
Tail Recursion

Jaela Field

CSE 331

Summer 2025

xkcd #1270 & Matt

But first, a bit more

on mutable ADTs

8/8 Agenda

• Finish MutableFastLastList and

MutableNumberQueue examples

Mutable ADT (see Topic 7 slides)

• New Topic (8): Tail Recursion

In less focus than a standard quarter. Additional materials
posted if you’re interested.

2

8/8 Agenda

✓ Finish MutableFastLastList and

MutableNumberQueue examples

Mutable ADT

• Tail Recursion

3

Local Variable Mutation & Memory Use

• With only straight-line code & conditionals…

– it seems like it saves memory

– but it does not (compiler would fix anyway)

• With loops…

– it really does save memory

no improvement in running time

– but loops cannot be used in all cases

some problems really do require more memory

• When can loops be used and when not?

4

Sum of List: Recursive Math vs Iterative Code

• Recursive function to calculate sum of list

 sum(nil) := 0

 sum(x :: L) := x + sum(L)

• Loop to calculate sum of a list

{{ L = L0 }}

let s: bigint = 0n;

{{ Inv: sum(L0) = s + sum(L) }}

while (L.kind !== "nil") {

 s = s + L.hd;

 L = L.tl;

}

{{ s = sum(L0) }}

Recursion can be directly

translated into code

5

Sum of List: Recursion vs Loops, in Code

Loop

{{ L = L0 }}

let s: bigint = 0n;

{{ Inv: sum(L0) = s + sum(L) }}

while (L.kind !== "nil") {

 s = s + L.hd;

 L = L.tl;

}

{{ s = sum(L0) }}

Recursion

const sum = (L: List): bigint => {

 if (L.kind === "nil") {

 return 0n;

 } else {

 return L.hd + sum(L.tl);

 }

}

Both run in O(n) time where n = len(L)

Loop uses O(1) extra memory, but right does not…

6

Recursive Version of Sum

const sum = (L: List): bigint => {

1 if (L.kind === "nil") {

2 return 0n;

3 } else {

4 return L.hd + sum(L.tl);

5 }

}

… sum(1 :: 2 :: 3 :: nil) …

L = 2 :: 3 :: nil
line 4

L = 3 :: nil
line 4

L = nil
line 2

returns 0

returns 3

returns 5

returns 6

L = 1 :: 2 :: 3 :: nil
line 4

List of length 3 takes 4 calls

List of length n takes n+1 calls.

Call uses O(n) memory,

where n = len(L)

7

How much does space efficiency matter?

• In principle, this extra memory usually not a problem

– O(n) time is usually the more important constraint

• In practice, sometimes we are memory constrained

– in the browser, sum(L) exceeds stack size at len(L) = 10,000

• Loops ≫ Recursion?

• Nope!

1. Loops do not always use less memory.

2. Recursion can solve more problems than loops.

3. Extra memory use pays for some other benefits.

8

Another Sum of the Values in a List

• Another summation function

 sum-acc(nil, r) := r

 sum-acc(x :: L, r) := sum-acc(L, x + r)

• Translates to the following code

const sum_acc = (L: List, r: bigint): bigint => {

 if (L.kind === "nil") {

 return r;

 } else {

 return sum_acc(L.tl, L.hd + r);

 }

}

9

r is an “accumulator variable”

Tail-Recursive Version of Sum

const sum_acc =

 (L: List, r: bigint): bigint => {

1 if (L.kind === "nil") {

2 return r;

3 } else {

4 return sum_acc(L.tl, L.hd + r);

5 }

}

… sum_acc(1 :: 2 :: 3 :: nil, 0) …

L = 2 :: 3 :: nil
r = 1
line 4

L = 3 :: nil
r = 3
line 4

L = nil
r = 6
line 2

returns 6

returns 6

returns 6

returns 6

L = 1 :: 2 :: 3 :: nil
r = 0
line 4

Same return value means no need

to remember where we were.

No need to keep stack old frames!

Tail call optimization reuses them…

This is a "tail call" and "tail recursion".

10

L = 1 :: 2 :: 3 :: nil
r = 0
line 4

Tail-Recursive Version of Sum, Optimized

const sum_acc =

 (L: List, r: bigint): bigint => {

1 if (L.kind === "nil") {

2 return r;

3 } else {

4 return sum_acc(L.tl, L.hd + r);

5 }

}

… sum_acc(1 :: 2 :: 3 :: nil, 0) …

L = 2 :: 3 :: nil
r = 1
line 4 returns 6

Tail call optimization reuses

stack frames so only O(1) memory

L = 3 :: nil
r = 3
line 4

L = nil
r = 6
line 2

What does this look like? A loop!

sum_acc calculates the same values

in the same order as the loop
11

Tail-Call Optimization

• Tail-call optimization turns tail recursion into a loop

• Functional languages implement tail-call optimization

– standard feature of such languages

– you don't write loops; you write tail recursive functions

• More on JS & tail-calls in a moment! But first…

12

Pause & Ponder: Leaf Me Alone

Is this function tail-recursive?

type Tree =

{ kind: "leaf", value: bigint } |

{ kind: "branch", left: Tree, right: Tree };

const f = (node: Tree): bigint => {

 if (node.kind === "leaf") {

 return node.value;

 } else {

 return f(node.left) + f(node.right);

 }

}

13

No! The last thing we do is add!

Pause & Ponder: Tail Me Later

Is this function tail-recursive?

const g = (a: List<bigint>, b: List<bigint>): boolean => {

 if (a === nil && b === nil) {

 return true;

 }

 if (a === nil || b === nil) {

 return false;

 }

 if (a.hd !== b.hd) {

 return false;

 }

 return g(a.tl, b.tl);

}
14Yes! The last thing we do is return!

Pause & Ponder: Be Mean or Be Square

Is this function tail-recursive?

const h =
(a: List<number>, acc: number): number => {

 if (a === nil) {

 return Math.sqrt(acc);

 }

 return h(
 a.tl,

 acc + Math.pow(a.hd, 2)
);

} 15Yes! The last thing we do is return!

Aside: Tail-Call Optimization & JavaScript

• technically, JavaScript’s spec since ~ 2015 (TC39 v6)

says it should have tail-call optimization (TCO), but…

– Chrome added tail-call optimization… then undid it!*

– other major browsers (e.g. Firefox) never implemented it!

– one reason: loops / tail-call optimization have downsides

(more later today …)

• in 2025,

– Safari’s engine (WebKit) supports TCO, as do derivative

runtimes (e.g. Bun, which uses JavaScriptCore)

– Chrome has put forward a (mostly-inactive) proposal for opt-

in (explicit) TCO; it has a long and hotly debated history

– Firefox does not have TCO

• tl;dr: you probably can’t rely on it for browser apps
16

https://262.ecma-international.org/6.0/#sec-tail-position-calls
https://v8.dev/blog/modern-javascript#proper-tail-calls
https://webkit.org/blog/6240/ecmascript-6-proper-tail-calls-in-webkit/
https://bun.sh/
https://docs.webkit.org/Deep%20Dive/JSC/JavaScriptCore.html
https://github.com/tc39/proposal-ptc-syntax
https://github.com/tc39/proposal-ptc-syntax
https://github.com/tc39/proposal-ptc-syntax
https://github.com/tc39/proposal-ptc-syntax/issues/22

Loops vs Tail Recursion

Ordinary Loops ≤ Tail Recursion (with tail-call optimization)

• Tail recursion can solve all problems loops can

– any loop can be translated to tail recursion

– both use O(1) memory with tail-call optimization

• Translation is simple and important to understand

• Tells us that Ordinary Loops ≪ Recursion

– correspond to the special case of tail recursion

17

Loop to Tail Recursion (1/2)

const myLoop = (R: List): T => {

 let s = f(R);

 while (R.kind !== "nil") {

 s = g(s, R.hd);

 R = R.tl;

 }

 return h(s);

};

• Tail-recursive function that does same calculation:

 my-acc(nil, s) := h(s) after loop

 my-acc(x :: L, s) := my-acc(L, g(s, x)) loop body

 my-func(L) := my-acc(L, f(L)) before loop

{{ Inv: my-acc(R0, s0) = my-acc(R, s) }}

18

Loop to Tail Recursion (2/2)

const myLoop = (R: List): T => {

 let s = f(R);

 while (R.kind !== "nil") {

 s = g(s, R.hd);

 R = R.tl;

 }

 return h(s);

};

• Tail-recursive function that does same calculation:

 my-acc(nil, s) := h(s) after loop

 my-acc(x :: L, s) := my-acc(L, g(s, x)) loop body

 my-func(L) := my-acc(L, f(L)) before loop

{{ Inv: my-acc(R0, s0) = my-acc(R, s) }}

recursive cases (tail calls)

base cases

Inv formalizes the fact that

we loop on tail recursion

19

Example 1: Iterative Sum to Tail Recursion (1/2)

const sumLoop = (R: List): bigint => {

 let s = 0;

 while (R.kind !== "nil") {

 s = s + R.hd;

 R = R.tl;

 }

 return s;

};

• Tail-recursive function that does same calculation:

 sum-acc(nil, s) := h(s) h(s) → s

 sum-acc(x :: L, s) := my-acc(L, g(s, x)) g(s, x) → s + x

 sum-func(L) := my-acc(L, f(L)) f(L) → 0

20

Example 1: Iterative Sum to Tail Recursion (2/2)

const sumLoop = (R: List): bigint => {

 let s = 0;

 while (R.kind !== "nil") {

 s = s + R.hd;

 R = R.tl;

 }

 return s;

};

• Tail-recursive function that does same calculation:

 sum-acc(nil, s) := s

 sum-acc(x :: L, s) := sum-acc(L, s + x)

 sum-func(L) := sum-acc(L, 0)

{{ Inv: sum-acc(R0, s0) = sum-acc(R, s) }}

21

Loops vs Tail Recursion in Math

• Tail recursion gives nicer notation for loop operation

• Loops are hard to describe with math

– math never mutates anything, so loops are not a good fit

– tail recursive notation shows loop operation in calculation block

sum(1 :: 3 :: 4 :: 2 :: nil)

Iteration R s

0 3 :: 4 :: 2 :: nil 1

1 4 :: 2 :: nil 4

2 2 :: nil 8

3 nil 10

sum-func(1 :: 3 :: 4 :: 2 :: nil)

sum-func(1 :: 3 :: 4 :: 2 :: nil)

 = sum-acc(1 :: 3 :: 4 :: 2 :: nil, 0) sum-func

= sum-acc(3 :: 4 :: 2 :: nil, 1) sum-acc

…

= sum-acc(nil, 10) sum-acc

= 10 sum-acc

22

Loops vs Tail Recursion as a Tradeoff

• Ordinary loops use less memory than (non-tail)

recursion

• This is a tradeoff

– save memory at the loss of information…

23

Key Takeaways

• Ordinary loops are a special case of recursion

– they describe the same calculation

tail recursive version is a loop (with tail call optimization)

– tail recursive notation is also useful for analyzing the loop

• Ordinary loops are strictly less powerful than recursion

– not all recursive functions can be written as tail recursion

– many problems cannot be solved in O(1) memory

e.g., tree traversals require extra space

many (most?) list operations require extra space

• Ordinary loops save memory but are harder to debug

– information thrown away tells you how you got there

24

Zooming out on Loops & Recursion

• Likely lingering questions…

– does this conversion work for all list functions?

– what about functions on other data types?

– what kinds of problems can neither really solve?

25

"Bottom Up" Functions on List: Twice

twice(nil) := nil

 twice(x :: L) := (2x) :: twice(L)

• The opposite of "tail recursion" is purely "bottom up"

– tail recursion does the work "top down"

all the work is done as we move down the list

– this definition is "bottom up"

all the work is done as we work back from nil to the full list

26

This Twice Is (not) Right!

twice(nil) := nil

 twice(x :: L) := (2x) :: twice(L)

• Attempt to do this with an accumulator

 twice-acc(nil, R) := R

 twice-acc(x :: L, R) := twice-acc(L, (2x) :: R)

– we end up with twice-acc(L, nil) = rev(twice(L))

– we can fix this by reversing the result when we're done

we return rev(twice-acc(L, nil))

– or, we can reverse the list (once) before we recurse

– either lets us use a loop, but neither is O(1) memory

27

Taking Stock: Element-wise Processing

• a function like

f(nil) := nil

f(x :: L) := g(x) :: f(L)

can always be written tail-recursively with our

“reversal” trick, but it won’t be O(1) space

• O(n) space is reasonable, since it returns a list

– loop version is not any better

• is this helpful?

– pro: can use recursion reasoning while still writing loops

– con: feels like … overkill?

28

When is Tail Recursion Natural (or Efficient)?

• there’s been a secret hidden pattern for:

– what’s “easy” with tail recursion

(aka “loop order”, or front-to-back)

– what’s “easy” with bottom-up recursion

(aka “natural recursive order”, or back-to-front)

• Has to do with Associativity

– Left-associative operations (start on the left, move

right) lend themselves to tail recursion (loops)

e.g. recursive-call(L) :: operation(x)

– Right-associative operations (start on the right, move

left) lend themselves to bottom-up recursion

e.g. operation(x) :: recursive-call(L)
29

Okay Buddy, But Does This Get Me a Job?

• common post-123 question:

“when should I use a loop vs recursion?”

– one common (imperfect) answer:

“use the strategy that mirrors your data”

30

Wrapping up Recursion vs Loops

• There is a fundamental tension between:

– Natural recursive order (bottom-up, aka back-to-front)

– Natural loop order (front-to-back)

– Some problems lean towards one or the other

Highly related to their associativity

• Three ways to bridge this gap:

– Make the loop serve the recursion

Bottom-up list loop template calling rev(L) (and other complex things)

– Make the recursion serve the loop

Tail recursion

– Change the data structure

ADTs!

31

	Default Section
	Slide 1: Tail Recursion
	Slide 2: 8/8 Agenda
	Slide 3: 8/8 Agenda
	Slide 4: Local Variable Mutation & Memory Use
	Slide 5: Sum of List: Recursive Math vs Iterative Code
	Slide 6: Sum of List: Recursion vs Loops, in Code
	Slide 7: Recursive Version of Sum
	Slide 8: How much does space efficiency matter?
	Slide 9: Another Sum of the Values in a List
	Slide 10: Tail-Recursive Version of Sum
	Slide 11: Tail-Recursive Version of Sum, Optimized
	Slide 12: Tail-Call Optimization
	Slide 13: Pause & Ponder: Leaf Me Alone
	Slide 14: Pause & Ponder: Tail Me Later
	Slide 15: Pause & Ponder: Be Mean or Be Square
	Slide 16: Aside: Tail-Call Optimization & JavaScript
	Slide 17: Loops vs Tail Recursion
	Slide 18: Loop to Tail Recursion (1/2)
	Slide 19: Loop to Tail Recursion (2/2)
	Slide 20: Example 1: Iterative Sum to Tail Recursion (1/2)
	Slide 21: Example 1: Iterative Sum to Tail Recursion (2/2)
	Slide 22: Loops vs Tail Recursion in Math
	Slide 23: Loops vs Tail Recursion as a Tradeoff
	Slide 24: Key Takeaways
	Slide 25: Zooming out on Loops & Recursion
	Slide 26: "Bottom Up" Functions on List: Twice
	Slide 27: This Twice Is (not) Right!
	Slide 28: Taking Stock: Element-wise Processing
	Slide 29: When is Tail Recursion Natural (or Efficient)?
	Slide 30: Okay Buddy, But Does This Get Me a Job?
	Slide 31: Wrapping up Recursion vs Loops

