
Abstraction

Jaela Field

CSE 331

Spring 2025

xkcd #1172, ty matt

Administrivia

• HW6 is out!

– 5 written, 2 coding questions

Written problems build in difficulty.

– Start early!

• Katherine’s Mon OH now Hybrid

2

Calendar Updates/Reminders

• Topic 7 & 8 switched

• Last HW (HW8)

– Due Wednesday (8/20), no usual 48-hour

extension available

• Currently 3 weeks out from final exam

– mostly short answer & multiple choice

– will release a practice exam & last section is

review

3

The Third Leg of the Class

• HW1–3: write more realistic applications

– saw how debugging gets harder

• HW4–6: write code correctly the first time

– checked correctness without a computer

• HW7–8: write more complex applications

– most applications have a core, tricky part

– use the correctness toolkit to get that right

– can work faster where debugging is easier

only way to really know the UI is right is to try it

4

Procedural Abstraction

• Hide the details of the function from the caller

– caller only needs to read the specification

– (“procedure” means function)

• Caller promises to pass valid inputs

– no promises on invalid inputs

• Implementer then promises to return correct outputs

– does not matter how

5

Procedural Abstraction Example

• Specification of peachCipher is imperative:

// @returns keep(L) ++ skip(L)

export const peachCipher = (L: List): List => {

 // helper, calculates keep & skip in same pass

 return peachEncode(L, nil, nil);

};

– code implements a different function

– need to use reasoning to check that these two match

we proved, for all L by structural induction, that:

 concat(concat(k, keep(L)), concat(s, skip(L))) = peach-cipher(L, k, s)

6

Other Properties of High-Quality Code

• Professionals are expected to write high-quality code

• Correctness is the most important part of quality

– users hate products that do not work properly

• Also includes the following

– easy to change

– easy to understand

– modular

start with rev straight from the spec

later change it to a faster version

abstraction provides

all three properties

7

Benefits of Specifications

Clear specifications help with understandability and

• Correctness

– reasoning requires clear definition of what the function does

• Changeability

– implementer is free to write any code that meets spec

– client can pass any inputs that satisfy requirements

• Modularity

– people can work on different parts once specs are agreed

8

Abstraction Barrier

• Specification is an…

– specification is the “barrier” between the sides

– clients depend only on the spec

– implementer can write any code that satisfies the spec

Client
Function Call

Function
Implementation

9

Abstraction Barrier

Specification

Performance Improvements

• Rarely, we see faster algorithms for operations

– Stay tuned for “tail recursion” topic!

• Most perf improvements change data structures

– different kind of abstraction barrier for data

• Let’s see an example…

10

Last Element of a List

last(nil) := undefined

 last(x :: nil) := x

 last(x :: y :: L) := last(y :: L)

• Runs in ϴ(n) time

– walks down to the end of the list

– no faster way to do this on a list, algorithmically

• We could cache the last element

– new data type just dropped:

type FastLastList = {list: List, last: bigint | undefined}

empty list has undefined last

analogous idea:

store references to both

“front” and “back” nodes

11

Defining Fast-Last List

type FastLastList = {list: List, last: bigint | undefined}

• How do we switch to this type?

– change every List into FastLastList

• Will still have functions that operate on List

– e.g., len, sum, concat, rev

• Suppose F is a FastLastList

– instead of calling rev(F), we have call rev(F.list)

– cleaner to introduce a helper function

12

Implementing Fast-Last List Helpers

type FastLastList = {list: List, last: bigint | undefined}

const getLast = (F: FastLastList): bigint | undefined => {

 return F.last;

};

const toList = (F: FastLastList): List<bigint> => {

 return F.list;

};

• How do we switch to this type?

– change every List into FastLastList

– replace F with toList(F) where a List is expected

13

Another Fast List (1/2)

• Suppose we often need the 2nd to last, 3rd to last, …

(back of the list). How can we make it faster?

– store the list in reverse order!

 rev(nil) := nil

 rev(x :: L) := rev(L) ⧺ (x :: nil)

 // @returns rev(L)

 const rev = (L: List< bigint>): List< bigint> => {

 if (L.kind === "nil") {

 return nil;

 } else {

 return concat(rev(L), cons(x, nil));

 }

 };

14

Another Fast List (2/2)

– store the list in reverse order!

type FastBackList = List<bigint>;

const getLast = (F: FastBackList): bigint | undefined => {

 return (F.kind === "nil") ? undefined : F.hd;

};

const getSecondToLast = (F: FastBackList): bigint | undefined => {

 return (F.kind === "nil") ? undefined :

 (F.tl.kind === "nil") ? undefined : F.tl.hd;

};

const toList = (F: FastBackList): List<bigint> => {

 return rev(F);

};

15

Another Fast List Gone Wrong

type FastBackList = List<bigint>;

const getLast = (F: FastBackList): bigint | undefined => {

 return (F.kind === "nil") ? undefined : F.hd;

};

const toList = (F: FastBackList): List<bigint> => {

 return rev(F);

};

• Problems with this solution…

– no type errors if someone forgets to call toList!

const F: FastBackList = …;

return concat(F, cons(1, nil)); // bad!

16

Yet Another Fast List?

type FastBackList =

 {list: List<bigint>, origList: List<bigint>};

const getLast = (F: FastBackList): bigint | undefined => {

 return (F.list.kind === “nil”) ? undefined : F.list.hd;

};

const toList = (F: FastBackList): List<bigint> => {

 return F.origList;

};

• Still some problems…

– no type errors if someone grabs the field directly

const F: FastBackList = …;

return concat(F.list, cons(1, nil)); // bad!

17

Another Fast List — Take Three

const F: FastBackList = …;

return concat(F.list, cons(1, nil)); // bad!

• Only way to completely stop this is to hide F.list

– do not give them the data, just the functions

type FastList = {

 getLast: () => bigint|undefined,

 toList: () => List<bigint>

};

– the only way to get the list is to call F.toList()

– seems weird… but we can make it look familiar

18

Fast List as an Interface

interface FastList {

 getLast(): bigint|undefined;

 toList(): List<bigint>;

}

• In TypeScript, “interface” is synonym for “record type”

• You’ve seen this in Java

interface FastList {

 int getLast() throws EmptyList;

 List<Integer> toList();

}

– in 331, our interfaces will only include functions (methods)

Java interface is a record where

field values are functions (methods)

19

Data Abstraction

Data Abstraction & ADTs

• Give clients only operations, not data

– operations are “public”, data is “private”

• We call this an Abstract Data Type (ADT)

– invented by Barbara Liskov in the 1970s

– fundamental concept in computer science

built into Java, JavaScript, etc.

– data abstraction via procedural abstraction

• Critical for the properties we want

– easier to change data structure

– easier to understand (hides details)

– more modular
21

photo courtesy MIT

How to Make a FastList — Attempt One

const makeFastList = (list: List<bigint>): FastList => {

 const last = last(list);

 return {

 getLast: () => { return last; },

 toList: () => { return list; }

 };

};

• Values in getLast and toList fields are functions

• Note: getLast is not linear-time, but the constructor is!

• There is a cleaner way to do this

– will also look more familiar
22

How to Make a FastList — As a Class (1/3)

class FastLastList implements FastList {

 last: bigint | undefined; // should be "readonly"

 list: List<bigint>;

 constructor(list: List<bigint>) {

 this.last = last(list);

 this.list = list;

 }

 getLast = () => { return this.last; };

 toList = () => { return this.list; };

}

• Can create a new record using “new”

– each record has fields list, last, getLast, toList

– bodies of functions use “this” to refer to the record
23

How to Make a FastList — As a Class (2/3)

class FastLastList implements FastList {

 last: bigint | undefined; // should be "readonly"

 list: List<bigint>;

 constructor(list: List<bigint>) {

 this.last = last(list);

 this.list = list;

 }

 getLast = () => { return this.last; };

 toList = () => { return this.list; };

}

• Can create a new record using “new”

– all four assignments are executed on each call to “new”

– getLast and toList are always the same functions
24

How to Make a FastList — As a Class (3/3)

class FastLastList implements FastList {

 last: bigint | undefined; // should be "readonly"

 list: List<bigint>;

 constructor(list: List<bigint>) {

 this.last = last(list);

 this.list = list;

 }

 getLast = () => { return this.last; };

 toList = () => { return this.list; };

}

• Implements the FastList interface

– i.e., it has the expected getLast and toList fields

– (okay for records to have more fields than required)
25

Another Way to Make a FastList

class FastBackList implements FastList {

 original: List<bigint>;

 reversed: List<bigint>; // in reverse order

 constructor(list: List<bigint>) {

 this.original = list;

 this.reversed = rev(list);

 }

 getLast = () => {

 return (this.reversed.kind === "nil") ?

 undefined : this.reversed.hd;

 };

 toList = () => { return this.original; }

}

26

How Do Clients Get a FastList

const makeFastList = (list: List<bigint>): FastList => {

 return new FastLastList(list);

};

• Export only FastList and makeFastList

– completely hides the data representation from clients

• This is called a “factory function”

– another design pattern

– can change implementations easily in the future

becomes FastBackList with a one-line change

• Difficult to add to the list with this interface

– requires three calls: toList, cons, makeFastList 27

More Convenient Cons (via Interface)

interface FastList {

 cons(x: bigint): FastList;

 getLast(): bigint | undefined;

 toList(): List<bigint>;

};

const makeFastList = (): FastList => {

 return new FastBackList(nil);

};

• New method cons returns list with x in front

– example of a “producer” method (others are “observers”)

produces a new list for you

– now, we only need to make an empty FastList

anything else can be built via cons

28

Re-using the Empty List (as a “Singleton”)

interface FastList {

 cons(x: bigint): FastList;

 getLast(): bigint | undefined;

 toList(): List<bigint>;

};

const nilList: FastList = new FastBackList(nil);

const makeFastList = (): FastList => {

 return nilList;

};

• No need to create a new object using “new” every time

– can reuse the same instance

only possible since these are immutable!

– example of the “singleton” design pattern
29

The 331 ADT Design Pattern

We will use the following design pattern for ADTs:

• “interface” used for defining ADTs

– declares the methods available

• “class” used for implementing ADTs

– defines the fields and methods

– implements the ADT interface above

– not exported! (~ private)

• Factory function used to create instances

Stick to regular functions for rest of the code! 30

Specifications for ADTs

How to Specifications for ADTs?

• Run into problems when we try to write specs

– for example, what goes after @return?

don’t want to say returns the .list field (or reverse of that)

we want to hide those details from clients

interface FastList {

 /**

 * Returns the last element of the list.

 * @returns ??

 */

 getLast: () => bigint | undefined;

 };

• Need some terminology to clear up confusion

32

New ADT Terminology: States

New terminology for specifying ADTs

 Concrete State / Representation
actual fields of the record and the data stored in them

Last example: {list: List, last: bigint | undefined}

 Abstract State / Representation
how clients should think about the object

Last example: List (i.e., nil or cons)

• We’ve had different abstract and concrete types all along!

– in our math, List is an inductive type (abstract)

– in our code, List is a record (concrete)
33

List State: Concrete vs Abstract

Inductive types also differ in abstract / concrete states:

 Concrete State / Representation
actual fields of the record and the data stored in them

Last example: {kind:"nil"} | {kind:"cons", hd: bigint, tl: List}

 Abstract State / Representation
how clients should think about the object

Last example: List (i.e., nil or cons)

• Inductive types also use a design pattern to work in TypeScript

– details are different than ADTs (e.g., no interfaces)

34

New ADT Terminology: “object” (or “obj”)

New terminology for specifying ADTs

 Concrete State / Representation
actual fields of the record and the data stored in them

Last example: {kind:"nil"} | {kind:"cons", hd: bigint, tl: List}

 Abstract State / Representation
how clients should think about the object

Last example: List (i.e., nil or cons)

• Term “object” (or “obj”) will refer to abstract state

– “object” means mathematical object

– “obj” is the mathematical value that the record represents35

Specifying FastList & getLast with “obj”

/**

 * A list of integers that can retrieve the last

 * element in O(1) time.

 */

export interface FastList {

 /**

 * Returns the last element of the list (O(1) time).

 * @returns last(obj)

 */

 getLast(): bigint | undefined;

• “obj” refers to the abstract state (the list, in this case)

– actual state will be a record with fields last and list

36

Specifying FastList & cons with “obj” (1/2)

/**

 * A list of integers that can retrieve the last

 * element in O(1) time.

 */

export interface FastList {

 …

 /**

 * Returns a new list with x in front of this list.

 * @returns cons(x, obj)

 */

 cons(x: bigint): FastList;

• Producer method: makes a new list for you

– “obj” above is a list, so cons(x, obj) makes sense in math

37

Specifying FastList & cons with “obj” (2/2)

/**

 * A list of integers that can retrieve the last

 * element in O(1) time.

 */

export interface FastList {

 …

 /**

 * Returns a new list with x in front of this list.

 * @returns cons(x, obj)

 */

 cons(x: bigint): FastList;

• Specification does not talk about fields, just “obj”
– fields are hidden from clients

38

Specifying FastList & toList with “obj” (1/2)

/**

 * A list of integers that can retrieve the last

 * element in O(1) time.

 */

export interface FastList {

 …

 /**

 * ??

 * @returns ??

 */

 toList(): List<bigint>;

• How do we specify this?

39

Specifying FastList & toList with “obj” (2/2)

/**

 * A list of integers that can retrieve the last

 * element in O(1) time.

 */

export interface FastList {

 …

 /**

 * Returns the object as a regular list of items.

 * @returns obj

 */

 toList(): List<bigint>;

• In math, this function does nothing (“@returns obj”)

– two different concrete representations of the same idea

– details of the representations are hidden from clients
40

(Internally)

Documenting an

ADT Implementation

Recall: Abstract State

• Key idea of a public ADT spec is the “abstract state”

– simple definition of the object (easier to think about)

– clients use that to reason about calls to this code

– descriptions in terms of “obj”

• We also need to reason about ADT implementation

– for this, we do want to talk about fields

– fields are hidden from clients, but visible to implementers

44

Documenting ADT Impls: Abstraction Function

• We also need to document the ADT implementation

– for this, we need two new tools

 Abstraction Function
defines what abstract state the field values currently represent

• Maps the field values to the object they represent

– object is math, so this is a mathematical function

there is no such function in the code — just a tool for reasoning

– will usually write this as an equation

obj = … right-hand side uses the fields

45

Example Abstraction Function: FastLastList

class FastLastList implements FastList {

 // AF: obj = this.list

 last: bigint | undefined;

 list: List<bigint>;

 …

}

• Abstraction Function (AF) gives the abstract state

– obj = abstract state

– this = concrete state (record with fields .last and .list)

– AF relates abstract state to the current concrete state

okay that “last” is not involved here

– specifications only talk about “obj”, not “this”

“this” will appear in our reasoning

46

Documenting ADT Impls: Representation Invariant

• We also need to document the ADT implementation

– for this, we need two new tools

 Abstraction Function
defines what abstract state the field values currently represent

only needs to be defined when RI is true

 Representation Invariants (RI)
facts about the field values that should always be true

defines what field values are allowed

AF only needs to apply when RI is true

47

Example Representation Invariant: FastLastList

class FastLastList implements FastList {

 // RI: this.last = last(this.list)

 // AF: obj = this.list

 last: bigint | undefined;

 list: List<bigint>;

 …

}

• Representation Invariant (RI) holds info about this.last
– fields cannot have just any number and list of numbers

– they must fit together by satisfying RI

last must be the last number in the list stored

48

Correctness of FastList Constructor: RI

class FastLastList implements FastList {

 // RI: this.last = last(this.list)

 // AF: obj = this.list

 last: bigint | undefined;

 list: List<bigint>;

 constructor(L: List<bigint>) {

 this.list = L;

 this.last = last(this.list);

 }

 …

• Constructor must ensure that RI holds at end

– we can see that it does in this case

– since we don’t mutate, they will always be true

49

Correctness of FastList Constructor: AF

class FastLastList implements FastList {

 // RI: this.last = last(this.list)

 // AF: obj = this.list

 last: bigint | undefined;

 list: List<bigint>;

 // makes obj = L

 constructor(L: List<bigint>) {

 this.list = L;

 this.last = last(this.list);

 }

• Constructor must create the requested abstract state

– client wants obj to be the passed in list

– we can see that obj = this.list = L
50

Correctness of getLast (1/2)

class FastLastList implements FastList {

 // RI: this.last = last(this.list)

 // AF: obj = this.list

 …

 // @returns last(obj)

 getLast = (): bigint | undefined => {

 return this.last;

 };

}

• Use both RI and AF to check correctness

last(obj) =

51

Correctness of getLast (2/2)

class FastLastList implements FastList {

 // RI: this.last = last(this.list)

 // AF: obj = this.list

 …

 // @returns last(obj)

 getLast = (): bigint | undefined => {

 return this.last;

 };

}

• Use both RI and AF to check correctness

last(obj) = last(this.list) by AF

 = this.last by RI

52

Correctness of ADT implementation

• Check that the constructor…

– creates a concrete state satisfying RI

– creates the abstract state required by the spec

• Check the correctness of each method…

– check value returned is the one stated by the spec

– may need to use both RI and AF

53

Think, Pair, Share

class FastBackList implements FastList {

 // RI: ____________________

 // AF: ____________________

 original: List<bigint>;

 reversed: List<bigint>; // in reverse order

 …

• What should the RI and AF be?

– RI describes facts that need to be true about fields

– AF maps abstract (obj) to concrete state (fields)

54

sli.do #cse331

Think, Pair, Share

class FastBackList implements FastList {

 // RI: this.original = rev(this.reversed)

 // AF: obj = this.original

 original: List<bigint>;

 reversed: List<bigint>; // in reverse order

 …

55

Think, Pair, Share

class FastBackList implements FastList {

 // RI: this.original = rev(this.reversed)

 // AF: obj = this.original

 original: List<bigint>;

 reversed: List<bigint>; // in reverse order

 constructor(L: List<bigint>) {

 this.original = L;

 this.reversed = rev(L);

 }

 …

• Prove our constructor correct

– User wants L to be the list represented by this

FastBackList

– L = rev(rev(L)) (By induction, I promise!)
56

sli.do #cse331

Think, Pair, Share

class FastBackList implements FastList {

 // RI: this.original = rev(this.reversed)

 // AF: obj = this.original

 original: List<bigint>;

 reversed: List<bigint>; // in reverse order

 constructor(L: List<bigint>) {

 this.original = L;

 this.reversed = rev(L);

 }

 …

 rev(this.reversed) = rev(rev(L)) constructor

 = L because L = rev(rev(L))*

 = this.original constructor

 obj = this.original AF

 = L constructor

57*because I said so, also induction

ADTs: the Good and the Bad

• Provides data abstraction

– can change data structures without breaking clients

• Comes at a cost

– more work to specify and check correctness

• Not everything needs to be an ADT

– don’t be like Java and make everything a class

• Prefer concrete types for most things

– concrete types are easier to think about

– introduce ADTs when the first change occurs

58

Worked Example:

Immutable Queues

Immutable Queue Interface

• A queue is a list that can only be changed two ways:

– add elements to the front

– remove elements from the back

// List that only supports adding to the front and

// removing from the end

interface NumberQueue {

 // @returns len(obj)

 size(): bigint;

 // @returns [x] ++ obj

 enqueue(x: bigint): NumberQueue;

 // @requires len(obj) > 0

 // @returns (x, Q) with obj = Q ++ [x]

 dequeue(): [bigint, NumberQueue];

}

observer

producer

producer

60

Implementing a Queue with a List (“Easiest”)

// Implements a queue with a list.

class ListQueue implements NumberQueue {

 // AF: obj = this.items

 items: List<bigint>;

• Easiest implementation is concrete = abstract state

– just store the abstract state in a field

• Still requires extra work to check correctness…

– abstraction barrier comes with a cost

61

Implementing a Queue with a List: Size

// Implements a queue with a list.

class ListQueue implements NumberQueue {

 // AF: obj = this.items

 items: List<bigint>;

 // @returns len(obj)

 size = (): bigint => {

 return len(this.items);

 };

• Correctness of size:

 len(this.items) = len(obj) by AF

nothing is "straight from the spec" anymore

62

Implementing a Queue with a List: Constructor

// Implements a queue with a list.

class ListQueue implements NumberQueue {

 // AF: obj = this.items

 items: List<bigint>;

 // makes obj = items

 constructor(items: List<bigint>) {

 this.items = items;

 }

• Correctness of constructor:

items = this.items (from code)

 = obj AF

63

Implementing a Queue with a List: Enqueue

// Implements a queue with a list.

class ListQueue implements NumberQueue {

 // AF: obj = this.items

 items: List<bigint>;

 // @returns [x] ++ obj

 enqueue = (x: bigint): NumberQueue => {

 return new ListQueue(cons(x, this.items));

 };

• Correctness of enqueue:

return value = x :: this.items spec of constructor

 = x :: obj AF

 = [] ⧺ (x :: obj) def of concat

 = [x] ⧺ obj def of concat

64

Implementing a Queue with a List: Dequeue

// Implements a queue with a list.

class ListQueue implements NumberQueue {

 // AF: obj = this.items

 items: List<bigint>;

 // @requires len(obj) > 0

 // @returns (x, Q) with obj = Q ++ [x]

 dequeue = (): [bigint, NumberQueue] => {

 return [last(this.items),

 prefix(len(this.items) – 1n, this.items)];

 };

• Handwave: prefix(n, L) gives first n items of L

• Declarative spec, so more reasoning is required!

– also, slower than necessary (ϴ(n) dequeue)

– we’ll skip correctness here and do something faster in a moment...

65

Summary of ListQueue

• Simplest possible implementation of ADT

– abstract state = concrete state of one field

• Reasoning about every method is more complex

– must apply AF to relate return value to spec’s postcondition

code uses fields, but postcondition uses “obj”

– this is the cost of the abstraction barrier

66

Implementing a Queue with Two Lists

// Implements a queue using two lists.

class ListPairQueue implements NumberQueue {

 // AF: obj = this.front ++ rev(this.back)

 front: List<bigint>;

 back: List<bigint>; // in reverse order

• Back part stored in reverse order

– head of front is the first element

– head of back is the last element

1 2 nilthis.front =

4 3 nilthis.back =

1 2

4 3nil

obj =

67

Two-Queue List: Representation Invariant (1/2)

// Implements a queue using two lists.

class ListPairQueue implements NumberQueue {

 // AF: obj = this.front ++ rev(this.back)

 // RI: if this.back = nil, then this.front = nil

 front: List<bigint>;

 back: List<bigint>;

• Self-imposed RI: If back is nil, then the queue is empty

– if back = nil, then front = nil (by RI) and thus

 obj =

68

Two-Queue List: Representation Invariant (2/2)

// Implements a queue using two lists.

class ListPairQueue implements NumberQueue {

 // AF: obj = this.front ++ rev(this.back)

 // RI: if this.back = nil, then this.front = nil

 front: List<bigint>;

 back: List<bigint>;

• Self-imposed RI: If back is nil, then the queue is empty

– if back = nil, then front = nil (by RI) and thus

 obj = nil ⧺ rev(nil) by AF

 = rev(nil) def of concat

 = nil def of rev

– if the queue is not empty, then back is not nil

69

Two-Queue List: Constructor (for now)

// Implements a queue using two lists.

class ListPairQueue implements NumberQueue {

 // AF: obj = this.front ++ rev(this.back)

 // RI: if this.back = nil, then this.front = nil

 front: List<bigint>;

 back: List<bigint>;

 // makes obj = front ++ rev(back)

 constructor(front: List<bigint>, back: List<bigint>) {

 …

 }

• Will implement this later…

70

Two-Queue List: Size (1/2)

// AF: obj = this.front ++ rev(this.back)

front: List<bigint>;

back: List<bigint>;

// @returns len(obj)

size = (): bigint => {

 return len(this.front) + len(this.back);

};

• Correctness of size:

len(obj) =

71

Two-Queue List: Size (2/2)

// AF: obj = this.front ++ rev(this.back)

front: List<bigint>;

back: List<bigint>;

// @returns len(obj)

size = (): bigint => {

 return len(this.front) + len(this.back);

};

• Correctness of size:

len(obj) = len(this.front ⧺ rev(this.back)) by AF

 = len(this.front) + len(rev(this.back)) by earlier Ex.

 = len(this.front) + len(this.back) by another

 induction

72

Two-Queue List: Enqueue (1/2)

// AF: obj = this.front ++ rev(this.back)

front: List<bigint>;

back: List<bigint>;

// @returns [x] ++ obj

enqueue = (x: bigint): NumberQueue => {

 return new ListPairQueue(cons(x, this.front), this.back)

}

• Correctness of enqueue:

ret value =

73

Two-Queue List: Enqueue (2/2)

// AF: obj = this.front ++ rev(this.back)

front: List<bigint>;

back: List<bigint>;

// @returns [x] ++ obj

enqueue = (x: bigint): NumberQueue => {

 return new ListPairQueue(cons(x, this.front), this.back)

}

• Correctness of enqueue:

ret value = (x :: this.front) ⧺ rev(this.back) spec of constructor

 = x :: (this.front ⧺ rev(this.back)) def of concat

 = x :: obj AF

 = [] ⧺ (x :: obj) def of concat

 = [x] ⧺ obj def of concat

74

Two-Queue List: Dequeue (1/2)

// AF: obj = this.front ++ rev(this.back)

front: List<bigint>;

back: List<bigint>;

// @requires len(obj) > 0

// @returns (x, Q) with obj = Q ++ [x]

dequeue = (): [bigint, NumberQueue] => {

 return [this.back.hd,

 new ListPairQueue(this.front, this.back.tl)];

};

– as noted previously, precondition means this.back ≠ nil

– as we know, this means this.back = x :: L
where x = this.back.hd and some L = this.back.tl

– note that TypeScript would not allow this! why?

– TypeScript can’t read our preconditions :(

75

Two-Queue List: Dequeue (2/2)

// @requires len(obj) > 0

// @returns (x, Q) with obj = Q ++ [x]

dequeue = (): [bigint, NumberQueue] => {

 return [this.back.hd,

 new ListPairQueue(this.front, this.back.tl)];

};

– this.back = x :: L where x = this.back.hd and some L = this.back.tl

obj = this.front ⧺ rev(this.back) by AF

 = this.front ⧺ rev(x :: L) since back = x :: L

 = this.front ⧺ (rev(L) ⧺ [x]) def of rev

 = (this.front ⧺ rev(L)) ⧺ [x] (list assoc.)

 = (this.front ⧺ rev(L)) ⧺ [this.back.hd] since x = this.back.hd

 = (this.front ⧺ rev(this.back.tl)) ⧺ [this.back.hd] since L = this.back.tl

76

Two-Queue List: Constructor (1/3)

// AF: obj = this.front ++ rev(this.back)

// RI: if this.back = nil, then this.front = nil

front: List<bigint>;

back: List<bigint>;

// makes obj = front ++ rev(back)

constructor(front: List<bigint>, back: List<bigint>) {

 if (back.kind === "nil") {

 this.front = nil;

 this.back = rev(front);

 } else {

 this.front = front;

 this.back = back;

 }

}

• Need to check that RI holds at end of constructor

holds since this.back ≠ nil

holds since this.front = nil

77

RI: this.front = nil
or this.back ≠ nil

Two-Queue List: Constructor (2/3)

// AF: obj = this.front ++ rev(this.back)

// RI: if this.back = nil, then this.front = nil

front: List<bigint>;

back: List<bigint>;

// makes obj = front ++ rev(back)

constructor(front: List<bigint>, back: List<bigint>) {

 if (back.kind === "nil") {

 this.front = nil;

 this.back = rev(front);

 } else {

 this.front = front;

 this.back = back;

 }

}

• Need to check this creates correct abstract state

obj = front ⧺ rev(back)

obj = nil ⧺ rev(rev(front)) ??

78

Two-Queue List: Constructor (3/3)

// AF: obj = this.front ++ rev(this.back)

// RI: if this.back = nil, then this.front = nil

front: List<bigint>;

back: List<bigint>;

constructor(front: List<bigint>, back: List<bigint>) {

 if (back.kind === "nil") {

 this.front = nil;

 this.back = rev(front);

 } else {

 …

 }

}

obj = nil ⧺ rev(rev(front)) AF

 = nil ⧺ front because L = rev(rev(L))*

 = front def of concat
 = front ⧺ nil
 = front ⧺ rev(nil) def of rev
 = front ⧺ rev(back) since back = nil 79

	Default Section
	Slide 1: Abstraction
	Slide 2: Administrivia
	Slide 3: Calendar Updates/Reminders
	Slide 4: The Third Leg of the Class
	Slide 5: Procedural Abstraction
	Slide 6: Procedural Abstraction Example
	Slide 7: Other Properties of High-Quality Code
	Slide 8: Benefits of Specifications
	Slide 9: Abstraction Barrier
	Slide 10: Performance Improvements
	Slide 11: Last Element of a List
	Slide 12: Defining Fast-Last List
	Slide 13: Implementing Fast-Last List Helpers
	Slide 14: Another Fast List (1/2)
	Slide 15: Another Fast List (2/2)
	Slide 16: Another Fast List Gone Wrong
	Slide 17: Yet Another Fast List?
	Slide 18: Another Fast List — Take Three
	Slide 19: Fast List as an Interface
	Slide 20: Data Abstraction
	Slide 21: Data Abstraction & ADTs
	Slide 22: How to Make a FastList — Attempt One
	Slide 23: How to Make a FastList — As a Class (1/3)
	Slide 24: How to Make a FastList — As a Class (2/3)
	Slide 25: How to Make a FastList — As a Class (3/3)
	Slide 26: Another Way to Make a FastList
	Slide 27: How Do Clients Get a FastList
	Slide 28: More Convenient Cons (via Interface)
	Slide 29: Re-using the Empty List (as a “Singleton”)
	Slide 30: The 331 ADT Design Pattern
	Slide 31: Specifications for ADTs
	Slide 32: How to Specifications for ADTs?
	Slide 33: New ADT Terminology: States
	Slide 34: List State: Concrete vs Abstract
	Slide 35: New ADT Terminology: “object” (or “obj”)
	Slide 36: Specifying FastList & getLast with “obj”
	Slide 37: Specifying FastList & cons with “obj” (1/2)
	Slide 38: Specifying FastList & cons with “obj” (2/2)
	Slide 39: Specifying FastList & toList with “obj” (1/2)
	Slide 40: Specifying FastList & toList with “obj” (2/2)

	AFs & RIs
	Slide 42: (Internally) Documenting an ADT Implementation
	Slide 44: Recall: Abstract State
	Slide 45: Documenting ADT Impls: Abstraction Function
	Slide 46: Example Abstraction Function: FastLastList
	Slide 47: Documenting ADT Impls: Representation Invariant
	Slide 48: Example Representation Invariant: FastLastList
	Slide 49: Correctness of FastList Constructor: RI
	Slide 50: Correctness of FastList Constructor: AF
	Slide 51: Correctness of getLast (1/2)
	Slide 52: Correctness of getLast (2/2)
	Slide 53: Correctness of ADT implementation
	Slide 54: Think, Pair, Share
	Slide 55: Think, Pair, Share
	Slide 56: Think, Pair, Share
	Slide 57: Think, Pair, Share
	Slide 58: ADTs: the Good and the Bad

	Queue Example
	Slide 59: Worked Example: Immutable Queues
	Slide 60: Immutable Queue Interface
	Slide 61: Implementing a Queue with a List (“Easiest”)
	Slide 62: Implementing a Queue with a List: Size
	Slide 63: Implementing a Queue with a List: Constructor
	Slide 64: Implementing a Queue with a List: Enqueue
	Slide 65: Implementing a Queue with a List: Dequeue
	Slide 66: Summary of ListQueue
	Slide 67: Implementing a Queue with Two Lists
	Slide 68: Two-Queue List: Representation Invariant (1/2)
	Slide 69: Two-Queue List: Representation Invariant (2/2)
	Slide 70: Two-Queue List: Constructor (for now)
	Slide 71: Two-Queue List: Size (1/2)
	Slide 72: Two-Queue List: Size (2/2)
	Slide 73: Two-Queue List: Enqueue (1/2)
	Slide 74: Two-Queue List: Enqueue (2/2)
	Slide 75: Two-Queue List: Dequeue (1/2)
	Slide 76: Two-Queue List: Dequeue (2/2)
	Slide 77: Two-Queue List: Constructor (1/3)
	Slide 78: Two-Queue List: Constructor (2/3)
	Slide 79: Two-Queue List: Constructor (3/3)

