
Floyd Logic I

Jaela Field

CSE 331 Summer 2025

Administrivia

• HW5 is out!

– Start early!

– 8 Tasks of varying length

~ 1/2 a day is a good goal!

• HW4 due yesterday

– Let me know ASAP if you don’t think you’ll be

able to get it in by Saturday late deadline

• Remember to look at Gradescope feedback!

2

Wrap up: Structural Induction in General

• General case: assume P holds for constructor arguments

type T := A | B(x : ℤ) | C(y : ℤ , t : T) | D(z : ℤ , u : T, v : T)

• To prove P(t) for any t, we need to prove:

– P(A)

– P(B(x)) for any x : ℤ

– P(C(y, t)) for any y : ℤ and t : T assuming P(t) is true

– P(D(z, u, v)) for any z : ℤ and u, v : T assuming P(u) and P(v)

• These four facts are enough to prove P(t) for any t

– for each constructor, have proof that it produces an object

satisfying P

– generally, each inductive type has its own form of induction
3

Induction Wrap up: Defining Cases

• Case in inductive data type = case in structural

inductive proof

– “Smallest” form of data type = Base case in proof

– Recursive case in data type = Inductive step in proof

• To prove P(t) for any t of type T:

– We have 2 base cases

type T := A | B(x : ℤ) | C(y : ℤ , t : T) | D(z : ℤ , u : T, v : T)

– and 2 recursive cases

type T := A | B(x : ℤ) | C(y : ℤ , t : T) | D(z : ℤ , u : T, v : T)

– Inductive proof will cover base cases in base case and

recursive cases cases in inductive step

4

Induction Wrap up: Defining Cases

• If math def defines a case for recursive form of

with a fixed size, that is still part of inductive step!

– Example, from last lecture:

 allEqual(nil) := true

 allEqual(x :: nil) := true

 allEqual(x :: y :: L) := x = y and allEqual(y :: L)

x :: nil uses recursive constructor of a List, so it should be part of the
inductive step:

 Base Case (nil): allEqual(nil) = true def of allEqual

 Inductive Step (x :: S):

 Case (S = nil): allEqual(x:: nil) = true def of allEqual

 Case (S = y :: L): …

5

we don’t use the IH in

every case. That’s okay!

Reasoning So Far

• Code so far made up of three elements

– straight-line code

– conditionals

– recursion

• All code without mutation looks like this

6

Recall: Finding Facts at a Return Statement

• Consider this code

// Inputs a and b must be integers.

// Returns a non-negative integer.

const f = (a: bigint, b: bigint): bigint => {

 if (a >= 0n && b >= 0n) {

 const L: List = cons(a, cons(b, nil));

 return sum(L);

 }

 …

• Known facts include “a ≥ 0”, “b ≥ 0”, and “L = cons(…)”

• Prove that postcondition holds: “sum(L) ≥ 0”

find facts by reading along path

from top to return statement

7

Finding Facts at Returns, with Mutation

• Consider this code

// Inputs a and b must be integers.

// Returns a non-negative integer.

const f = (a: bigint, b: bigint): bigint => {

 if (a >= 0n && b >= 0n) {

 a = a – 1n;

 const L: List = cons(a, cons(b, nil));

 return sum(L);

 }

 …

• Facts no longer hold throughout the function

• When we state a fact, we have to say where it holds

a ≥ 0

No!a ≥ 0?

8

Correctness Levels

Description Testing Tools Reasoning

no mutation coverage type checking calculation
induction

local variable mutation “” “” Floyd logic

array mutation “” “” for-any facts

heap state mutation “” “” rep invariants

9

Notation: Facts at a Point in Time

// Inputs a and b must be integers.

// Returns a non-negative integer.

const f = (a: bigint, b: bigint): bigint => {

 if (a >= 0n && b >= 0n) {

 {{ a ≥ 0 }}

 a = a – 1n;

 {{ a ≥ –1 }}

 const L: List = cons(a, cons(b, nil));

 return sum(L);

 }

• When we state a fact, we have to say where it holds

• {{ .. }} notation indicates facts true at that point

– cannot assume those are true anywhere else
10

Forwards & Backwards Reasoning, Informally

// Inputs a and b must be integers.

// Returns a non-negative integer.

const f = (a: bigint, b: bigint): bigint => {

 if (a >= 0n && b >= 0n) {

 {{ a ≥ 0 }}

 a = a – 1n;

 {{ a ≥ –1 }}

 const L: List = cons(a, cons(b, nil));

 return sum(L);

 }

• There are mechanical tools for moving facts around

– “forward reasoning” says how they change as we move down

– “backward reasoning” says how they change as we move up

11

Reasoning and Programming

// Inputs a and b must be integers.

// Returns a non-negative integer.

const f = (a: bigint, b: bigint): bigint => {

 if (a >= 0n && b >= 0n) {

 {{ a ≥ 0 }}

 a = a – 1n;

 {{ a ≥ –1 }}

 const L: List = cons(a, cons(b, nil));

 return sum(L);

 }

• Professionals are absurdly good at forward reasoning

– “programmers are the Olympic athletes of forward reasoning”

– you’ll have an edge by learning backward reasoning too

12

Floyd Logic

History of Floyd Logic

• Invented by Robert Floyd and Sir Anthony Hoare

– Floyd won the Turing award in 1978

– Hoare won the Turing award in 1980

picture from Wikipedia

Tony HoareRobert Floyd

14

picture from Wikipedia

https://en.wikipedia.org/wiki/Robert_W._Floyd
https://en.wikipedia.org/wiki/Tony_Hoare

Floyd Logic Terminology

• The program state is the values of the variables

• An assertion (in {{ .. }}) is a T/F claim about the state

– an assertion “holds” if the claim is true

– assertions are math not code

(we do our reasoning in math)

• Most important assertions:

– precondition: claim about the state when the function starts

– postcondition: claim about the state when the function ends

15

Hoare Triples

• A Hoare triple has two assertions and some code

 {{ P }}

 S

 {{ Q }}

– P is the precondition, Q is the postcondition

– S is the code

• Triple is “valid” if the code is correct:

– S takes any state satisfying P into a state satisfying Q
does not matter what the code does if P does not hold initially

– otherwise, the triple is invalid

16

Correctness with Mutation Example (Setup)

/**

 * @param n an integer with n >= 1

 * @returns an integer m with m >= 10

 */

const f = (n: bigint): bigint => {

 n = n + 3n;

 return n * n;

};

• Check that value returned, m = n2, satisfies m ≥ 10

17

Correctness with Mutation Example (Triples)

/**

 * @param n an integer with n >= 1

 * @returns an integer m with m >= 10

 */

const f = (n: bigint): bigint => {

 {{ n ≥ 1 }}

 n = n + 3n;

 {{ n2 ≥ 10 }}

 return n * n;

};

• Precondition and postcondition come from spec

• Remains to check that the triple is valid

18

Hoare Triples with No Code

• Code could be empty:

 {{ P }}

 {{ Q }}

• When is such a triple valid?

– valid iff P implies Q

– we already know how to check validity in this case:

prove each fact in Q by calculation, using facts from P

19

Hoare Triples with No Code: Example

• Code could be empty:

 {{ a ≥ 0, b ≥ 0, L = cons(a, cons(b, nil)) }}

 {{ sum(L) ≥ 0 }}

• Check that P implies Q by calculation

sum(L) = sum(cons(a, cons(b, nil))) since L = …

 = a + sum(cons(b, nil)) def of sum

 = a + b + sum(nil) def of sum

 = a + b def of sum

 ≥ 0 + b since a ≥ 0

 ≥ 0 + 0 since b ≥ 0

 = 0
20

Hoare Triples with Multiple Lines of Code

• Code with multiple lines:

 {{ P }}

 S

 T

 {{ Q }}

• Valid iff there exists an R making both triples valid

– i.e., {{ P }} S {{ R }} is valid and {{ R }} T {{ Q }} is valid

• Will see next how to put these to good use…

{{ P }}
 S
{{ R }}
 T
{{ Q }}

21

Stronger Assertions vs Specifications

• Assertion is stronger iff it holds in a subset of states

• Stronger assertion implies the weaker one

– stronger is a synonym for “implies”

– weaker is a synonym for “is implied by”

Q2Q1

22

Weakest & Strongest Assertions

• Assertion is stronger iff it holds in a subset of states

• Weakest possible assertion is “true” (all states)

– an empty assertion (“”) also means “true”

• Strongest possible assertion is “false” (no states!)

Q2Q1

23

Defining Forward & Backward Reasoning

• Forward / backward reasoning fill in assertions

– mechanically create valid triples

• Forward reasoning fills in postcondition

 {{ P }} S {{ ___ }}

– gives strongest postcondition making the triple valid

• Backward reasoning fills in precondition

 {{ ___ }} S {{ Q }}

– gives weakest precondition making the triple valid

24

Correctness via Forward Reasoning

• Apply forward reasoning

{{ P }} {{ P }}

 S S

{{ Q }} {{ R }}

 {{ Q }}

– first triple is always valid

– only need to check second triple

just requires proving an implication (since no code is present)

• If second triple is invalid, the code is incorrect

– true because R is the strongest assertion possible here

2

1

25

Correctness via Backward Reasoning

• Apply backward reasoning

{{ P }} {{ P }}

 S {{ R }}

{{ Q }} S

 {{ Q }}

– second triple is always valid

– only need to check first triple

just requires proving an implication (since no code is present)

• If first triple is invalid, the code is incorrect

– true because R is the weakest assertion possible here

1

2

26

Using Mechanical Reasoning Tools

• Forward / backward reasoning fill in assertions

– mechanically create valid triples

• Reduce correctness to proving implications

– this was already true for functional code

– will soon have the same for imperative code

• Implication will be false if the code is incorrect

– reasoning can verify correct code

– reasoning will never accept incorrect code

27

Correctness via Forward & Backward Reasoning

• Can use both types of reasoning on longer code

 {{ P }}

 S

 {{ R1 }}

 {{ R2 }}

 T

 {{ Q }}

– first and third triples is always valid

– only need to check second triple

verify that R1 implies R2

3

1

2

28

Forward & Backward

Reasoning

Forward and Backward Reasoning in Practice

• Imperative code made up of

– assignments (mutation)

– conditionals

– loops

• Anything can be rewritten with just these

• We will learn forward / backward rules to handle them

– will also learn a rule for function calls

– once we have those, we are done

30

Ex: Forward Reasoning with Assignments (1/6)

{{ w > 0 }}

 x = 17n;

{{ _______________________ }}

 y = 42n;

{{ _______________________ }}

 z = w + x + y;

{{ _______________________ }}

• What do we know is true after x = 17 ?

– want the strongest postcondition (most precise)

31

Ex: Forward Reasoning with Assignments (2/6)

{{ w > 0 }}

 x = 17n;

{{ w > 0 and x = 17 }}

 y = 42n;

{{ _______________________ }}

 z = w + x + y;

{{ _______________________ }}

• What do we know is true after x = 17 ?

– w was not changed, so w > 0 is still true

– x is now 17

• What do we know is true after y = 42 ?
32

Ex: Forward Reasoning with Assignments (3/6)

{{ w > 0 }}

 x = 17n;

{{ w > 0 and x = 17 }}

 y = 42n;

{{ w > 0 and x = 17 and y = 42 }}

 z = w + x + y;

{{ _______________________ }}

• What do we know is true after y = 42 ?

– w and x were not changed, so previous facts still true

– y is now 42

• What do we know is true after z = w + x + y ?
33

Ex: Forward Reasoning with Assignments (4/6)

{{ w > 0 }}

 x = 17n;

{{ w > 0 and x = 17 }}

 y = 42n;

{{ w > 0 and x = 17 and y = 42 }}

 z = w + x + y;

{{ w > 0 and x = 17 and y = 42 and z = w + x + y }}

• What do we know is true after z = w + x + y ?

– w, x, and y were not changed, so previous facts still true

– z is now w + x + y

• Could also write z = w + 59 (since x = 17 and y = 42)
34

Ex: Forward Reasoning with Assignments (5/6)

{{ w > 0 }}

 x = 17n;

{{ w > 0 and x = 17 }}

 y = 42n;

{{ w > 0 and x = 17 and y = 42 }}

 z = w + x + y;

{{ w > 0 and x = 17 and y = 42 and z = w + x + y }}

• Could write z = w + 59, but do not write z > 59 !

– that is true since w > 0, but…

35

Ex: Forward Reasoning with Assignments (6/6)

• Could write z = w + 59, but do not write z > 59 !

– that is true since w > 0, but…

w

z 60

z > 59 and w > 0

z = w + 59 and w > 0

36

Picking the Strongest Postcondition

{{ w > 0 }}

 x = 17n;

{{ w > 0 and x = 17 }}

 y = 42n;

{{ w > 0 and x = 17 and y = 42 }}

 z = w + x + y;

{{w > 0 and x = 17 and y = 42 and z = w + x + y }}

• Could write z = w + 59, but do not write z > 59 !

– that is true since w > 0, but…

– that is not the strongest postcondition

correctness check could now fail even if the code is right

37

Forward Reasoning with Code (1/4)

// @param w an integer > 0

// @returns an integer z > 59

const f = (w: bigint): bigint => {

 const x = 17n;

 const y = 42n;

 const z = w + x + y;

 return z;

};

• Let’s check correctness using Floyd logic…

38

Forward Reasoning with Code (2/4)

// @param w an integer > 0

// @returns an integer z > 59

const f = (w: bigint): bigint => {

 {{ w > 0 }}

 const x = 17n;

 const y = 42n;

 const z = w + x + y;

 {{ z > 59 }}

 return z;

};

• Reason forward…

39

Forward Reasoning with Code (3/4)

// @param w an integer > 0

// @returns an integer z > 59

const f = (w: bigint): bigint => {

 {{ w > 0 }}

 const x = 17n;

 const y = 42n;

 const z = w + x + y;

 {{ w > 0 and x = 17 and y = 42 and z = w + x + y }}

 {{ z > 59 }}

 return z;

};

• Check implication: z = w + x + y
 = w + 17 + y since x = 17
 = w + 59 since y = 42
 > 59 since w > 0

40

Forward Reasoning with Code (4/4)

// @param w an integer > 0

// @returns an integer z > 59

const f = (w: bigint): bigint => {

 const x = 17n;

 const y = 42n;

 const z = w + x + y;

 return z;

};

• How about if we use our old approach?

• Known facts: w > 0, x = 17, y = 42, and z = w + x + y

• Prove that postcondition holds: z > 59

find facts by reading along path

from top to return statement

41

Finding Facts at Returns is Forward Reasoning

// @param w an integer > 0

// @returns an integer z > 59

const f = (w: bigint): bigint => {

 const x = 17n;

 const y = 42n;

 const z = w + x + y;

 return z;

};

• We’ve been doing forward reasoning already!

– forward reasoning is (only) “and” with no mutation

• Line-by-line facts are for “let” (not “const”)

42

Forward Reasoning with Mutation (1/2)

• Forward reasoning is trickier with mutation

– gets harder if we mutate a variable

 w = x + y;

{{ w = x + y }}

 x = 4n;

{{ w = x + y and x = 4 }}

 y = 3n;

{{ w = x + y and x = 4 and y = 3 }}

• Final assertion is not necessarily true

– w = x + y is true with their old values, not the new ones

– changing the value of “x” can invalidate facts about x
facts refer to the old value, not the new value

– avoid this by using different names for old and new values
43

Notation: Subscripts for Variables Across Time

• Can use subscripts to refer to values at different times

… (x: bigint) => …

 … x0

 x = …

 … x1

 x = …

 … x2

 x = …

 … x3

 x = …

 … x4

x = x0

x = x1

x = x2

x = x3

x = x4

"x" means current value

44

Forward Reasoning with Mutation (2/2)

• Rewrite existing facts to use names of earlier values

– will use “x” and “y” to refer to current values

– can use “x0” and “y0” (or other subscripts) for earlier values

{{ w = x + y }}

 x = 4n;

{{ w = x0 + y and x = 4 }}

 y = 3n;

{{ w = x0 + y0 and x = 4 and y = 3 }}

• Final assertion is now accurate

– w is equal to the sum of the initial values of x and y

45

Generalized Forward Reasoning Rule

• For assignments, general forward reasoning rule is

{{ P }}

 x = y;

{{ P[x ↦ xk] and x = y[x ↦ xk] }}

– replace all “x”s in P and y with “xk”s

• This process can be simplified in many cases

– no need for x0 if we can write it in terms of new value

– e.g., if “x = x0 + 1”, then “x0 = x – 1”

– assertions will be easier to read without old values

(Technically, this is weakening, but it’s usually fine

 Postconditions usually do not refer to old values of variables.)

46

Example of “Shortcut” for Invertible Operations

• For assignments, general forward reasoning rule is

{{ P }}

 x = y;

{{ P[x ↦ xk] and x = y[x ↦ xk] }} xk is name of previous value

• If x0 = f(x), then we can simplify this to

{{ P }}

 x = … x …;

{{ P[x ↦ f(x)] }} no need for, e.g., “and x = x0 + 1”

– if assignment is “x = x0 + 1”, then “x0 = x – 1”

– if assignment is “x = 2x0”, then “x0 = x/2”

– does not work for integer division (an un-invertible operation)
47

Revisiting Correctness with Forward Reasoning

/**

 * @param n an integer with n >= 1

 * @returns an integer m with m >= 10

 */

const f = (n: bigint): bigint => {

 {{ n ≥ 1 }}

 n = n + 3n;

 {{ n – 3 ≥ 1 }}

 {{ n2 ≥ 10 }}

 return n * n;

};

n2 ≥ 42 since n – 3 ≥ 1 (i.e., n ≥ 4)

 = 16

 > 10

n = n0 + 3 means n – 3 = n0

check this implication

This is the preferred approach.

Avoid subscripts when possible.

48

Mutation in Straight-Line Code

• Alternative ways of writing this code:

n = n + 3n; const n1 = n + 3n;

return n * n; return n1 * n1;

• Mutation in straight-line code is unnecessary

– can always use different names for each value

• Why would we prefer the former?

– seems like it might save memory…

– but it doesn't!

most compilers will turn the left into the right on their own (SSA form)

it's better at saving memory than you are, so it does it itself

49

Backwards Reasoning by Example (1/4)

{{ _______________________ }}

 x = 17n;

{{ _______________________ }}

 y = 42n;

{{ _______________________ }}

 z = w + x + y;

{{ z < 0 }}

• What must be true before z = w + x + y so z < 0 ?

– want the weakest precondition (most allowed states)

50

Backwards Reasoning by Example (2/4)

{{ _______________________ }}

 x = 17n;

{{ _______________________ }}

 y = 42n;

{{ w + x + y < 0 }}

 z = w + x + y;

{{ z < 0 }}

• What must be true before z = w + x + y so z < 0 ?

– must have w + x + y < 0 beforehand

• What must be true before y = 42 for w + x + y < 0 ?

51

Backwards Reasoning by Example (3/4)

{{ _______________________ }}

 x = 17n;

{{ w + x + 42 < 0 }}

 y = 42n;

{{ w + x + y < 0 }}

 z = w + x + y;

{{ z < 0 }}

• What must be true before y = 42 for w + x + y < 0 ?

– must have w + x + 42 < 0 beforehand

• What must be true before x = 17 for w + x + 42 < 0 ?

52

Backwards Reasoning by Example (4/4)

{{ w + 17 + 42 < 0 }}

 x = 17n;

{{ w + x + 42 < 0 }}

 y = 42n;

{{ w + x + y < 0 }}

 z = w + x + y;

{{ z < 0 }}

• What must be true before x = 17 for w + x + 42 < 0 ?

– must have w + 59 < 0 beforehand

• All we did was substitute right side for the left side

– e.g., substitute “w + x + y” for “z” in “z < 0”

– e.g., substitute “42” for “y” in “w + x + y < 0”

– e.g., substitute “17” for “x” in “w + x + 42 < 0” 53

Floyd Logic II

Jaela Field

CSE 331

Summer 2025

xkcd #3054, ty Matt

Floyd Logic Agenda

• Last Friday:

– vocab: Hoare triple, “stronger” assertions

– forward reasoning

• Today:

– (finish) backwards reasoning

– conditionals

– function calls

• Wednesday:

– loops & loop invariants

55

Recall: Defining Forward & Backward Reasoning

• Forward / backward reasoning fill in assertions

– mechanically create valid triples

• Forward reasoning fills in postcondition

 {{ P }} S {{ ___ }}

– gives strongest postcondition making the triple valid

• Backward reasoning fills in precondition

 {{ ___ }} S {{ Q }}

– gives weakest precondition making the triple valid

56

Recall: Forward Reasoning (with code)

// @param w an integer > 0

// @returns an integer z > 59

const f = (w: bigint): bigint => {

 {{ w > 0 }}

 const x = 17n;

 const y = 42n;

 const z = w + x + y;

 {{ w > 0 and x = 17 and y = 42 and z = w + x + y }}

 {{ z > 59 }}

 return z;

};

• "Collecting the facts" was forward reasoning

– only this simple because there was no mutation

57

Recall: Full Forward Reasoning Example (on code)

/**

 * @param n an integer with n >= 1

 * @returns an integer m with m >= 10

 */

const f = (n: bigint): bigint => {

 {{ n ≥ 1 }}

 n = n + 3n;

 {{ n – 3 ≥ 1 }}

 {{ n2 ≥ 10 }}

 return n * n;

};

n2 ≥ 42 since n – 3 ≥ 1 (i.e., n ≥ 4)

 = 16

 > 10

n = n0 + 3 means n – 3 = n0

check this implication

This is the preferred approach.

Avoid subscripts when possible.

58

Recall: Backwards Reasoning Example

{{ w + 17 + 42 < 0 }}

 x = 17n;

{{ w + x + 42 < 0 }}

 y = 42n;

{{ w + x + y < 0 }}

 z = w + x + y;

{{ z < 0 }}

• All we did was substitute right side for the left side

59

Generalized Backwards Reasoning Rule

• For assignments, backward reasoning is substitution

{{ Q[x ↦ y] }}

 x = y;

{{ Q }}

– just replace all the “x”s with “y”s

– we will denote this substitution by Q[x ↦ y]

• Mechanically simpler than forward reasoning

– no need for subscripts

60

Backwards Reasoning with Code (1/2)

/**

 * @param n an integer with n >= 1

 * @returns an integer m with m >= 10

 */

const f = (n: bigint): bigint => {

 {{ n ≥ 1 }}

 n = n + 3n;

 {{ n2 ≥ 10 }}

 return n * n;

};

• Code is correct if this triple is valid…

61

Backwards Reasoning with Code (2/2)

/**

 * @param n an integer with n >= 1

 * @returns an integer m with m >= 10

 */

const f = (n: bigint): bigint => {

 {{ n ≥ 1 }}

 {{ (n + 3)2 ≥ 10 }}

 n = n + 3n;

 {{ n2 ≥ 10 }}

 return n * n;

};

(n+3)2 ≥ (1 + 3)2 since n ≥ 1

 = 16

 > 10

check this implication

62

Recall: Forwards Reasoning with Code

/**

 * @param n an integer with n >= 1

 * @returns an integer m with m >= 10

 */

const f = (n: bigint): bigint => {

 {{ n ≥ 1 }}

 n = n + 3n;

 {{ n – 3 ≥ 1 }}

 {{ n2 ≥ 10 }}

 return n * n;

};

n2 ≥ 42 since n – 3 ≥ 1 (i.e., n ≥ 4)

 = 16

 > 10

check this implication

Forward reasoning produces known facts.

Backward reasoning produces facts to prove.

63

Think – Pair - Share

/**

 * @param a – an integer with a > 1

 * @param b – an integer with b > 0

 * @returns an integer c with c >= 0

 */

const f = (a: bigint, b: bigint): bigint => {

 {{ pre: ________________________ }}

 a = a – 1n;

 {{ post: ________________________ }}

 return a * b;

};

• Fill in the pre and post condition assertions according

to the spec?

64

Think – Pair - Share

/**

 * @param a – an integer with a > 1

 * @param b – an integer with b > 0

 * @returns an integer c with c >= 0

 */

const f = (a: bigint, b: bigint): bigint => {

 {{ pre: a ≥ 2 and b ≥ 1 }}

 a = a – 1n;

 {{ ________________________ }}

 {{ post: ab ≥ 0 }}

 return a * b;

};

• Fill in the assertion using forward reasoning

65

ab ≥ a * 1 since b ≥ 1
 ≥ 1 * 1 since a + 1 ≥ 2
 = 1
 ≥ 0

Think – Pair - Share

/**

 * @param a – an integer with a > 1

 * @param b – an integer with b > 0

 * @returns an integer c with c >= 0

 */

const f = (a: bigint, b: bigint): bigint => {

 {{ pre: a ≥ 2 and b ≥ 1 }}

 {{ ________________________ }}

 a = a – 1n;

 {{ post: ab ≥ 0 }}

 return a * b;

};

• Fill in the assertion using backward reasoning

66

(a - 1) * b ≥ (a – 1) * 1 since b ≥ 1
 ≥ (2 – 1) * 1 since a ≥ 2
 = 1
 ≥ 0

Conditionals

Conditionals in Floyd Logic (1/2)

// Inputs a and b must be integers.

// Returns a non-negative integer.

const f = (a: bigint, b: bigint): bigint => {

 if (a >= 0n && b >= 0n) {

 const L: List = cons(a, cons(b, nil));

 return sum(L);

 }

 …

• Prior reasoning also included conditionals

– what does that look like in Floyd logic?

68

Conditionals in Floyd Logic (2/2)

// Inputs a and b must be integers.

// Returns a non-negative integer.

const f = (a: bigint, b: bigint): bigint => {

 {{ }}

 if (a >= 0n && b >= 0n) {

 {{ a ≥ 0 and b ≥ 0 }}

 const L: List = cons(a, cons(b, nil));

 return sum(L);

 }

 …

• Conditionals introduce extra facts in forward reasoning

– simple “and” since nothing is mutated

69

Conditionals Worked Example: Setup

// Returns an integer m with m > n

const g = (n: bigint): bigint => {

 let m;

 if (n >= 0n) {

 m = 2n * n + 1n;

 } else {

 m = 0n;

 }

 return m;

}

• Code like this was impossible without mutation

– cannot write to a “const” after its declaration

• How do we handle it now?
70

Conditionals Worked Example: Cases

// Returns an integer m with m > n

const g = (n: bigint): bigint => {

 let m;

 if (n >= 0n) {

 m = 2n * n + 1n;

 } else {

 m = 0n;

 }

 return m;

}

• Reason separately about each path to a return

– handle each path the same as before

– but now there can be multiple paths to one return

71

Conditionals Worked Example: “Then” (1/5)

// Returns an integer m with m > n

const g = (n: bigint): bigint => {

 {{ }}

 let m;

 if (n >= 0n) {

 m = 2n * n + 1n;

 } else {

 m = 0n;

 }

 {{ m > n }}

 return m;

}

• Check correctness path through “then” branch

72

Conditionals Worked Example: “Then” (2/5)

// Returns an integer m with m > n

const g = (n: bigint): bigint => {

 {{ }}

 let m;

 if (n >= 0n) {

 {{ n ≥ 0 }}

 m = 2n * n + 1n;

 } else {

 m = 0n;

 }

 {{ m > n }}

 return m;

}

73

Conditionals Worked Example: “Then” (3/5)

// Returns an integer m with m > n

const g = (n: bigint): bigint => {

 {{ }}

 let m;

 if (n >= 0n) {

 {{ n ≥ 0 }}

 m = 2n * n + 1n;

 {{ n ≥ 0 and m = 2n + 1}}

 } else {

 m = 0n;

 }

 {{ m > n }}

 return m;

}

74

Conditionals Worked Example: “Then” (4/5)

// Returns an integer m with m > n

const g = (n: bigint): bigint => {

 {{ }}

 let m;

 if (n >= 0n) {

 {{ n ≥ 0 }}

 m = 2n * n + 1n;

 {{ n ≥ 0 and m = 2n + 1}}

 } else {

 m = 0n;

 }

 {{ n ≥ 0 and m = 2n + 1 }}

 {{ m > n }}

 return m;

}

m = 2n+1
 > 2n since 1 > 0
 ≥ n since n ≥ 0

75

Conditionals Worked Example: “Then” (5/5)

// Returns an integer m with m > n

const g = (n: bigint): bigint => {

 {{ }}

 let m;

 if (n >= 0n) {

 m = 2n * n + 1n;

 } else {

 m = 0n;

 }

 {{ n ≥ 0 and m = 2n + 1 }}

 {{ m > n }}

 return m;

}

• Note: no mutation, so we can do this in our head

– read along the path, and collect all the facts
76

Conditionals Worked Example: “Else”

// Returns an integer m with m > n

const g = (n: bigint): bigint => {

 {{ }}

 let m;

 if (n >= 0n) {

 m = 2n * n + 1n;

 } else {

 m = 0n;

 }

 {{ n < 0 and m = 0 }}

 {{ m > n }}

 return m;

}

• Check correctness path through “else” branch

– note: no mutation, so we can do this in our head

m = 0
 > n since 0 > n

77

Conditionals Worked Example: Join (1/2)

// Returns an integer m with m > n

const g = (n: bigint): bigint => {

 {{ }}

 let m;

 if (n >= 0n) {

 m = 2n * n + 1n;

 {{ n ≥ 0 and m = 2n + 1 }}

 } else {

 m = 0n;

 {{ n < 0 and m = 0 }}

 }

 {{ ___ }}

 {{ m > n }}

 return m;

}

What do we know is true

even if we don't know

which branch was taken?

78

Conditionals Worked Example: Join (2/2)

// Returns an integer m with m > n

const g = (n: bigint): bigint => {

 {{ }}

 let m;

 if (n >= 0n) {

 m = 2n * n + 1n;

 } else {

 m = 0n;

 }

 {{ (n ≥ 0 and m = 2n + 1) or (n < 0 and m = 0) }}

 {{ m > n }}

 return m;

}

• The “or” means we must reason by cases anyway!

79

Generalizing Conditional Floyd Logic (1/2)

{{ P }}

if (cond) {

 {{ P and cond }}

 S1

} else {

 {{ P and not cond }}

 S2

}

{{ R }}

{{ Q }}

• 2 possible paths to execute

• R is in the form of {{A or B}}
– A being what we know if we had taken the if branch

80

Generalizing Conditional Floyd Logic (2/2)

{{ P }}

if (cond) {

 {{ P and cond }}

 S1

} else {

 {{ P and not cond }}

 S2

}

{{ R }}

{{ Q }}

• 2 possible paths to execute

• R is in the form of {{A or B}}
– A being what we know if we had taken the if branch

– B being what we know if we had taken the else
81

Conditionals and Early Returns (1/2)

// Returns an integer m with m > n

const g = (n: bigint): bigint => {

 {{ }}

 let m;

 if (n >= 0n) {

 m = 2n * n + 1n;

 } else {

 return 0n;

 }

 {{ (n ≥ 0 and m = 2n + 1) or (n < 0 and ??) }}

 {{ m > n }}

 return m;

}

• What is the state after a “return”?

82

Conditionals and Early Returns (2/2)

// Returns an integer m with m > n

const g = (n: bigint): bigint => {

 {{ }}

 let m;

 if (n >= 0n) {

 m = 2n * n + 1n;

 } else {

 return 0n;

 }

 {{ (n ≥ 0 and m = 2n + 1) or (n < 0 and false) }}

 {{ m > n }}

 return m;

}

• State after a “return” is false (no states)

simplifies to just n ≥ 0 and m = 2n + 1

83

Generalizing Early Returns and Forward Reasoning

• Latter rule for "if .. return" is useful:

 {{ P }}

 if (cond)

 return something;

 {{ P and not cond }}

 …

 return something else;

• Only reach the line after the "if" if cond was false

• Only one path to each "return" statement

– forward reason to the "return" inside the "if"

– forward reason to the "return" after the "if"

84

Complex Conditionals Example: Paths? (1/2)

// Returns an integer m, with m > 0

const h = (x: bigint): bigint => {

 {{ }}

 let m = x;

 if (x < 0n) {

 m = m * -1n;

 } else if (x === 0n) {

 return 1n;

 }

 {{ ___ }}

 m = m + 1n;

 {{ m > 0 }}

 return m;

}

How many paths can

the code take?

85

Complex Conditionals Example: Paths? (2/2)

// Returns an integer m, with m > 0

const h = (x: bigint): bigint => {

 {{ }}

 let m = x;

 if (x < 0n) {

 m = m * -1n;

 } else if (x === 0n) {

 return 1n;

 } else {

 // do nothing

 }

 {{ ________________ or ________________ or ________________ }}

 m = m + 1n;

 {{ m > 0 }}

 return m;

}

3 paths! else branch is not

written out, but it’s there

implicitly

After the conditional, there are

3 sets of facts that could be

true

86

Complex Conditionals Example: “Then” (1/3)

// Returns an integer m, with m > 0

const h = (x: bigint): bigint => {

 {{ }}

 let m = x;

 if (x < 0n) {

 {{ ____________________ }}

 m = m * -1n;

 {{ ____________________ }}

 } else if (x === 0n) {

 return 1n;

 } // else: do nothing

 {{ ________________ or ________________ or ________________ }}

 m = m + 1n;

 {{ m > 0 }}

 return m;

}
87

Complex Conditionals Example: “Then” (2/3)

// Returns an integer m, with m > 0

const h = (x: bigint): bigint => {

 {{ }}

 let m = x;

 if (x < 0n) {

 {{ m = x and x < 0 }}

 m = m * -1n;

 {{ ____________________ }}

 } else if (x === 0n) {

 return 1n;

 } // else: do nothing

 {{ ________________ or ________________ or ________________ }}

 m = m + 1n;

 {{ m > 0 }}

 return m;

}
88

Complex Conditionals Example: “Then” (3/3)

// Returns an integer m, with m > 0

const h = (x: bigint): bigint => {

 {{ }}

 let m = x;

 if (x < 0n) {

 {{ m = x and x < 0 }}

 m = m * -1n;

 {{ m = - x and x < 0 }}

 } else if (x === 0n) {

 return 1n;

 } // else: do nothing

 {{ (m = - x and x < 0) or ________________ or ________________ }}

 m = m + 1n;

 {{ m > 0 }}

 return m;

}
89

Complex Conditionals Example: “Else If” (1/3)

// Returns an integer m, with m > 0

const h = (x: bigint): bigint => {

 {{ }}

 let m = x;

 if (x < 0n) {

 m = m * -1n;

 } else if (x === 0n) {

 {{ ____________________ }}

 return 1n;

 } // else: do nothing

 {{ (m = - x and x < 0) or ________________ or ________________ }}

 m = m + 1n;

 {{ m > 0 }}

 return m;

}

90

Complex Conditionals Example: “Else If” (2/3)

// Returns an integer m, with m > 0

const h = (x: bigint): bigint => {

 {{ }}

 let m = x;

 if (x < 0n) {

 m = m * -1n;

 } else if (x === 0n) {

 {{ x = 0 and m = x }}

 return 1n;

 } // else: do nothing

 {{ (m = - x and x < 0) or ________________ or ________________ }}

 m = m + 1n;

 {{ m > 0 }}

 return m;

}

91

Complex Conditionals Example: “Else If” (3/3)

// Returns an integer m, with m > 0

const h = (x: bigint): bigint => {

 {{ }}

 let m = x;

 if (x < 0n) {

 m = m * -1n;

 } else if (x === 0n) {

 {{ x = 0 and m = x }}

 return 1n;

 } else {

 //

 }

 {{ (m = - x and x < 0) or (x = 0 and m = x and false) or _________ }}

 m = m + 1n;

 {{ m > 0 }}

 return m;

}

Must prove that post

condition holds here

false: no states can

reach beyond return

92

Complex Conditionals Example: Implicit Else (1/2)

// Returns an integer m, with m > 0

const h = (x: bigint): bigint => {

 {{ }}

 let m = x;

 if (x < 0n) {

 m = m * -1n;

 } else if (x === 0n) {

 return 1n;

 } // else: do nothing

 {{ (m = - x and x < 0) or ________________ }}

 m = m + 1n;

 {{ m > 0 }}

 return m;

}

What do we know in

implicit else case?

When neither of the then

cases were entered

93

Complex Conditionals Example: Implicit Else (2/2)

// Returns an integer m, with m > 0

const h = (x: bigint): bigint => {

 {{ }}

 let m = x;

 if (x < 0n) {

 m = m * -1n;

 } else if (x === 0n) {

 return 1n;

 } // else: do nothing

 {{ (m = - x and x < 0) or (x > 0 and m = x) }}

 m = m + 1n;

 {{ m > 0 }}

 return m;

}

94

Complex Conditionals Example: Backwards Step

// Returns an integer m, with m > 0

const h = (x: bigint): bigint => {

 {{ }}

 let m = x;

 if (x < 0n) {

 m = m * -1n;

 } else if (x === 0n) {

 return 1n;

 } // else: do nothing

 {{ (m = - x and x < 0) or (x > 0 and m = x) }}

 {{ _________________ }}

 m = m + 1n;

 {{ m > 0 }}

 return m;

}

Can reason backward and forward

and meet in the middle

95

Complex Conditionals Example: Prove Implication

// Returns an integer m, with m > 0

const h = (x: bigint): bigint => {

 {{ }}

 let m = x;

 if (x < 0n) {

 m = m * -1n;

 } else if (x === 0n) {

 return 1n;

 } // else: do nothing

 {{ (m = - x and x < 0) or (x > 0 and m = x) }}

 {{ m + 1 > 0 }}

 m = m + 1n;

 {{ m > 0 }}

 return m;

}

check this implication

Does the set of facts we know at this point in the program

satisfy what must be true to reach our post condition

96

Aside: Proving “Or” Implications by Cases

• Prove by cases

 {{ (m = - x and x < 0) or (x > 0 and m = x) }}

 {{ m + 1 > 0 }}

Case 1: m = - x and x < 0

m + 1 = -x + 1 since m = -x

 > 1 since x < 0

 > 0

Case 2: x > 0 and m = x

m + 1 = x + 1 since m = x

 > 1 since x > 0

 > 0

• Already proved for the branch with the return, so

proved the postcondition holds, in general
97

Function Calls

Reasoning about Function Calls

• Causes no extra difficulties if…

1. defined for all inputs

2. no inputs are mutated (much, much harder with mutation)

• Forward reasoning rule is

{{ P }}

 x = Math.sin(a);

{{ P[x ↦ x0] and x = sin(a) }}

• Backward reasoning rule is

{{ Q[x ↦ sin(a)] }}

 x = Math.sin(a);

{{ Q }}

99

Reasoning about Function Calls: Preconditions

• Preconditions must be checked

– not valid to call the function on disallowed inputs

• Forward reasoning rule is

{{ P }}

 x = Math.log(a);

{{ P[x ↦ x0] and x = ln(a) }}

• Backward reasoning rule is

{{ Q[x ↦ ln(a)] and a > 0 }}

 x = Math.log(a);

{{ Q }}

Must also check a > 0

102

Function Calls with Imperative Specs

• Applies to functions we define with imperative specs

// @param n a non-negative integer

// @returns square(n), where

// square(0) := 0

// square(n+1) := square(n) + 2n + 1

const square = (n: bigint): bigint => {..}

• Reasoning is the same. E.g., forward rule is

{{ P }}

 x = square(n);

{{ P[x ↦ x0] and x = square(n) }}

Must also check that n is non-negative

103

Floyd Logic III

Jaela Field

CSE 331 Summer 2025

Admin & Agenda

• HW4 Grades will be released today

– Look at your feedback!

– Remember this was an assignment about notation

• Floyd logic agenda

– Last Friday: vocab, forward reasoning

– Last Monday: backwards reasoning, conditionals

– Today: finish function calls, loops & loop invariants

105

Recall: Reasoning about Function Calls

• Spec for Math.log() says:
/**

 * @param x - A number greater than or equal to 0.

 * @returns natural log (base e) of a, ln(x)

 */

• Forward reasoning rule is
{{ P }}

 x = Math.log(a);

{{ P[x ↦ x0] and x = ln(a) }}

• Backward reasoning rule is
{{ Q[x ↦ log(a)] and a > 0 }}

 x = Math.log(a);

{{ Q }}

106

Must also check precondition: a > 0

Function Call with Imperative Spec: Forward (1/5)

// Evaluates polynomial with given input

// @param x a non-negative integer

// @returns sqrt(x + 2) + 1

const f = (x: number): number => {

 {{ x ≥ 0 }}

 let r = x + 2;

 {{ _______________________ }}

 r = Math.sqrt(r);

 {{ _______________________ }}

 r = r + 1;

 {{ _______________________ }}

 {{ r = 𝑥 + 2 + 1 }}

 return r;

}

107

Function Call with Imperative Spec: Forward (2/5)

// Evaluates polynomial with given input

// @param x a non-negative integer

// @returns sqrt(x + 2) + 1

const f = (x: number): number => {

 {{ x ≥ 0 }}

 let r = x + 2;

 {{ x ≥ 0 and r = x + 2 }}

 r = Math.sqrt(r);

 {{ _______________________ }}

 r = r + 1;

 {{ _______________________ }}

 {{ r = 𝑥 + 2 + 1 }}

 return r;

}

x: “A number greater

 than or equal to 0.”

Returns x, a unique y ≥ 0, y2 = x

r = x + 2
 ≥ 0 + 2 since x ≥ 0
 = 2

108

Function Call with Imperative Spec: Forward (3/5)

// Evaluates polynomial with given input

// @param x a non-negative integer

// @returns sqrt(x + 2) + 1

const f = (x: number): number => {

 {{ x ≥ 0 }}

 let r = x + 2;

 {{ x ≥ 0 and r = x + 2 }}

 r = Math.sqrt(r);

 {{ x ≥ 0 and r = x + 2 }}

 r = r + 1;

 {{ _______________________ }}

 {{ r = x + 2 + 1 }}

 return r;

}

r = x + 2
 ≥ 0 + 2 since x ≥ 0
 = 2

x: “A number greater

 than or equal to 0.”

Returns x, a unique y ≥ 0, y2 = x

109

Function Call with Imperative Spec: Forward (4/5)

// Evaluates polynomial with given input

// @param x a non-negative integer

// @returns sqrt(x + 2) + 1

const f = (x: number): number => {

 {{ x ≥ 0 }}

 let r = x + 2;

 {{ x ≥ 0 and r = x + 2 }}

 r = Math.sqrt(r);

 {{ x ≥ 0 and r = x + 2 }}

 r = r + 1;

 {{x ≥ 0 and r – 1 = x + 2 }}

 {{ r = x + 2 + 1 }}

 return r;

}

check this implication

110

Function Call with Imperative Spec: Forward (5/5)

// Evaluates polynomial with given input

// @param x a non-negative integer

// @returns sqrt(x + 2) + 1

const f = (x: number): number => {

 {{ x ≥ 0 }}

 let r = x + 2;

 {{ x ≥ 0 and r = x + 2 }}

 r = Math.sqrt(r);

 {{ x ≥ 0 and r = x + 2 }}

 r = r + 1;

 {{x ≥ 0 and r = x + 2 + 1}}

 {{ r = x + 2 + 1 }}

 return r;

}

holds!

111

Function Call w/ Imperative Spec: Backward (1/6)

// Evaluates polynomial with given input

// @param x a non-negative integer

// @returns sqrt(x + 2) + 1

const f = (x: number): number => {

 {{ x ≥ 0 }}

 {{ _______________________ }}

 let r = x + 2;

 {{ _______________________ }}

 r = Math.sqrt(r);

 {{ _______________________ }}

 r = r + 1;

 {{ r = x + 2 + 1 }}

 return r;

}

112

Function Call w/ Imperative Spec: Backward (2/6)

// Evaluates polynomial with given input

// @param x a non-negative integer

// @returns sqrt(x + 2) + 1

const f = (x: number): number => {

 {{ x ≥ 0 }}

 {{ _______________________ }}

 let r = x + 2;

 {{ _______________________ }}

 r = Math.sqrt(r);

 {{ r + 1 = x + 2 + 1 }}

 r = r + 1;

 {{ r = x + 2 + 1 }}

 return r;

}

113

Function Call w/ Imperative Spec: Backward (3/6)

// Evaluates polynomial with given input

// @param x a non-negative integer

// @returns sqrt(x + 2) + 1

const f = (x: number): number => {

 {{ x ≥ 0 }}

 {{ _______________________ }}

 let r = x + 2;

 {{ _______________________ }}

 r = Math.sqrt(r);

 {{ r + 1 = x + 2 + 1 }}

 r = r + 1;

 {{ r = x + 2 + 1 }}

 return r;

}

114

x: “A number greater

 than or equal to 0.”

Returns x, a unique y ≥ 0, y2 = x

Function Call w/ Imperative Spec: Backward (4/6)

// Evaluates polynomial with given input

// @param x a non-negative integer

// @returns sqrt(x + 2) + 1

const f = (x: number): number => {

 {{ x ≥ 0 }}

 {{ _______________________ }}

 let r = x + 2;

 {{ r + 1 = x + 2 + 1 and r ≥ 0 }}

 r = Math.sqrt(r);

 {{ r + 1 = x + 2 + 1 }}

 r = r + 1;

 {{ r = x + 2 + 1 }}

 return r;

}

115

x: “A number greater

 than or equal to 0.”

Returns x, a unique y ≥ 0, y2 = x

Function Call w/ Imperative Spec: Backward (5/6)

// Evaluates polynomial with given input

// @param x a non-negative integer

// @returns sqrt(x + 2) + 1

const f = (x: number): number => {

 {{ x ≥ 0 }}

 {{ x + 2 + 1 = x + 2 + 1 and x + 2 ≥ 0 }}

 let r = x + 2;

 {{ r + 1 = x + 2 + 1 and r ≥ 0 }}

 r = Math.sqrt(r);

 {{ r + 1 = x + 2 + 1 }}

 r = r + 1;

 {{ r = x + 2 + 1 }}

 return r;

}

116

Function Call w/ Imperative Spec: Backward (6/6)

// Evaluates polynomial with given input

// @param x a non-negative integer

// @returns sqrt(x + 2) + 1

const f = (x: number): number => {

 {{ x ≥ 0 }}

 {{ x + 2 + 1 = x + 2 + 1 and x + 2 ≥ 0 }}

 let r = x + 2;

 {{ r + 1 = x + 2 + 1 and r ≥ 0 }}

 r = Math.sqrt(r);

 {{ r + 1 = x + 2 + 1 }}

 r = r + 1;

 {{ r = x + 2 + 1 }}

 return r;

}

{{ true and x + 2 ≥ 0 }}
 → {{x + 2 ≥ 0 }}

x ≥ 0 implies x + 2 ≥ 0

117

Function Calls with Declarative Specs

// @requires P2 -- preconditions a, b

// @returns x such that R -- conditions on a, b, x

const f = (a: bigint, b: bigint): bigint => {..}

• Forward reasoning rule is

{{ P }}

 x = f(a, b);

{{ P[x ↦ x0] and R }}

• Backward reasoning rule is

{{ Q1 and P2 }}

 x = f(a, b);

{{ Q1 and Q2 }}

Must also check that P implies P2

Must also check that R implies Q2

Q2 is the part of postcondition using “x”

118

Loops

Correctness of Loops

• Assignment and condition reasoning is mechanical

• Loop reasoning cannot be made mechanical

– no way around this

(311 alert: this follows from Rice’s Theorem)

• Thankfully, one extra bit of information fixes this

– need to provide a “loop invariant”

– with the invariant, reasoning is again mechanical

120

Recall: Binary Search Trees

• Larger values to the right of a node, smaller values to

the left

• This is an “invariant” about BSTs

– A property that remains true about the data structure

Must be maintained

If broken, it’s no longer a valid BST

6

3

1 4

9

8

121

Loop Invariants (1/2)

• Loop invariant is true every time at the top of the loop

{{ Inv: I }}

while (cond) {

 S

}

– must be true when we get to the top the first time

– must remain true each time execute S and loop back up

• Use “Inv:” to indicate a loop invariant
otherwise, it would be a standard assertion only claiming to be true the first
time at the loop

122

Loop Invariants (2/2)

• Loop invariant is true every time at the top of the loop

{{ Inv: I }}

while (cond) {

 S

}

– must be true 0 times through the loop (at top the first time)

– if true n times through, must be true n+1 times through

• Why do these imply it is always true?

– follows by structural induction (on ℕ)

123

Loop Invariants as Three Distinct Triples (1/5)

{{ P }}

{{ Inv: I }}

while (cond) {

 S

}

{{ Q }}

• How do we check validity with a loop invariant?

– intermediate assertion splits into three triples to check

124

Loop Invariants as Three Distinct Triples (2/5)

{{ P }}

{{ Inv: I }}

while (cond) {

 S

}

{{ Q }}

Splits correctness into three parts

1. I holds initially

2. S preserves I

3. Q holds when loop exits

1. I holds initially

125

Loop Invariants as Three Distinct Triples (3/5)

{{ P }}

{{ Inv: I }}

while (cond) {

 {{ I and cond }}

 S

 {{ I }}

}

{{ Q }}

Splits correctness into three parts

1. I holds initially

2. S preserves I

3. Q holds when loop exits

1. I holds initially

2. S preserves I

126

Loop Invariants as Three Distinct Triples (4/5)

{{ P }}

{{ Inv: I }}

while (cond) {

 {{ I and cond }}

 S

 {{ I }}

}

{{ I and not cond }}

{{ Q }}

Splits correctness into three parts

1. I holds initially implication

2. S preserves I forward/back then implication

3. Q holds when loop exits implication

1. I holds initially

2. S preserves I

3. Q holds when loop exits

127

Loop Invariants as Three Distinct Triples (5/5)

{{ P }}

{{ Inv: I }}

while (cond) {

 S

}

{{ Q }}

Formally, invariant split this into three Hoare triples:

1. {{ P }} {{ I }} I holds initially

2. {{ I and cond }} S {{ I }} S preserves I

3. {{ I and not cond }} {{ Q }} Q holds when loop exits

128

Loop Invariant Example: Square (1/8)

• This loop claims to calculate n2

{{ }}

let j: bigint = 0n;

let s: bigint = 0n;

{{ Inv: s = j2 }}

while (j !== n) {

 j = j + 1n;

 s = s + j + j - 1;

}

{{ s = n2 }}

return s;

Easy to get this wrong!

– might be initializing “j” wrong (j = 1?)

– might be exiting at the wrong time (j ≠ n–1?)

– might have the assignments in wrong order

– …

Fact that we need to check 3 implications is a

strong indication that more bugs are possible.
129

Loop Invariant Example: Square (2/8)

• This loop claims to calculate n2

{{ }}

let j: bigint = 0n;

let s: bigint = 0n;

{{ Inv: s = j2 }}

while (j !== n) {

 j = j + 1n;

 s = s + j + j - 1;

}

{{ s = n2 }}

return s;

Loop Idea

– move j from 0 to n
– keep track of j2 in s

j s

0 0

1 1

2 4

3 9

4 16

… …

Loop Invariant formalizes the Loop Idea

130

Loop Invariant Example: Square (3/8)

• This loop claims to calculate n2

{{ }}

let j: bigint = 0n;

let s: bigint = 0n;

{{ j = 0 and s = 0 }}

{{ Inv: s = j2 }}

while (j !== n) {

 j = j + 1n;

 s = s + j + j - 1;

}

{{ s = n2 }}

return s;

s = 0 since s = 0
 = 02
 = j2 since j = 0

131

Loop Invariant Example: Square (4/8)

• This loop claims to calculate n2

{{ Inv: s = j2 }}

while (j !== n) {

 j = j + 1n;

 s = s + j + j - 1;

}

{{ s = j2 and j = n }}

{{ s = n2 }}

return s;

s = j2 since s = j2 (Inv)
 = n2 since j = n

132

Loop Invariant Example: Square (5/8)

• This loop claims to calculate n2

{{ Inv: s = j2 }}

while (j !== n) {

 {{ s = j2 and j ≠ n }}

 j = j + 1n;

 s = s + j + j - 1;

 {{ s = j2 }}

}

{{ s = n2 }}

return s;

133

Loop Invariant Example: Square (6/8)

• This loop claims to calculate n2

{{ Inv: s = j2 }}

while (j !== n) {

 {{ s = j2 and j ≠ n }}

 j = j + 1n;

 {{ s = (j – 1)2 and j – 1 ≠ n }}

 s = s + j + j - 1;

 {{ s = j2 }}

}

{{ s = n2 }}

return s;

j = j0 + 1 means j0 = j – 1

134

Loop Invariant Example: Square (7/8)

• This loop claims to calculate n2

{{ Inv: s = j2 }}

while (j !== n) {

 {{ s = j2 and j ≠ n }}

 j = j + 1n;

 {{ s = (j – 1)2 and j – 1 ≠ n }}

 s = s + j + j - 1;

 {{ s – 2j + 1 = (j – 1)2 and j – 1 ≠ n }}

 {{ s = j2 }}

}

{{ s = n2 }}

return s;

s = s0 + 2j – 1 means s0 = s – 2j + 1

135

Loop Invariant Example: Square (8/8)

• This loop claims to calculate n2

{{ Inv: s = j2 }}

while (j !== n) {

 {{ s = j2 and j ≠ n }}

 j = j + 1n;

 {{ s = (j – 1)2 and j – 1 ≠ n }}

 s = s + j + j - 1;

 {{ s – 2j + 1 = (j – 1)2 and j – 1 ≠ n }}

 {{ s = j2 }}

}

{{ s = n2 }}

return s;

s = 2j – 1 + (j – 1)2 since s – 2j + 1 = (j – 1)2

 = 2j – 1 + j2 – 2j + 1
 = j2

136

Loop Invariant Example: Sum of List (1/8)

• Recursive function to calculate sum of list

 sum(nil) := 0

 sum(x :: L) := x + sum(L)

• This loop claims to calculate it as well:

{{ L = L0 }}

let s: bigint = 0n;

{{ Inv: sum(L0) = s + sum(L) }}

while (L.kind !== "nil") {

 s = s + L.hd;

 L = L.tl;

}

{{ s = sum(L0) }}

return s;

Loop Idea

– move through L front-to-back

– keep sum of prior part in s

137

Loop Invariant Example: Sum of List (2/8)

• Recursive function to calculate sum of list

 sum(nil) := 0

 sum(x :: L) := x + sum(L)

• Check that the invariant holds initially

{{ L = L0 }}

let s: bigint = 0n;

{{ L = L0 and s = 0 }}

{{ Inv: sum(L0) = s + sum(L) }}

while (L.kind !== "nil") {

 …

sum(L0)
 = sum(L) since L = L0

 = 0 + sum(L)
 = s + sum(L) since s = 0

138

Loop Invariant Example: Sum of List (3/8)

• Recursive function to calculate sum of list

 sum(nil) := 0

 sum(x :: L) := x + sum(L)

• Check that the postcondition holds at loop exit

{{ Inv: sum(L0) = s + sum(L) }}

while (L.kind !== "nil") {

 s = s + L.hd;

 L = L.tl;

}

{{ sum(L0) = s + sum(L) and L = nil }}

{{ s = sum(L0) }}

return s;

sum(L0)
 = s + sum(L) given (Inv)

 = s + sum(nil) since L = nil
 = s def of sum

139

Loop Invariant Example: Sum of List (4/8)

• Recursive function to calculate sum of list

 sum(nil) := 0

 sum(x :: L) := x + sum(L)

• Check that the loop body preserves the invariant

{{ Inv: sum(L0) = s + sum(L) }}

while (L.kind !== "nil") {

 {{ sum(L0) = s + sum(L) and L ≠ nil }}

 s = s + L.hd;

 L = L.tl;

 {{ sum(L0) = s + sum(L) }}

}

L ≠ nil means L = L.hd :: L.tl

140

Loop Invariant Example: Sum of List (5/8)

• Recursive function to calculate sum of list

 sum(nil) := 0

 sum(x :: L) := x + sum(L)

• Check that the loop body preserves the invariant

{{ Inv: sum(L0) = s + sum(L) }}

while (L.kind !== "nil") {

 {{ sum(L0) = s + sum(L) and L = L.hd :: L.tl }}

 s = s + L.hd;

 L = L.tl;

 {{ sum(L0) = s + sum(L) }}

}

141

Loop Invariant Example: Sum of List (6/8)

• Recursive function to calculate sum of list

 sum(nil) := 0

 sum(x :: L) := x + sum(L)

• Check that the loop body preserves the invariant

{{ Inv: sum(L0) = s + sum(L) }}

while (L.kind !== "nil") {

 {{ sum(L0) = s + sum(L) and L = L.hd :: L.tl }}

 s = s + L.hd;

 {{ sum(L0) = s + sum(L.tl) }}

 L = L.tl;

 {{ sum(L0) = s + sum(L) }}

}

142

Loop Invariant Example: Sum of List (7/8)

• Recursive function to calculate sum of list

 sum(nil) := 0

 sum(x :: L) := x + sum(L)

• Check that the loop body preserves the invariant

{{ Inv: sum(L0) = s + sum(L) }}

while (L.kind !== "nil") {

 {{ sum(L0) = s + sum(L) and L = L.hd :: L.tl }}

 {{ sum(L0) = s + L.hd + sum(L.tl) }}

 s = s + L.hd;

 {{ sum(L0) = s + sum(L.tl) }}

 L = L.tl;

 {{ sum(L0) = s + sum(L) }}

}
143

Loop Invariant Example: Sum of List (8/8)

• Recursive function to calculate sum of list

 sum(nil) := 0

 sum(x :: L) := x + sum(L)

• Check that the loop body preserves the invariant

{{ Inv: sum(L0) = s + sum(L) }}

while (L.kind !== "nil") {

 {{ sum(L0) = s + sum(L) and L = L.hd :: L.tl }}

 {{ sum(L0) = s + L.hd + sum(L.tl) }}

 s = s + L.hd;

 {{ sum(L0) = s + sum(L.tl) }}

 L = L.tl;

 {{ sum(L0) = s + sum(L) }}

}

sum(L0)
 = s + sum(L) given (Inv)

 = s + sum(L.hd :: L.tl) since L = L.hd :: L.tl
 = s + L.hd + sum(L.tl) def of sum

144

Loop Invariant Example: List Contains (1/7)

• Recursive function to check if y appears in list L

 contains(y, nil) := false

 contains(y, x :: L) := true if x = y

 contains(y, x :: L) := contains(y, L) if x ≠ y

• This loop claims to calculate it as well:

{{ Inv: contains(y, L0) = contains(y, L) }}

while (L.kind !== "nil") {

 if (L.hd === y)

 return true;

 L = L.tl;

}

return false;

Loop Idea

– move through L front-to-back

– answer remains the same as on

the original list L0

– can only do that if y is not found

145

Loop Invariant Example: List Contains (2/7)

• Check that the invariant holds initially

{{ L0 = L }}

{{ Inv: contains(y, L0) = contains(y, L) }}

while (L.kind !== "nil") {

 if (L.hd === y)

 return true;

 L = L.tl;

}

return false;

contains(y, nil) := false
contains(y, x :: L) := true if x = y
contains(y, x :: L) := contains(y, L) if x ≠ y

contains(y, L0)
 = contains(y, L) since L0 = L

146

Loop Invariant Example: List Contains (3/7)

• Check that the invariant implies the postcondition

{{ Inv: contains(y, L0) = contains(y, L) }}

while (L.kind !== "nil") {

 if (L.hd === y)

 return true;

 L = L.tl;

}

{{ contains(y, L0) = contains(y, L) and L = nil }}

{{ contains(y, L0) = false }}

return false;

contains(y, nil) := false
contains(y, x :: L) := true if x = y
contains(y, x :: L) := contains(y, L) if x ≠ y

contains(y, L0)
 = contains(y, L) given (Inv)

 = contains(y, nil) since L = nil
 = false def of contains

147

Loop Invariant Example: List Contains (4/7)

• Check that the body preserves the invariant

{{ Inv: contains(y, L0) = contains(y, L) }}

while (L.kind !== "nil") {

 {{ contains(y, L0) = contains(y, L) and L ≠ nil }}

 if (L.hd === y)

 return true;

 L = L.tl;

 {{ contains(y, L0) = contains(y, L) }}

}

return false;

contains(y, nil) := false
contains(y, x :: L) := true if x = y
contains(y, x :: L) := contains(y, L) if x ≠ y

L ≠ nil means L = L.hd :: L.tl

148

Loop Invariant Example: List Contains (5/7)

• Check that the body preserves the invariant

{{ Inv: contains(y, L0) = contains(y, L) }}

while (L.kind !== "nil") {

 {{ contains(y, L0) = contains(y, L) and L = L.hd :: L.tl }}

 if (L.hd === y)

 {{ contains(y, L0) = contains(y, L) and L = L.hd :: L.tl and L.hd = y }}

 {{ contains(y, L0) = true }}

 return true;

 L = L.tl;

 {{ contains(y, L0) = contains(y, L) }}

}

return false;

contains(y, nil) := false
contains(y, x :: L) := true if x = y
contains(y, x :: L) := contains(y, L) if x ≠ y

contains(y, L0)
 = contains(y, L) given (Inv)

 = contains(y, L.hd :: L.tl) since L = L.hd :: L.tl
 = true since y = L.hd

149

Loop Invariant Example: List Contains (6/7)

• Check that the body preserves the invariant

{{ Inv: contains(y, L0) = contains(y, L) }}

while (L.kind !== "nil") {

 {{ contains(y, L0) = contains(y, L) and L = L.hd :: L.tl }}

 if (L.hd === y)

 {{ contains(y, L0) = true }}

 return true;

 {{ contains(y, L0) = contains(y, L) and L = L.hd :: L.tl and L.hd ≠ y }}

 L = L.tl;

 {{ contains(y, L0) = contains(y, L) }}

}

return false;

contains(y, nil) := false
contains(y, x :: L) := true if x = y
contains(y, x :: L) := contains(y, L) if x ≠ y

150

enter

implicit

else

Loop Invariant Example: List Contains (7/7)

• Check that the body preserves the invariant

{{ Inv: contains(y, L0) = contains(y, L) }}

while (L.kind !== "nil") {

 {{ contains(y, L0) = contains(y, L) and L = L.hd :: L.tl }}

 if (L.hd === y)

 {{ contains(y, L0) = true }}

 return true;

 {{ contains(y, L0) = contains(y, L) and L = L.hd :: L.tl and L.hd ≠ y }}

 {{ contains(y, L0) = contains(y, L.tl) }}

 L = L.tl;

 {{ contains(y, L0) = contains(y, L) }}

}

return false;

contains(y, nil) := false
contains(y, x :: L) := true if x = y
contains(y, x :: L) := contains(y, L) if x ≠ y

contains(y, L0)
 = contains(y, L) given (Inv)

 = contains(y, L.hd :: L.tl) since L = L.hd :: L.tl
 = contains(y, L.tl) since y ≠ L.hd

151

Hoare Logic & Termination

• This analysis does not check that the code terminates

– it shows that the postcondition holds if the loop exits

– but we never showed that the loop does exit

• Termination follows from the running time analysis

– e.g., if the code runs in O(n2) time, then it terminates

– an infinite loop would be O(infinity)

– any finite bound on the running time proves it terminates

• Normal to also analyze the running time of our code,

and we get termination already from that analysis

152

Evaluating Correctness of Loops

• With straight-line code and conditionals,

if the triple is not valid…

– the code is wrong

– there is some test case that will prove it

(doesn't mean we found that case in our tests, but it exists)

• With loops, if the triples are not valid…

– the code is wrong with that invariant

– there may not be any test case that proves it

the code may behave correctly on all inputs

– the code could be right but with a different invariant

• Loops are inherently more complicated
153

Simplification within Assertions

• Valid to do basic arithmetic

– e.g. {{ x – 1 < 3 }} → {{ x < 4 }}

• Valid to substitute in exactly know variable values

– e.g. {{ x = 3 and y = x + 1 }} → {{ x = 3 and y = 4 }}

• Invalid to apply math definitions:

– e.g. {{ sum(a::b::nil) > b }} → {{ a + b > b }}

• Invalid to substitute in variable value range:

– e.g. {{ x = y + z and y > 10 }}

 → {{ x > 10 + z and y > 10 }}

– This is a weakening of the assertion

154

Loop Invariant Example: sqrt (1/9)

• Declarative spec of sqrt(x)

 return y ∈ ℤ such that (y – 1)2 < x ≤ y2

– precondition that x is positive: 0 < x

– precondition that x is not too large: x < 1012 = (106)2

155

Loop Invariant Example: sqrt (2/9)

return y ∈ ℤ such that (y – 1)2 < x ≤ y2

• This loop claims to calculate it:

let a: bigint = 0;

let b: bigint = 1000000;

{{ Inv: a2 < x ≤ b2 }}

while (a !== b - 1) {

 const m = (a + b) / 2n;

 if (m*m < x) {

 a = m;

 } else {

 b = m;

 }

}

return b;

Loop Idea

– maintain a range a ... b
with x in the range a2 ... b2

156

Loop Invariant Example: sqrt (3/9)

return y ∈ ℤ such that (y – 1)2 < x ≤ y2

• Check that the invariant holds initially:

{{ Pre: 0 < x ≤ 1012 }}

let a: bigint = 0;

let b: bigint = 1000000;

{{ Inv: a2 < x ≤ b2 }}

while (a !== b - 1) {

 …

}

return b;

157

Loop Invariant Example: sqrt (4/9)

return y ∈ ℤ such that (y – 1)2 < x ≤ y2

• Check that the invariant holds initially:

{{ Pre: 0 < x ≤ 1012 }}

let a: bigint = 0;

let b: bigint = 1000000;

{{ 0 < x ≤ 1012 and a = 0 and b = 106 }}

{{ Inv: a2 < x ≤ b2 }}

while (a !== b - 1) {

 …

}

return b; a2 = 02 since a = 0
 = 0
 < x

x < 1012
 = (106)2

 = b2 since b = 106

158

Loop Invariant Example: sqrt (5/9)

return y ∈ ℤ such that (y – 1)2 < x ≤ y2

• Check that the postcondition hold after exit

{{ Inv: a2 < x ≤ b2 }}

while (a !== b - 1) {

 …

}

{{ a2 < x ≤ b2 and a = b – 1 }}

{{ (b – 1)2 < x ≤ b2 }}

return b;

(b – 1)2
 = a2 since a = b – 1
 < x

Does (y – 1)2 < x < y2 hold with y = b?

159

Loop Invariant Example: sqrt (6/9)

return y ∈ ℤ such that (y – 1)2 < x ≤ y2

• Check that the body preserves the invariant:

{{ Inv: a2 < x ≤ b2 }}

while (a !== b - 1) {

 {{ a2 < x ≤ b2 and a ≠ b – 1 }}

 const m = (a + b) / 2n;

 if (m*m < x) {

 a = m;

 } else {

 b = m;

 }

 {{ a2 < x ≤ b2 }}

}

160

Loop Invariant Example: sqrt (7/9)

return y ∈ ℤ such that (y – 1)2 < x ≤ y2

• Check that the body preserves the invariant:

{{ Inv: a2 < x ≤ b2 }}

while (a !== b - 1) {

 {{ a2 < x ≤ b2 and a ≠ b – 1 }}

 const m = (a + b) / 2n;

 if (m*m < x) {

 {{ a2 < x ≤ b2 and a ≠ b – 1 and m = (a + b) / 2 and m2 < x }}

 a = m;

 } else {

 {{ a2 < x ≤ b2 and a ≠ b – 1 and m = (a + b) / 2 and x ≤ m2 }}

 b = m;

 }

 {{ a2 < x ≤ b2 }}

} 161

Loop Invariant Example: sqrt (8/9)

return y ∈ ℤ such that (y – 1)2 < x ≤ y2

• Check that the body preserves the invariant:

{{ Inv: a2 < x ≤ b2 }}

while (a !== b - 1) {

 const m = (a + b) / 2n;

 if (m*m < x) {

 {{ a2 < x ≤ b2 and a ≠ b – 1 and m = (a + b) / 2 and m2 < x }}

 {{ m2 < x ≤ b2 }}

 a = m;

 } else {

 {{ a2 < x ≤ b2 and a ≠ b – 1 and m = (a + b) / 2 and x ≤ m2 }}

 b = m;

 }

 {{ a2 < x ≤ b2 }}

}

Immediate!

162

Loop Invariant Example: sqrt (9/9)

return y ∈ ℤ such that (y – 1)2 < x ≤ y2

• Check that the body preserves the invariant:

{{ Inv: a2 < x ≤ b2 }}

while (a !== b - 1) {

 const m = (a + b) / 2n;

 if (m*m < x) {

 a = m;

 } else {

 {{ a2 < x ≤ b2 and a ≠ b – 1 and m = (a + b) / 2 and x ≤ m2 }}

 {{ a2 < x ≤ m2 }}

 b = m;

 }

 {{ a2 < x ≤ b2 }}

}

Immediate!

Correctness of binary search is pretty easy

once you have the invariant clear!

163

	Slide 1: Floyd Logic I
	Slide 2: Administrivia
	Slide 3: Wrap up: Structural Induction in General
	Slide 4: Induction Wrap up: Defining Cases
	Slide 5: Induction Wrap up: Defining Cases
	Slide 6: Reasoning So Far
	Slide 7: Recall: Finding Facts at a Return Statement
	Slide 8: Finding Facts at Returns, with Mutation
	Slide 9: Correctness Levels
	Slide 10: Notation: Facts at a Point in Time
	Slide 11: Forwards & Backwards Reasoning, Informally
	Slide 12: Reasoning and Programming
	Slide 13: Floyd Logic
	Slide 14: History of Floyd Logic
	Slide 15: Floyd Logic Terminology
	Slide 16: Hoare Triples
	Slide 17: Correctness with Mutation Example (Setup)
	Slide 18: Correctness with Mutation Example (Triples)
	Slide 19: Hoare Triples with No Code
	Slide 20: Hoare Triples with No Code: Example
	Slide 21: Hoare Triples with Multiple Lines of Code
	Slide 22: Stronger Assertions vs Specifications
	Slide 23: Weakest & Strongest Assertions
	Slide 24: Defining Forward & Backward Reasoning
	Slide 25: Correctness via Forward Reasoning
	Slide 26: Correctness via Backward Reasoning
	Slide 27: Using Mechanical Reasoning Tools
	Slide 28: Correctness via Forward & Backward Reasoning
	Slide 29: Forward & Backward Reasoning
	Slide 30: Forward and Backward Reasoning in Practice
	Slide 31: Ex: Forward Reasoning with Assignments (1/6)
	Slide 32: Ex: Forward Reasoning with Assignments (2/6)
	Slide 33: Ex: Forward Reasoning with Assignments (3/6)
	Slide 34: Ex: Forward Reasoning with Assignments (4/6)
	Slide 35: Ex: Forward Reasoning with Assignments (5/6)
	Slide 36: Ex: Forward Reasoning with Assignments (6/6)
	Slide 37: Picking the Strongest Postcondition
	Slide 38: Forward Reasoning with Code (1/4)
	Slide 39: Forward Reasoning with Code (2/4)
	Slide 40: Forward Reasoning with Code (3/4)
	Slide 41: Forward Reasoning with Code (4/4)
	Slide 42: Finding Facts at Returns is Forward Reasoning
	Slide 43: Forward Reasoning with Mutation (1/2)
	Slide 44: Notation: Subscripts for Variables Across Time
	Slide 45: Forward Reasoning with Mutation (2/2)
	Slide 46: Generalized Forward Reasoning Rule
	Slide 47: Example of “Shortcut” for Invertible Operations
	Slide 48: Revisiting Correctness with Forward Reasoning
	Slide 49: Mutation in Straight-Line Code
	Slide 50: Backwards Reasoning by Example (1/4)
	Slide 51: Backwards Reasoning by Example (2/4)
	Slide 52: Backwards Reasoning by Example (3/4)
	Slide 53: Backwards Reasoning by Example (4/4)
	Slide 54: Floyd Logic II
	Slide 55: Floyd Logic Agenda
	Slide 56: Recall: Defining Forward & Backward Reasoning
	Slide 57: Recall: Forward Reasoning (with code)
	Slide 58: Recall: Full Forward Reasoning Example (on code)
	Slide 59: Recall: Backwards Reasoning Example
	Slide 60: Generalized Backwards Reasoning Rule
	Slide 61: Backwards Reasoning with Code (1/2)
	Slide 62: Backwards Reasoning with Code (2/2)
	Slide 63: Recall: Forwards Reasoning with Code
	Slide 64: Think – Pair - Share
	Slide 65: Think – Pair - Share
	Slide 66: Think – Pair - Share
	Slide 67: Conditionals
	Slide 68: Conditionals in Floyd Logic (1/2)
	Slide 69: Conditionals in Floyd Logic (2/2)
	Slide 70: Conditionals Worked Example: Setup
	Slide 71: Conditionals Worked Example: Cases
	Slide 72: Conditionals Worked Example: “Then” (1/5)
	Slide 73: Conditionals Worked Example: “Then” (2/5)
	Slide 74: Conditionals Worked Example: “Then” (3/5)
	Slide 75: Conditionals Worked Example: “Then” (4/5)
	Slide 76: Conditionals Worked Example: “Then” (5/5)
	Slide 77: Conditionals Worked Example: “Else”
	Slide 78: Conditionals Worked Example: Join (1/2)
	Slide 79: Conditionals Worked Example: Join (2/2)
	Slide 80: Generalizing Conditional Floyd Logic (1/2)
	Slide 81: Generalizing Conditional Floyd Logic (2/2)
	Slide 82: Conditionals and Early Returns (1/2)
	Slide 83: Conditionals and Early Returns (2/2)
	Slide 84: Generalizing Early Returns and Forward Reasoning
	Slide 85: Complex Conditionals Example: Paths? (1/2)
	Slide 86: Complex Conditionals Example: Paths? (2/2)
	Slide 87: Complex Conditionals Example: “Then” (1/3)
	Slide 88: Complex Conditionals Example: “Then” (2/3)
	Slide 89: Complex Conditionals Example: “Then” (3/3)
	Slide 90: Complex Conditionals Example: “Else If” (1/3)
	Slide 91: Complex Conditionals Example: “Else If” (2/3)
	Slide 92: Complex Conditionals Example: “Else If” (3/3)
	Slide 93: Complex Conditionals Example: Implicit Else (1/2)
	Slide 94: Complex Conditionals Example: Implicit Else (2/2)
	Slide 95: Complex Conditionals Example: Backwards Step
	Slide 96: Complex Conditionals Example: Prove Implication
	Slide 97: Aside: Proving “Or” Implications by Cases
	Slide 98: Function Calls
	Slide 99: Reasoning about Function Calls
	Slide 102: Reasoning about Function Calls: Preconditions
	Slide 103: Function Calls with Imperative Specs
	Slide 104: Floyd Logic III
	Slide 105: Admin & Agenda
	Slide 106: Recall: Reasoning about Function Calls
	Slide 107: Function Call with Imperative Spec: Forward (1/5)
	Slide 108: Function Call with Imperative Spec: Forward (2/5)
	Slide 109: Function Call with Imperative Spec: Forward (3/5)
	Slide 110: Function Call with Imperative Spec: Forward (4/5)
	Slide 111: Function Call with Imperative Spec: Forward (5/5)
	Slide 112: Function Call w/ Imperative Spec: Backward (1/6)
	Slide 113: Function Call w/ Imperative Spec: Backward (2/6)
	Slide 114: Function Call w/ Imperative Spec: Backward (3/6)
	Slide 115: Function Call w/ Imperative Spec: Backward (4/6)
	Slide 116: Function Call w/ Imperative Spec: Backward (5/6)
	Slide 117: Function Call w/ Imperative Spec: Backward (6/6)
	Slide 118: Function Calls with Declarative Specs
	Slide 119: Loops
	Slide 120: Correctness of Loops
	Slide 121: Recall: Binary Search Trees
	Slide 122: Loop Invariants (1/2)
	Slide 123: Loop Invariants (2/2)
	Slide 124: Loop Invariants as Three Distinct Triples (1/5)
	Slide 125: Loop Invariants as Three Distinct Triples (2/5)
	Slide 126: Loop Invariants as Three Distinct Triples (3/5)
	Slide 127: Loop Invariants as Three Distinct Triples (4/5)
	Slide 128: Loop Invariants as Three Distinct Triples (5/5)
	Slide 129: Loop Invariant Example: Square (1/8)
	Slide 130: Loop Invariant Example: Square (2/8)
	Slide 131: Loop Invariant Example: Square (3/8)
	Slide 132: Loop Invariant Example: Square (4/8)
	Slide 133: Loop Invariant Example: Square (5/8)
	Slide 134: Loop Invariant Example: Square (6/8)
	Slide 135: Loop Invariant Example: Square (7/8)
	Slide 136: Loop Invariant Example: Square (8/8)
	Slide 137: Loop Invariant Example: Sum of List (1/8)
	Slide 138: Loop Invariant Example: Sum of List (2/8)
	Slide 139: Loop Invariant Example: Sum of List (3/8)
	Slide 140: Loop Invariant Example: Sum of List (4/8)
	Slide 141: Loop Invariant Example: Sum of List (5/8)
	Slide 142: Loop Invariant Example: Sum of List (6/8)
	Slide 143: Loop Invariant Example: Sum of List (7/8)
	Slide 144: Loop Invariant Example: Sum of List (8/8)
	Slide 145: Loop Invariant Example: List Contains (1/7)
	Slide 146: Loop Invariant Example: List Contains (2/7)
	Slide 147: Loop Invariant Example: List Contains (3/7)
	Slide 148: Loop Invariant Example: List Contains (4/7)
	Slide 149: Loop Invariant Example: List Contains (5/7)
	Slide 150: Loop Invariant Example: List Contains (6/7)
	Slide 151: Loop Invariant Example: List Contains (7/7)
	Slide 152: Hoare Logic & Termination
	Slide 153: Evaluating Correctness of Loops
	Slide 154: Simplification within Assertions
	Slide 155: Loop Invariant Example: sqrt (1/9)
	Slide 156: Loop Invariant Example: sqrt (2/9)
	Slide 157: Loop Invariant Example: sqrt (3/9)
	Slide 158: Loop Invariant Example: sqrt (4/9)
	Slide 159: Loop Invariant Example: sqrt (5/9)
	Slide 160: Loop Invariant Example: sqrt (6/9)
	Slide 161: Loop Invariant Example: sqrt (7/9)
	Slide 162: Loop Invariant Example: sqrt (8/9)
	Slide 163: Loop Invariant Example: sqrt (9/9)

