to the second row...
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Sorted Matrix Search: Moving Rows (1/3)

Moving from row i to row i+1

What does vertical sorting tell us about row i+1?

— right side is guaranteed to satisfy "x < _ "
— left side not guaranteed to satisfy " _ <x"
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Sorted Matrix Search: Moving Rows (2/3)

Moving from row i to row i+1

j

I
>
IA A

i+1

What does vertical sorting tell us about row i+1?

— right side is guaranteed to satisfy "x < _ "
— left side not guaranteed to satisfy " _ <x"
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Sorted Matrix Search: Moving Rows (3/3)

Moving from row i to row i+1

i+1 X <

How do we restore the invariant?
— find the index j with M[i+1,j-1] < x < MJi+1, ]

This is the same problem as before!
— move left until begining or M[i+1, j-1] < x holds
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Sorted Matrix Search: Moving Columns (1/3)

let 1 = 0;
let 7 = n;
. move j to left...
if (M[1][3J] === x) return true;
{{Inv: (xisnotinrowk forany 0 <k <i) and
(M[i, k] < xforany 0 <k <j) and (x < M[j, K] foranyj <k <n) }}
while (i+1 !== n) {

}

return false;

Inv says we ruled out rows O .. i
and col j is line between _<xand x < _
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Sorted Matrix Search: Moving Columns (2/3)

)

let 1 = 0;
let 7 = n;

move J to left... i

if (M[1][3J] === x) return true;

{{Inv: (xisnotinrowk forany 0 <k <i) and
(M[i, k] < xforany 0 <k <j) and (x < M[j, K] foranyj <k <n) }}
while (i+1 !== n) {

i =14+ 1;

move J to the left...
if (M[1][3J] === x) return true;
}

We can avoid writing this code twice
return false;

(without writing a separate function)...

Don't try this at home!
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Sorted Matrix Search: Moving Columns (3/3)

let 1 = 0;
let J = n; Loop condition was also changed
while (i !== n) {

. move jJ to left...
if (M[1][]] === x) return true;
{{Inv: (xisnotinrowk forany 0 <k <i) and
(M[i, k] < xforany 0 <k <j) and (x < M[j, k] foranyj <k <n) }}
i =1+ 1;
}

return false;

Inv is now checked in the middle of the loop!
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Sorted Matrix Search: Full Code & Assertions

let 1 = 0; Final version is 9 lines of code.
let 7 = n; Requires 6 lines of invariant assertions!
while (1 !'== n) {

{{Inv:x <M[ij, k] foranyj<k<n}}
while (§ > 0 && x <= M[i][3-11)
3 =3 - 1;
if (M[1]1[3] === x)
return true;
{{Inv: (xisnotin rowk forany 0 <k <i) and
(M[i, k] < xforany 0 <k <j) and (x < M[j, k] foranyj <k <n) }}
1 =1 + 1;
}

return false;
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Wrapping Up Arrays

* We design invariants to tell us everything we need
to know to prove our post condition
— Precondition facts aren’t (explicitly) copied in

— Instead, we prove (P implies Invl) and
(Invl and ! cond implies Q)

{P}}
(Invl}}

{
\_while (cond) {
{{ P1: Invl and cond }}

S

|—> {{Q1:Invl }}
}

{Q}
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Reasoning with Multiple Loops

* Applies with multiple loops also
— Can treat them as distinct units, except in the middle

{{ Inv1l }}
while (condl) {

S

}
{{Invland !condl }}

{{ Inv2 }}
{_ﬁéile (cond?2) {
{{ Inv2 and cond? }}

S

Must show this holds
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Reasoning with Nested Loops

 and nested loops
— still need to prove Invl holds at the end of outer loop

{{ Inv1 }}
while (cond) {

{{Invl and condl }}
{ Inv2 }}

\‘while (cond?2) {
{{ Inv2 and cond?2 }}
S

}
{{Inv2 and ! cond?2 }}

|—> {{Q1: Invl }}
}

Must show this holds

] Must show this holds
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