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Administrivia

• HW6 is out!

– 5 written, 2 coding questions

Written problems build in difficulty. 

– Start early!

• Katherine’s Mon OH now Hybrid
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Calendar Updates/Reminders

• Topic 7 & 8 switched

• Last HW (HW8)

– Due Wednesday (8/20), no usual 48-hour 

extension available

• Currently 3 weeks out from final exam

– mostly short answer & multiple choice 

– will release a practice exam & last section is 

review
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The Third Leg of the Class

• HW1–3: write more realistic applications

– saw how debugging gets harder

• HW4–6: write code correctly the first time

– checked correctness without a computer

• HW7–8: write more complex applications

– most applications have a core, tricky part

– use the correctness toolkit to get that right

– can work faster where debugging is easier

only way to really know the UI is right is to try it
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Procedural Abstraction

• Hide the details of the function from the caller

– caller only needs to read the specification

– (“procedure” means function)

• Caller promises to pass valid inputs

– no promises on invalid inputs

• Implementer then promises to return correct outputs

– does not matter how
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Procedural Abstraction Example

• Specification of peachCipher is imperative:

// @returns keep(L) ++ skip(L)

export const peachCipher = (L: List): List => {

  // helper, calculates keep & skip in same pass 

  return peachEncode(L, nil, nil);

};

– code implements a different function

– need to use reasoning to check that these two match

we proved, for all L by structural induction, that:

      concat(concat(k, keep(L)), concat(s, skip(L))) =  peach-cipher(L, k, s)
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Other Properties of High-Quality Code

• Professionals are expected to write high-quality code

• Correctness is the most important part of quality

– users hate products that do not work properly

• Also includes the following

– easy to change

– easy to understand

– modular

start with rev straight from the spec

later change it to a faster version

abstraction provides

all three properties
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Benefits of Specifications

Clear specifications help with understandability and

• Correctness

– reasoning requires clear definition of what the function does

• Changeability

– implementer is free to write any code that meets spec

– client can pass any inputs that satisfy requirements

• Modularity

– people can work on different parts once specs are agreed
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Abstraction Barrier

• Specification is an…

– specification is the “barrier” between the sides

– clients depend only on the spec

– implementer can write any code that satisfies the spec

Client
Function Call

Function
Implementation
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Performance Improvements

• Rarely, we see faster algorithms for operations

– Stay tuned for “tail recursion” topic!

• Most perf improvements change data structures

– different kind of abstraction barrier for data

• Let’s see an example…
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Last Element of a List

last(nil)   :=  undefined

 last(x :: nil)  :=  x 

 last(x :: y :: L)  := last(y :: L)

• Runs in ϴ(n) time

– walks down to the end of the list

– no faster way to do this on a list, algorithmically

• We could cache the last element

– new data type just dropped:

type FastLastList = {list: List, last: bigint | undefined}

empty list has undefined last

analogous idea:

store references to both

“front” and “back” nodes
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Defining Fast-Last List

type FastLastList = {list: List, last: bigint | undefined}

• How do we switch to this type?

– change every List into FastLastList

• Will still have functions that operate on List

– e.g., len, sum, concat, rev

• Suppose F is a FastLastList

– instead of calling rev(F), we have call rev(F.list)

– cleaner to introduce a helper function
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Implementing Fast-Last List Helpers

type FastLastList = {list: List, last: bigint | undefined}

const getLast = (F: FastLastList): bigint | undefined => {

  return F.last;

};

const toList = (F: FastLastList): List<bigint> => {

  return F.list;

};

• How do we switch to this type?

– change every List into FastLastList

– replace F with toList(F) where a List is expected
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Another Fast List (1/2)

• Suppose we often need the 2nd to last, 3rd to last, …

(back of the list). How can we make it faster?

– store the list in reverse order!

 rev(nil)   :=  nil

 rev(x :: L)  :=  rev(L) ⧺ (x :: nil)

  // @returns rev(L)

  const rev = (L: List< bigint>): List< bigint> => {

   if (L.kind === "nil") {

      return nil;

    } else {

    return concat(rev(L), cons(x, nil));

    }

  };
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Another Fast List (2/2)

– store the list in reverse order!

type FastBackList = List<bigint>;

const getLast = (F: FastBackList): bigint | undefined => {

  return (F.kind === "nil") ? undefined : F.hd;

};

const getSecondToLast = (F: FastBackList): bigint | undefined => {

  return (F.kind === "nil") ? undefined :

         (F.tl.kind === "nil") ? undefined : F.tl.hd;

};

const toList = (F: FastBackList): List<bigint> => {

  return rev(F);

};
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Another Fast List Gone Wrong

type FastBackList = List<bigint>;

const getLast = (F: FastBackList): bigint | undefined => {

  return (F.kind === "nil") ? undefined : F.hd;

};

const toList = (F: FastBackList): List<bigint> => {

  return rev(F);

};

• Problems with this solution…

– no type errors if someone forgets to call toList!

const F: FastBackList = …;

return concat(F, cons(1, nil));  // bad!
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Yet Another Fast List?

type FastBackList =

    {list: List<bigint>, origList: List<bigint>};

const getLast = (F: FastBackList): bigint | undefined => {

  return (F.list.kind === “nil”) ? undefined : F.list.hd;

};

const toList = (F: FastBackList): List<bigint> => {

  return F.origList;

};

• Still some problems…

– no type errors if someone grabs the field directly

const F: FastBackList = …;

return concat(F.list, cons(1, nil));  // bad!
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Another Fast List — Take Three

const F: FastBackList = …;

return concat(F.list, cons(1, nil));  // bad!

• Only way to completely stop this is to hide F.list

– do not give them the data, just the functions

type FastList = {

  getLast: () => bigint|undefined,

  toList: () => List<bigint>

};

– the only way to get the list is to call F.toList()

– seems weird… but we can make it look familiar
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Fast List as an Interface

interface FastList {

  getLast(): bigint|undefined;

  toList(): List<bigint>;

}

• In TypeScript, “interface” is synonym for “record type”

• You’ve seen this in Java

interface FastList {

  int getLast() throws EmptyList;

  List<Integer> toList();

}

– in 331, our interfaces will only include functions (methods)

Java interface is a record where 

field values are functions (methods)
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Data Abstraction & ADTs

• Give clients only operations, not data

– operations are “public”, data is “private”

• We call this an Abstract Data Type (ADT)

– invented by Barbara Liskov in the 1970s

– fundamental concept in computer science

built into Java, JavaScript, etc.

– data abstraction via procedural abstraction

• Critical for the properties we want

– easier to change data structure

– easier to understand (hides details)

– more modular
21
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How to Make a FastList — Attempt One

const makeFastList = (list: List<bigint>): FastList => {

  const last = last(list);

  return {

    getLast: () => { return last; },

   toList: () => { return list; }

 };

};

• Values in getLast and toList fields are functions 

• Note: getLast is not linear-time, but the constructor is!

• There is a cleaner way to do this

– will also look more familiar
22



How to Make a FastList — As a Class (1/3)

class FastLastList implements FastList {

  last: bigint | undefined;  // should be "readonly"

  list: List<bigint>;

  constructor(list: List<bigint>) {

    this.last = last(list);

    this.list = list;

  }

  getLast = () => { return this.last; };

  toList = () => { return this.list; };

}

• Can create a new record using “new”

– each record has fields list, last, getLast, toList

– bodies of functions use “this” to refer to the record
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How to Make a FastList — As a Class (2/3)

class FastLastList implements FastList {

  last: bigint | undefined;  // should be "readonly"

  list: List<bigint>;

  constructor(list: List<bigint>) {

    this.last = last(list);

    this.list = list;

  }

  getLast = () => { return this.last; };

  toList = () => { return this.list; };

}

• Can create a new record using “new”

– all four assignments are executed on each call to “new”

– getLast and toList are always the same functions
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How to Make a FastList — As a Class (3/3)

class FastLastList implements FastList {

  last: bigint | undefined;  // should be "readonly"

  list: List<bigint>;

  constructor(list: List<bigint>) {

    this.last = last(list);

    this.list = list;

  }

  getLast = () => { return this.last; };

  toList = () => { return this.list; };

}

• Implements the FastList interface

– i.e., it has the expected getLast and toList fields

– (okay for records to have more fields than required)
25



Another Way to Make a FastList

class FastBackList implements FastList {

  original: List<bigint>;

  reversed: List<bigint>;  // in reverse order

  constructor(list: List<bigint>) {

    this.original = list;

    this.reversed = rev(list);

  }

  getLast = () => {

    return (this.reversed.kind === "nil") ?

        undefined : this.reversed.hd;

  };

  toList = () => { return this.original; }

}
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How Do Clients Get a FastList

const makeFastList = (list: List<bigint>): FastList => {

  return new FastLastList(list);

};

• Export only FastList and makeFastList

– completely hides the data representation from clients

• This is called a “factory function”

– another design pattern

– can change implementations easily in the future

becomes FastBackList with a one-line change

• Difficult to add to the list with this interface

– requires three calls: toList, cons, makeFastList 27



More Convenient Cons (via Interface)

interface FastList {

  cons(x: bigint): FastList;

  getLast(): bigint | undefined;

  toList(): List<bigint>;

};

const makeFastList = (): FastList => {

  return new FastBackList(nil);

};

• New method cons returns list with x in front

– example of a “producer” method (others are “observers”)

produces a new list for you

– now, we only need to make an empty FastList

anything else can be built via cons
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Re-using the Empty List (as a “Singleton”)

interface FastList {

  cons(x: bigint): FastList;

  getLast(): bigint | undefined;

  toList(): List<bigint>;

};

const nilList: FastList = new FastBackList(nil);

const makeFastList = (): FastList => {

  return nilList;

};

• No need to create a new object using “new” every time

– can reuse the same instance

only possible since these are immutable!

– example of the “singleton” design pattern
29



The 331 ADT Design Pattern

We will use the following design pattern for ADTs:

• “interface” used for defining ADTs

– declares the methods available

• “class” used for implementing ADTs

– defines the fields and methods

– implements the ADT interface above

– not exported! (~ private)

• Factory function used to create instances

Stick to regular functions for rest of the code! 30



Specifications for ADTs



How to Specifications for ADTs?

• Run into problems when we try to write specs

– for example, what goes after @return?

don’t want to say returns the .list field (or reverse of that)

we want to hide those details from clients

interface FastList {

     /**

       * Returns the last element of the list.

       * @returns ??

       */

      getLast: () => bigint | undefined;

    };

• Need some terminology to clear up confusion
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New ADT Terminology: States

New terminology for specifying ADTs

 Concrete State / Representation
actual fields of the record and the data stored in them

Last example: {list: List, last: bigint | undefined}

 Abstract State / Representation
how clients should think about the object

Last example: List (i.e., nil or cons)

• We’ve had different abstract and concrete types all along!

– in our math, List is an inductive type (abstract)

– in our code, List is a record (concrete)
33



List State: Concrete vs Abstract

Inductive types also differ in abstract / concrete states:

 Concrete State / Representation
actual fields of the record and the data stored in them

Last example:  {kind:"nil"} | {kind:"cons", hd: bigint, tl: List}

 Abstract State / Representation
how clients should think about the object

Last example: List (i.e., nil or cons)

• Inductive types also use a design pattern to work in TypeScript

– details are different than ADTs (e.g., no interfaces)
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New ADT Terminology: “object” (or “obj”)

New terminology for specifying ADTs

 Concrete State / Representation
actual fields of the record and the data stored in them

Last example:  {kind:"nil"} | {kind:"cons", hd: bigint, tl: List}

 Abstract State / Representation
how clients should think about the object

Last example: List (i.e., nil or cons)

• Term “object” (or “obj”) will refer to abstract state

– “object” means mathematical object

– “obj” is the mathematical value that the record represents35



Specifying FastList & getLast with “obj”

/**

 * A list of integers that can retrieve the last

 * element in O(1) time.

 */

export interface FastList {

  /**

   * Returns the last element of the list (O(1) time).

   * @returns last(obj)

   */

  getLast(): bigint | undefined;

• “obj” refers to the abstract state (the list, in this case)

– actual state will be a record with fields last and list
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Specifying FastList & cons with “obj” (1/2)

/**

 * A list of integers that can retrieve the last

 * element in O(1) time.

 */

export interface FastList {

  …

  /**

   * Returns a new list with x in front of this list.

   * @returns cons(x, obj)

   */

  cons(x: bigint): FastList;

• Producer method: makes a new list for you

– “obj” above is a list, so cons(x, obj) makes sense in math
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Specifying FastList & cons with “obj” (2/2)

/**

 * A list of integers that can retrieve the last

 * element in O(1) time.

 */

export interface FastList {

  …

  /**

   * Returns a new list with x in front of this list.

   * @returns cons(x, obj)

   */

  cons(x: bigint): FastList;

• Specification does not talk about fields, just “obj”
– fields are hidden from clients
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Specifying FastList & toList with “obj” (1/2)

/**

 * A list of integers that can retrieve the last

 * element in O(1) time.

 */

export interface FastList {

  …

  /**

   * ??

   * @returns ??

   */

  toList(): List<bigint>;

• How do we specify this?
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Specifying FastList & toList with “obj” (2/2)

/**

 * A list of integers that can retrieve the last

 * element in O(1) time.

 */

export interface FastList {

  …

  /**

   * Returns the object as a regular list of items.

   * @returns obj

   */

  toList(): List<bigint>;

• In math, this function does nothing (“@returns obj”)

– two different concrete representations of the same idea

– details of the representations are hidden from clients
40



(Internally)

Documenting an

ADT Implementation



Recall: Abstract State

• Key idea of a public ADT spec is the “abstract state”

– simple definition of the object (easier to think about)

– clients use that to reason about calls to this code

– descriptions in terms of “obj”

• We also need to reason about ADT implementation

– for this, we do want to talk about fields

– fields are hidden from clients, but visible to implementers
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Documenting ADT Impls: Abstraction Function

• We also need to document the ADT implementation

– for this, we need two new tools

 Abstraction Function
defines what abstract state the field values currently represent

• Maps the field values to the object they represent

– object is math, so this is a mathematical function

there is no such function in the code — just a tool for reasoning

– will usually write this as an equation

obj = …  right-hand side uses the fields
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Example Abstraction Function: FastLastList

class FastLastList implements FastList {

  // AF: obj = this.list

  last: bigint | undefined;

  list: List<bigint>;

  …

}

• Abstraction Function (AF) gives the abstract state

– obj = abstract state

– this = concrete state (record with fields .last and .list)

– AF relates abstract state to the current concrete state

okay that “last” is not involved here

– specifications only talk about “obj”, not “this”

“this” will appear in our reasoning
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Documenting ADT Impls: Representation Invariant

• We also need to document the ADT implementation

– for this, we need two new tools

 Abstraction Function
defines what abstract state the field values currently represent

only needs to be defined when RI is true

 Representation Invariants (RI)
facts about the field values that should always be true

defines what field values are allowed

AF only needs to apply when RI is true
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Example Representation Invariant: FastLastList

class FastLastList implements FastList {

  // RI: this.last = last(this.list)

  // AF: obj = this.list

  last: bigint | undefined;

  list: List<bigint>;

  …

}

• Representation Invariant (RI) holds info about this.last
– fields cannot have just any number and list of numbers

– they must fit together by satisfying RI

last must be the last number in the list stored
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Correctness of FastList Constructor: RI

class FastLastList implements FastList {

  // RI: this.last = last(this.list)

  // AF: obj = this.list

  last: bigint | undefined;

  list: List<bigint>;

  constructor(L: List<bigint>) {

    this.list = L;

    this.last = last(this.list);

  }

  …

• Constructor must ensure that RI holds at end

– we can see that it does in this case

– since we don’t mutate, they will always be true
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Correctness of FastList Constructor: AF

class FastLastList implements FastList {

  // RI: this.last = last(this.list)

  // AF: obj = this.list

  last: bigint | undefined;

  list: List<bigint>;

  // makes obj = L

  constructor(L: List<bigint>) {

    this.list = L;

    this.last = last(this.list);

  }

• Constructor must create the requested abstract state

– client wants obj to be the passed in list

– we can see that obj = this.list = L
50



Correctness of getLast (1/2)

class FastLastList implements FastList {

  // RI: this.last = last(this.list)

  // AF: obj = this.list

  …

  // @returns last(obj)

  getLast = (): bigint | undefined => {

    return this.last;

  };

}

• Use both RI and AF to check correctness

last(obj) =
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Correctness of getLast (2/2)

class FastLastList implements FastList {

  // RI: this.last = last(this.list)

  // AF: obj = this.list

  …

  // @returns last(obj)

  getLast = (): bigint | undefined => {

    return this.last;

  };

}

• Use both RI and AF to check correctness

last(obj)  = last(this.list)    by AF

   = this.last     by RI
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Correctness of ADT implementation

• Check that the constructor…

– creates a concrete state satisfying RI

– creates the abstract state required by the spec

• Check the correctness of each method…

– check value returned is the one stated by the spec

– may need to use both RI and AF

53



Think, Pair, Share

class FastBackList implements FastList {

  // RI: ____________________

  // AF: ____________________

  original: List<bigint>;

   reversed: List<bigint>;  // in reverse order

 …

• What should the RI and AF be?

– RI describes facts that need to be true about fields

– AF maps abstract (obj) to concrete state (fields)

54
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Think, Pair, Share

class FastBackList implements FastList {

  // RI: this.original = rev(this.reversed)

  // AF: obj = this.original

  original: List<bigint>;

   reversed: List<bigint>;  // in reverse order

 …
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Think, Pair, Share

class FastBackList implements FastList {

  // RI: this.original = rev(this.reversed)

  // AF: obj = this.original

  original: List<bigint>;

   reversed: List<bigint>;  // in reverse order

  constructor(L: List<bigint>) {

   this.original = L;

   this.reversed = rev(L);

  }

 …

• Prove our constructor correct

– User wants L to be the list represented by this 

FastBackList

– L = rev(rev(L)) (By induction, I promise!)
56
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Think, Pair, Share

class FastBackList implements FastList {

  // RI: this.original = rev(this.reversed)

  // AF: obj = this.original

  original: List<bigint>;

   reversed: List<bigint>;  // in reverse order

  constructor(L: List<bigint>) {

   this.original = L;

   this.reversed = rev(L);

  }

 …

  rev(this.reversed) = rev(rev(L))  constructor

            = L    because L = rev(rev(L))*

            = this.original  constructor      

      

 obj = this.original  AF

        = L    constructor

 

57*because I said so, also induction



ADTs: the Good and the Bad

• Provides data abstraction

– can change data structures without breaking clients

• Comes at a cost

– more work to specify and check correctness

• Not everything needs to be an ADT

– don’t be like Java and make everything a class

• Prefer concrete types for most things

– concrete types are easier to think about

– introduce ADTs when the first change occurs

58



Worked Example:

Immutable Queues



Immutable Queue Interface

• A queue is a list that can only be changed two ways:

– add elements to the front

– remove elements from the back

// List that only supports adding to the front and

// removing from the end

interface NumberQueue {

  // @returns len(obj)

  size(): bigint;

  // @returns [x] ++ obj

  enqueue(x: bigint): NumberQueue;

  // @requires len(obj) > 0

  // @returns (x, Q) with obj = Q ++ [x]

  dequeue(): [bigint, NumberQueue];

}

observer

producer

producer
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Implementing a Queue with a List (“Easiest”)

// Implements a queue with a list.

class ListQueue implements NumberQueue {

  // AF: obj = this.items

  items: List<bigint>;

• Easiest implementation is concrete = abstract state

– just store the abstract state in a field

• Still requires extra work to check correctness…

– abstraction barrier comes with a cost
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Implementing a Queue with a List: Size

// Implements a queue with a list.

class ListQueue implements NumberQueue {

  // AF: obj = this.items

  items: List<bigint>;

  // @returns len(obj)

  size = (): bigint => {

    return len(this.items);

  };

• Correctness of size:

 len(this.items) = len(obj)    by AF

nothing is "straight from the spec" anymore
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Implementing a Queue with a List: Constructor

// Implements a queue with a list.

class ListQueue implements NumberQueue {

  // AF: obj = this.items

  items: List<bigint>;

  // makes obj = items

  constructor(items: List<bigint>) {

    this.items = items;

  }

• Correctness of constructor:

items = this.items     (from code)

  = obj      AF
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Implementing a Queue with a List: Enqueue

// Implements a queue with a list.

class ListQueue implements NumberQueue {

  // AF: obj = this.items

  items: List<bigint>;

  // @returns [x] ++ obj

  enqueue = (x: bigint): NumberQueue => {

    return new ListQueue(cons(x, this.items));

  };

• Correctness of enqueue:

return value = x :: this.items    spec of constructor

   = x :: obj      AF

   = [] ⧺ (x :: obj)    def of concat

   = [x] ⧺ obj     def of concat
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Implementing a Queue with a List: Dequeue

// Implements a queue with a list.

class ListQueue implements NumberQueue {

  // AF: obj = this.items

  items: List<bigint>;

  // @requires len(obj) > 0

  // @returns (x, Q) with obj = Q ++ [x]

  dequeue = (): [bigint, NumberQueue] => {

 return [last(this.items),

            prefix(len(this.items) – 1n, this.items)];

  };

• Handwave: prefix(n, L) gives first n items of L

• Declarative spec, so more reasoning is required!

– also, slower than necessary (ϴ(n) dequeue)

– we’ll skip correctness here and do something faster in a moment...
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Summary of ListQueue

• Simplest possible implementation of ADT

– abstract state = concrete state of one field

• Reasoning about every method is more complex

– must apply AF to relate return value to spec’s postcondition

code uses fields, but postcondition uses “obj”

– this is the cost of the abstraction barrier
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Implementing a Queue with Two Lists

// Implements a queue using two lists.

class ListPairQueue implements NumberQueue {

  // AF: obj = this.front ++ rev(this.back)

  front: List<bigint>;

  back: List<bigint>;   // in reverse order

• Back part stored in reverse order

– head of front is the first element

– head of back is the last element

1 2 nilthis.front =

4 3 nilthis.back =

1 2

4 3nil

obj =
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Two-Queue List: Representation Invariant (1/2)

// Implements a queue using two lists.

class ListPairQueue implements NumberQueue {

  // AF: obj = this.front ++ rev(this.back)

  // RI: if this.back = nil, then this.front = nil

  front: List<bigint>;

  back: List<bigint>;

• Self-imposed RI: If back is nil, then the queue is empty

– if back = nil, then front = nil (by RI) and thus

 obj =
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Two-Queue List: Representation Invariant (2/2)

// Implements a queue using two lists.

class ListPairQueue implements NumberQueue {

  // AF: obj = this.front ++ rev(this.back)

  // RI: if this.back = nil, then this.front = nil

  front: List<bigint>;

  back: List<bigint>;

• Self-imposed RI: If back is nil, then the queue is empty

– if back = nil, then front = nil (by RI) and thus

 obj = nil ⧺ rev(nil)     by AF

  = rev(nil)      def of concat

  = nil       def of rev

– if the queue is not empty, then back is not nil
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Two-Queue List: Constructor (for now)

// Implements a queue using two lists.

class ListPairQueue implements NumberQueue {

  // AF: obj = this.front ++ rev(this.back)

  // RI: if this.back = nil, then this.front = nil

  front: List<bigint>;

  back: List<bigint>;

  // makes obj = front ++ rev(back)

  constructor(front: List<bigint>, back: List<bigint>) {

    …

  }

• Will implement this later…
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Two-Queue List: Size (1/2)

// AF: obj = this.front ++ rev(this.back)

front: List<bigint>;

back: List<bigint>;

// @returns len(obj)

size = (): bigint => {

  return len(this.front) + len(this.back);

};

• Correctness of size:

len(obj) =
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Two-Queue List: Size (2/2)

// AF: obj = this.front ++ rev(this.back)

front: List<bigint>;

back: List<bigint>;

// @returns len(obj)

size = (): bigint => {

  return len(this.front) + len(this.back);

};

• Correctness of size:

len(obj) = len(this.front ⧺ rev(this.back))   by AF

  = len(this.front) + len(rev(this.back))  by earlier Ex.

  = len(this.front) + len(this.back)   by another

                 induction
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Two-Queue List: Enqueue (1/2)

// AF: obj = this.front ++ rev(this.back)

front: List<bigint>;

back: List<bigint>;

// @returns [x] ++ obj

enqueue = (x: bigint): NumberQueue => {

  return new ListPairQueue(cons(x, this.front), this.back)

}

• Correctness of enqueue:

ret value =
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Two-Queue List: Enqueue (2/2)

// AF: obj = this.front ++ rev(this.back)

front: List<bigint>;

back: List<bigint>;

// @returns [x] ++ obj

enqueue = (x: bigint): NumberQueue => {

  return new ListPairQueue(cons(x, this.front), this.back)

}

• Correctness of enqueue:

ret value = (x :: this.front) ⧺ rev(this.back)  spec of constructor

   = x :: (this.front ⧺ rev(this.back))  def of concat

  = x :: obj        AF

  = [] ⧺ (x :: obj)      def of concat

  = [x] ⧺ obj       def of concat
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Two-Queue List: Dequeue (1/2)

// AF: obj = this.front ++ rev(this.back)

front: List<bigint>;

back: List<bigint>;

// @requires len(obj) > 0

// @returns (x, Q) with obj = Q ++ [x]

dequeue = (): [bigint, NumberQueue] => {

  return [this.back.hd,

          new ListPairQueue(this.front, this.back.tl)];

};

– as noted previously, precondition means this.back ≠ nil

– as we know, this means this.back = x :: L
where x = this.back.hd and some L = this.back.tl

– note that TypeScript would not allow this! why?

– TypeScript can’t read our preconditions :(
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Two-Queue List: Dequeue (2/2)

// @requires len(obj) > 0

// @returns (x, Q) with obj = Q ++ [x]

dequeue = (): [bigint, NumberQueue] => {

  return [this.back.hd,

          new ListPairQueue(this.front, this.back.tl)];

};

– this.back = x :: L where x = this.back.hd and some L = this.back.tl

obj = this.front ⧺ rev(this.back)     by AF

 = this.front ⧺ rev(x :: L)      since back = x :: L

 = this.front ⧺ (rev(L) ⧺ [x])     def of rev

 = (this.front ⧺ rev(L)) ⧺ [x]     (list assoc.)

 = (this.front ⧺ rev(L)) ⧺ [this.back.hd]   since x = this.back.hd

 = (this.front ⧺ rev(this.back.tl)) ⧺ [this.back.hd]  since L = this.back.tl
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Two-Queue List: Constructor (1/3)

// AF: obj = this.front ++ rev(this.back)

// RI: if this.back = nil, then this.front = nil

front: List<bigint>;

back: List<bigint>;

// makes obj = front ++ rev(back)

constructor(front: List<bigint>, back: List<bigint>) {

  if (back.kind === "nil") {

    this.front = nil;

    this.back = rev(front);

  } else {

    this.front = front;

    this.back = back;

  }

}

• Need to check that RI holds at end of constructor

holds since this.back ≠ nil

holds since this.front = nil
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Two-Queue List: Constructor (2/3)

// AF: obj = this.front ++ rev(this.back)

// RI: if this.back = nil, then this.front = nil

front: List<bigint>;

back: List<bigint>;

// makes obj = front ++ rev(back)

constructor(front: List<bigint>, back: List<bigint>) {

  if (back.kind === "nil") {

    this.front = nil;

    this.back = rev(front);

  } else {

    this.front = front;

    this.back = back;

  }

}

• Need to check this creates correct abstract state

obj = front ⧺ rev(back)

obj = nil ⧺ rev(rev(front))  ??
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Two-Queue List: Constructor (3/3)

// AF: obj = this.front ++ rev(this.back)

// RI: if this.back = nil, then this.front = nil

front: List<bigint>;

back: List<bigint>;

constructor(front: List<bigint>, back: List<bigint>) {

  if (back.kind === "nil") {

    this.front = nil;

    this.back = rev(front);

  } else {

    …

  }

}

obj = nil ⧺ rev(rev(front))     AF

 = nil ⧺ front       because L = rev(rev(L))*

 = front        def of concat
 = front ⧺ nil       
 = front ⧺ rev(nil)      def of rev
 = front ⧺ rev(back)     since back = nil 79
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