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Administrivia

• HW5 is out!

– Start early!

– 8 Tasks of varying length

~ 1/2 a day is a good goal!

• HW4 due yesterday

– Let me know ASAP if you don’t think you’ll be 

able to get it in by Saturday late deadline

• Remember to look at Gradescope feedback!
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Wrap up: Structural Induction in General

• General case: assume P holds for constructor arguments

type T  :=  A  |  B(x : ℤ)  |  C(y : ℤ , t : T)  | D(z : ℤ , u : T, v : T)

• To prove P(t) for any t, we need to prove:

– P(A)

– P(B(x)) for any x : ℤ

– P(C(y, t)) for any y : ℤ and t : T   assuming P(t) is true

– P(D(z, u, v)) for any z : ℤ and u, v : T assuming P(u) and P(v)

• These four facts are enough to prove P(t) for any t

– for each constructor, have proof that it produces an object 

satisfying P

– generally, each inductive type has its own form of induction
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Induction Wrap up: Defining Cases

• Case in inductive data type = case in structural 

inductive proof

– “Smallest” form of data type = Base case in proof

– Recursive case in data type = Inductive step in proof

• To prove P(t) for any t of type T:

– We have 2 base cases

type T  :=  A  |  B(x : ℤ)  |  C(y : ℤ , t : T)  |  D(z : ℤ , u : T, v : T)

– and 2 recursive cases

type T  :=  A  |  B(x : ℤ)  |  C(y : ℤ , t : T)  |  D(z : ℤ , u : T, v : T)

– Inductive proof will cover base cases in base case and 

recursive cases cases in inductive step
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Induction Wrap up: Defining Cases

• If math def defines a case for recursive form of 

with a fixed size, that is still part of inductive step!

– Example, from last lecture:

 allEqual(nil)   := true

 allEqual(x :: nil)  := true

 allEqual(x :: y :: L)  := x = y and allEqual(y :: L)

x :: nil uses recursive constructor of a List, so it should be part of the 
inductive step:

  Base Case (nil):  allEqual(nil) = true  def of allEqual

  Inductive Step (x :: S): 

   Case (S  = nil): allEqual(x:: nil) = true  def of allEqual

   Case (S = y :: L): …
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Reasoning So Far

• Code so far made up of three elements

– straight-line code

– conditionals

– recursion

• All code without mutation looks like this
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Recall: Finding Facts at a Return Statement

• Consider this code

// Inputs a and b must be integers.

// Returns a non-negative integer.

const f = (a: bigint, b: bigint): bigint => {

  if (a >= 0n && b >= 0n) {

    const L: List = cons(a, cons(b, nil));

    return sum(L);

  }

  …

• Known facts include “a ≥ 0”, “b ≥ 0”, and “L = cons(…)”

• Prove that postcondition holds: “sum(L) ≥ 0”

find facts by reading along path 

from top to return statement

7



Finding Facts at Returns, with Mutation

• Consider this code

// Inputs a and b must be integers.

// Returns a non-negative integer.

const f = (a: bigint, b: bigint): bigint => {

  if (a >= 0n && b >= 0n) {

    a = a – 1n;

    const L: List = cons(a, cons(b, nil));

    return sum(L);

  }

  …

• Facts no longer hold throughout the function

• When we state a fact, we have to say where it holds

a ≥ 0

No!a ≥ 0?
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Correctness Levels

Description Testing Tools Reasoning

no mutation coverage type checking calculation
induction

local variable mutation “” “” Floyd logic

array mutation “” “” for-any facts

heap state mutation “” “” rep invariants
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Notation: Facts at a Point in Time

// Inputs a and b must be integers.

// Returns a non-negative integer.

const f = (a: bigint, b: bigint): bigint => {

  if (a >= 0n && b >= 0n) {

    {{ a ≥ 0 }}

    a = a – 1n;

    {{ a ≥ –1 }}

    const L: List = cons(a, cons(b, nil));

    return sum(L);

  }

   

• When we state a fact, we have to say where it holds

•  {{ .. }} notation indicates facts true at that point

– cannot assume those are true anywhere else
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Forwards & Backwards Reasoning, Informally

// Inputs a and b must be integers.

// Returns a non-negative integer.

const f = (a: bigint, b: bigint): bigint => {

  if (a >= 0n && b >= 0n) {

    {{ a ≥ 0 }}

    a = a – 1n;

    {{ a ≥ –1 }}

    const L: List = cons(a, cons(b, nil));

    return sum(L);

  }

• There are mechanical tools for moving facts around

– “forward reasoning” says how they change as we move down

– “backward reasoning” says how they change as we move up
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Reasoning and Programming

// Inputs a and b must be integers.

// Returns a non-negative integer.

const f = (a: bigint, b: bigint): bigint => {

  if (a >= 0n && b >= 0n) {

    {{ a ≥ 0 }}

    a = a – 1n;

    {{ a ≥ –1 }}

    const L: List = cons(a, cons(b, nil));

    return sum(L);

  }

• Professionals are absurdly good at forward reasoning

– “programmers are the Olympic athletes of forward reasoning”

– you’ll have an edge by learning backward reasoning too
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Floyd Logic



History of Floyd Logic

• Invented by Robert Floyd and Sir Anthony Hoare

– Floyd won the Turing award in 1978

– Hoare won the Turing award in 1980

picture from Wikipedia

Tony HoareRobert Floyd
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picture from Wikipedia

https://en.wikipedia.org/wiki/Robert_W._Floyd
https://en.wikipedia.org/wiki/Tony_Hoare


Floyd Logic Terminology

• The program state is the values of the variables

• An assertion (in {{ .. }}) is a T/F claim about the state

– an assertion “holds” if the claim is true

– assertions are math not code

(we do our reasoning in math)

• Most important assertions:

– precondition: claim about the state when the function starts

– postcondition: claim about the state when the function ends
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Hoare Triples

• A Hoare triple has two assertions and some code

  {{ P }}

      S 

  {{ Q }}

– P is the precondition, Q is the postcondition

– S is the code

• Triple is “valid” if the code is correct:

– S takes any state satisfying P into a state satisfying Q
does not matter what the code does if P does not hold initially

– otherwise, the triple is invalid
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Correctness with Mutation Example (Setup)

/**

 * @param n an integer with n >= 1

 * @returns an integer m with m >= 10

 */

const f = (n: bigint): bigint => {

  n = n + 3n;

  return n * n;

};

• Check that value returned, m = n2, satisfies m ≥ 10
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Correctness with Mutation Example (Triples)

/**

 * @param n an integer with n >= 1

 * @returns an integer m with m >= 10

 */

const f = (n: bigint): bigint => {

  {{ n ≥ 1 }}

  n = n + 3n;

  {{ n2 ≥ 10 }}

  return n * n;

};

• Precondition and postcondition come from spec

• Remains to check that the triple is valid
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Hoare Triples with No Code

• Code could be empty:

  {{ P }}

  {{ Q }}

• When is such a triple valid?

– valid iff P implies Q

– we already know how to check validity in this case:

prove each fact in Q by calculation, using facts from P
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Hoare Triples with No Code: Example

• Code could be empty:

  {{ a ≥ 0,  b ≥ 0,  L = cons(a, cons(b, nil)) }}

  {{ sum(L) ≥ 0 }}

• Check that P implies Q by calculation

sum(L) = sum(cons(a, cons(b, nil)))   since L = …

  = a + sum(cons(b, nil))    def of sum

  = a + b + sum(nil)     def of sum

  = a + b        def of sum

  ≥ 0 + b        since a ≥ 0

  ≥ 0 + 0        since b ≥ 0

  = 0
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Hoare Triples with Multiple Lines of Code

• Code with multiple lines:

  {{ P }}

      S

      T

  {{ Q }}

• Valid iff there exists an R making both triples valid

– i.e., {{ P }} S {{ R }} is valid and {{ R }} T {{ Q }} is valid

• Will see next how to put these to good use…

{{ P }}
    S
{{ R }}
    T
{{ Q }}
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Stronger Assertions vs Specifications

•  Assertion is stronger iff it holds in a subset of states

•  Stronger assertion implies the weaker one

– stronger is a synonym for “implies”

– weaker is a synonym for “is implied by”

Q2Q1
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Weakest & Strongest Assertions

•  Assertion is stronger iff it holds in a subset of states

•  Weakest possible assertion is “true” (all states)

– an empty assertion (“”) also means “true”

•  Strongest possible assertion is “false” (no states!)

Q2Q1
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Defining Forward & Backward Reasoning

• Forward / backward reasoning fill in assertions

– mechanically create valid triples

•  Forward reasoning fills in postcondition

  {{ P }}  S  {{ ___ }}

– gives strongest postcondition making the triple valid

•  Backward reasoning fills in precondition

  {{ ___ }}  S  {{ Q }}

– gives weakest precondition making the triple valid
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Correctness via Forward Reasoning

• Apply forward reasoning

{{ P }}     {{ P }}

    S          S

{{ Q }}     {{ R }}

      {{ Q }}

– first triple is always valid

– only need to check second triple

just requires proving an implication (since no code is present)

• If second triple is invalid, the code is incorrect

– true because R is the strongest assertion possible here

2

1
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Correctness via Backward Reasoning

• Apply backward reasoning

{{ P }}     {{ P }}

    S     {{ R }}

{{ Q }}         S

      {{ Q }}

– second triple is always valid

– only need to check first triple

just requires proving an implication (since no code is present)

• If first triple is invalid, the code is incorrect

– true because R is the weakest assertion possible here

1

2
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Using Mechanical Reasoning Tools

• Forward / backward reasoning fill in assertions

– mechanically create valid triples

• Reduce correctness to proving implications

– this was already true for functional code

– will soon have the same for imperative code

• Implication will be false if the code is incorrect

– reasoning can verify correct code

– reasoning will never accept incorrect code
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Correctness via Forward & Backward Reasoning

• Can use both types of reasoning on longer code

  {{ P }}

      S

  {{ R1 }}

  {{ R2 }}

      T

  {{ Q }}

– first and third triples is always valid

– only need to check second triple

verify that R1 implies R2

3

1

2
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Forward & Backward

Reasoning



Forward and Backward Reasoning in Practice

• Imperative code made up of

– assignments (mutation)

– conditionals

– loops

• Anything can be rewritten with just these

• We will learn forward / backward rules to handle them

– will also learn a rule for function calls

– once we have those, we are done
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Ex: Forward Reasoning with Assignments (1/6)

{{ w > 0 }}

 x = 17n;

{{ _______________________ }}

 y = 42n;

{{ _______________________ }}

 z = w + x + y;

{{ _______________________ }}

• What do we know is true after x = 17 ?

– want the strongest postcondition (most precise)
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Ex: Forward Reasoning with Assignments (2/6)

{{ w > 0 }}

 x = 17n;

{{ w > 0 and x = 17 }}

 y = 42n;

{{ _______________________ }}

 z = w + x + y;

{{ _______________________ }}

• What do we know is true after x = 17 ?

– w was not changed, so w > 0 is still true

– x is now 17

• What do we know is true after y = 42 ?
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Ex: Forward Reasoning with Assignments (3/6)

{{ w > 0 }}

 x = 17n;

{{ w > 0 and x = 17 }}

 y = 42n;

{{ w > 0 and x = 17 and y = 42 }}

 z = w + x + y;

{{ _______________________ }}

• What do we know is true after y = 42 ?

– w and x were not changed, so previous facts still true

– y is now 42

• What do we know is true after z = w + x + y ?
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Ex: Forward Reasoning with Assignments (4/6)

{{ w > 0 }}

 x = 17n;

{{ w > 0 and x = 17 }}

 y = 42n;

{{ w > 0 and x = 17 and y = 42 }}

 z = w + x + y;

{{ w > 0 and x = 17 and y = 42 and z = w + x + y }}

• What do we know is true after z = w + x + y ?

– w, x, and y were not changed, so previous facts still true

– z is now w + x + y

• Could also write z = w + 59 (since x = 17 and y = 42)
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Ex: Forward Reasoning with Assignments (5/6)

{{ w > 0 }}

 x = 17n;

{{ w > 0 and x = 17 }}

 y = 42n;

{{ w > 0 and x = 17 and y = 42 }}

 z = w + x + y;

{{ w > 0 and x = 17 and y = 42 and z = w + x + y }}

• Could write z = w + 59, but do not write z > 59 !

– that is true since w > 0, but…
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Ex: Forward Reasoning with Assignments (6/6)

• Could write z = w + 59, but do not write z > 59 !

– that is true since w > 0, but…

w

z 60

z > 59 and w > 0

z = w + 59 and w > 0
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Picking the Strongest Postcondition

{{ w > 0 }}

 x = 17n;

{{ w > 0 and x = 17 }}

 y = 42n;

{{ w > 0 and x = 17 and y = 42 }}

 z = w + x + y;

{{w > 0 and x = 17 and y = 42 and z = w + x + y }}

• Could write z = w + 59, but do not write z > 59 !

– that is true since w > 0, but…

– that is not the strongest postcondition

correctness check could now fail even if the code is right
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Forward Reasoning with Code (1/4)

// @param w an integer > 0

// @returns an integer z > 59

const f = (w: bigint): bigint => {

  const x = 17n;

  const y = 42n;

  const z = w + x + y;

  return z;

};

• Let’s check correctness using Floyd logic…
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Forward Reasoning with Code (2/4)

// @param w an integer > 0

// @returns an integer z > 59

const f = (w: bigint): bigint => {

  {{ w > 0 }}

  const x = 17n;

  const y = 42n;

  const z = w + x + y;

  {{ z > 59 }}

  return z;

};

• Reason forward…
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Forward Reasoning with Code (3/4)

// @param w an integer > 0

// @returns an integer z > 59

const f = (w: bigint): bigint => {

  {{ w > 0 }}

  const x = 17n;

  const y = 42n;

  const z = w + x + y;

  {{ w > 0 and x = 17 and y = 42 and z = w + x + y }}

  {{ z > 59 }}

  return z;

};

• Check implication: z = w + x + y
 = w + 17 + y  since x = 17
 = w + 59   since y = 42
 > 59    since w > 0
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Forward Reasoning with Code (4/4)

// @param w an integer > 0

// @returns an integer z > 59

const f = (w: bigint): bigint => {

  const x = 17n;

  const y = 42n;

  const z = w + x + y;

  return z;

};

• How about if we use our old approach?

• Known facts: w > 0, x = 17, y = 42, and z = w + x + y

• Prove that postcondition holds: z > 59

find facts by reading along path 

from top to return statement
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Finding Facts at Returns is Forward Reasoning

// @param w an integer > 0

// @returns an integer z > 59

const f = (w: bigint): bigint => {

  const x = 17n;

  const y = 42n;

  const z = w + x + y;

  return z;

};

• We’ve been doing forward reasoning already!

– forward reasoning is (only) “and” with no mutation

• Line-by-line facts are for “let” (not “const”)
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Forward Reasoning with Mutation (1/2)

• Forward reasoning is trickier with mutation

– gets harder if we mutate a variable

 w = x + y;

{{ w = x + y }}

 x = 4n;

{{ w = x + y and x = 4 }}

 y = 3n;

{{ w = x + y and x = 4 and y = 3 }}

• Final assertion is not necessarily true

– w = x + y is true with their old values, not the new ones

– changing the value of “x” can invalidate facts about x
facts refer to the old value, not the new value

– avoid this by using different names for old and new values
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Notation: Subscripts for Variables Across Time

• Can use subscripts to refer to values at different times

… (x: bigint) => …

 …      x0

 x = …

 …       x1 

 x = …

 …       x2 

 x = …

 …       x3 

 x = …

 …       x4 

x = x0

x = x1

x = x2

x = x3

x = x4

"x" means current value
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Forward Reasoning with Mutation (2/2)

• Rewrite existing facts to use names of earlier values

– will use “x” and “y” to refer to current values

– can use “x0” and “y0” (or other subscripts) for earlier values

{{ w = x + y }}

 x = 4n;

{{ w = x0 + y and x = 4 }}

 y = 3n;

{{ w = x0 + y0 and x = 4 and y = 3 }}

• Final assertion is now accurate

– w is equal to the sum of the initial values of x and y
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Generalized Forward Reasoning Rule

• For assignments, general forward reasoning rule is

{{ P }}

    x = y;

{{ P[x ↦ xk] and x = y[x ↦ xk] }}

– replace all “x”s in P and y with “xk”s

• This process can be simplified in many cases

– no need for x0 if we can write it in terms of new value

– e.g., if “x = x0 + 1”, then “x0 = x – 1”

– assertions will be easier to read without old values

(Technically, this is weakening, but it’s usually fine

 Postconditions usually do not refer to old values of variables.)
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Example of “Shortcut” for Invertible Operations

• For assignments, general forward reasoning rule is

{{ P }}

    x = y;

{{ P[x ↦ xk] and x = y[x ↦ xk] }}    xk is name of previous value

• If x0 = f(x), then we can simplify this to

{{ P }}

    x = … x …;

{{ P[x ↦ f(x)] }}      no need for, e.g., “and x = x0 + 1”

– if assignment is “x = x0 + 1”, then “x0 = x – 1”

– if assignment is “x = 2x0”, then “x0 = x/2”

– does not work for integer division (an un-invertible operation)
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Revisiting Correctness with Forward Reasoning

/**

 * @param n an integer with n >= 1

 * @returns an integer m with m >= 10

 */

const f = (n: bigint): bigint => {

  {{ n ≥ 1 }}

  n = n + 3n;

  {{ n – 3 ≥ 1 }}

  {{ n2 ≥ 10 }}

  return n * n;

};

n2  ≥ 42   since n – 3 ≥ 1 (i.e.,  n ≥ 4)

 = 16

 > 10

n = n0 + 3 means n – 3 = n0

check this implication

This is the preferred approach.

Avoid subscripts when possible.

48



Mutation in Straight-Line Code

• Alternative ways of writing this code:

n = n + 3n;    const n1 = n + 3n;

return n * n;    return n1 * n1;

• Mutation in straight-line code is unnecessary

– can always use different names for each value

• Why would we prefer the former?

– seems like it might save memory…

– but it doesn't!

most compilers will turn the left into the right on their own (SSA form)

it's better at saving memory than you are, so it does it itself
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Backwards Reasoning by Example (1/4) 

{{ _______________________ }}

 x = 17n;

{{ _______________________ }}

 y = 42n;

{{ _______________________ }}

 z = w + x + y;

{{ z < 0 }}

• What must be true before z = w + x + y so z < 0 ?

– want the weakest precondition (most allowed states)
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Backwards Reasoning by Example (2/4) 

{{ _______________________ }}

 x = 17n;

{{ _______________________ }}

 y = 42n;

{{ w + x + y < 0 }}

 z = w + x + y;

{{ z < 0 }}

• What must be true before z = w + x + y so z < 0 ?

– must have w + x + y < 0 beforehand

• What must be true before y = 42 for w + x + y < 0 ?
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Backwards Reasoning by Example (3/4) 

{{ _______________________ }}

 x = 17n;

{{ w + x + 42 < 0 }}

 y = 42n;

{{ w + x + y < 0 }}

 z = w + x + y;

{{ z < 0 }}

• What must be true before y = 42 for w + x + y < 0 ?

– must have w + x + 42 < 0 beforehand

• What must be true before x = 17 for w + x + 42 < 0 ?
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Backwards Reasoning by Example (4/4) 

{{ w + 17 + 42 < 0 }}

 x = 17n;

{{ w + x + 42 < 0 }}

 y = 42n;

{{ w + x + y < 0 }}

 z = w + x + y;

{{ z < 0 }}

• What must be true before x = 17 for w + x + 42 < 0 ?

– must have w + 59 < 0 beforehand

• All we did was substitute right side for the left side

– e.g., substitute “w + x + y” for “z” in “z < 0”

– e.g., substitute “42” for “y” in “w + x + y < 0”

– e.g., substitute “17” for “x” in “w + x + 42 < 0” 53
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Floyd Logic Agenda

• Last Friday:

– vocab: Hoare triple, “stronger” assertions

– forward reasoning

• Today:

– (finish) backwards reasoning

– conditionals

– function calls

• Wednesday:

– loops & loop invariants
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Recall: Defining Forward & Backward Reasoning

• Forward / backward reasoning fill in assertions

– mechanically create valid triples

•  Forward reasoning fills in postcondition

  {{ P }}  S  {{ ___ }}

– gives strongest postcondition making the triple valid

•  Backward reasoning fills in precondition

  {{ ___ }}  S  {{ Q }}

– gives weakest precondition making the triple valid
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Recall: Forward Reasoning (with code)

// @param w an integer > 0

// @returns an integer z > 59

const f = (w: bigint): bigint => {

  {{ w > 0 }}

  const x = 17n;

  const y = 42n;

  const z = w + x + y;

  {{ w > 0 and x = 17 and y = 42 and z = w + x + y }}

  {{ z > 59 }}

  return z;

};

• "Collecting the facts" was forward reasoning

– only this simple because there was no mutation
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Recall: Full Forward Reasoning Example (on code)

/**

 * @param n an integer with n >= 1

 * @returns an integer m with m >= 10

 */

const f = (n: bigint): bigint => {

  {{ n ≥ 1 }}

  n = n + 3n;

  {{ n – 3 ≥ 1 }}

  {{ n2 ≥ 10 }}

  return n * n;

};

n2  ≥ 42   since n – 3 ≥ 1 (i.e.,  n ≥ 4)

 = 16

 > 10

n = n0 + 3 means n – 3 = n0

check this implication

This is the preferred approach.

Avoid subscripts when possible.
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Recall: Backwards Reasoning Example

{{ w + 17 + 42 < 0 }}

 x = 17n;

{{ w + x + 42 < 0 }}

 y = 42n;

{{ w + x + y < 0 }}

 z = w + x + y;

{{ z < 0 }}

• All we did was substitute right side for the left side
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Generalized Backwards Reasoning Rule

• For assignments, backward reasoning is substitution

{{ Q[x ↦ y] }}

    x = y;

{{ Q }}

– just replace all the “x”s with “y”s

– we will denote this substitution by Q[x ↦ y]

• Mechanically simpler than forward reasoning

– no need for subscripts
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Backwards Reasoning with Code (1/2)

/**

 * @param n an integer with n >= 1

 * @returns an integer m with m >= 10

 */

const f = (n: bigint): bigint => {

  {{ n ≥ 1 }}

  n = n + 3n;

  {{ n2 ≥ 10 }}

  return n * n;

};

• Code is correct if this triple is valid…
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Backwards Reasoning with Code (2/2)

/**

 * @param n an integer with n >= 1

 * @returns an integer m with m >= 10

 */

const f = (n: bigint): bigint => {

  {{ n ≥ 1 }}

  {{ (n + 3)2 ≥ 10 }}

  n = n + 3n;

  {{ n2 ≥ 10 }}

  return n * n;

};

(n+3)2  ≥ (1 + 3)2   since n ≥ 1

  = 16

  > 10

check this implication
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Recall: Forwards Reasoning with Code

/**

 * @param n an integer with n >= 1

 * @returns an integer m with m >= 10

 */

const f = (n: bigint): bigint => {

  {{ n ≥ 1 }}

  n = n + 3n;

  {{ n – 3 ≥ 1 }}

  {{ n2 ≥ 10 }}

  return n * n;

};

n2  ≥ 42   since n – 3 ≥ 1 (i.e.,  n ≥ 4)

 = 16

 > 10

check this implication

Forward reasoning produces known facts.

Backward reasoning produces facts to prove.
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Think – Pair - Share

/**

 * @param a – an integer with a > 1

 * @param b – an integer with b > 0

 * @returns an integer c with c >= 0

 */

const f = (a: bigint, b: bigint): bigint => {

  {{ pre: ________________________ }}

  a = a – 1n;

  {{ post: ________________________ }}

  return a * b;

};

• Fill in the pre and post condition assertions according 

to the spec?
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Think – Pair - Share

/**

 * @param a – an integer with a > 1

 * @param b – an integer with b > 0

 * @returns an integer c with c >= 0

 */

const f = (a: bigint, b: bigint): bigint => {

  {{ pre: a ≥ 2 and b ≥ 1 }}

  a = a – 1n;

     {{ ________________________ }}  

     {{ post: ab ≥ 0 }}

  return a * b;

};

• Fill in the assertion using forward reasoning
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ab  ≥ a * 1  since b ≥ 1
  ≥ 1 * 1  since a + 1 ≥ 2
  = 1 
  ≥ 0



Think – Pair - Share

/**

 * @param a – an integer with a > 1

 * @param b – an integer with b > 0

 * @returns an integer c with c >= 0

 */

const f = (a: bigint, b: bigint): bigint => {

  {{ pre: a ≥ 2 and b ≥ 1 }}

  {{ ________________________ }}

  a = a – 1n;

     {{ post: ab ≥ 0 }}

  return a * b;

};

• Fill in the assertion using backward reasoning

66

(a - 1) * b ≥ (a – 1) * 1 since b ≥ 1
  ≥ (2 – 1) * 1 since a ≥ 2
  = 1
  ≥ 0



Conditionals



Conditionals in Floyd Logic (1/2)

// Inputs a and b must be integers.

// Returns a non-negative integer.

const f = (a: bigint, b: bigint): bigint => {

  if (a >= 0n && b >= 0n) {

    const L: List = cons(a, cons(b, nil));

    return sum(L);

  }

  …

• Prior reasoning also included conditionals

– what does that look like in Floyd logic?
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Conditionals in Floyd Logic (2/2)

// Inputs a and b must be integers.

// Returns a non-negative integer.

const f = (a: bigint, b: bigint): bigint => {

  {{ }}

  if (a >= 0n && b >= 0n) {

    {{ a ≥ 0 and b ≥ 0 }}

    const L: List = cons(a, cons(b, nil));

    return sum(L);

  }

  …

• Conditionals introduce extra facts in forward reasoning

– simple “and” since nothing is mutated
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Conditionals Worked Example: Setup

// Returns an integer m with m > n

const g = (n: bigint): bigint => {

  let m;

  if (n >= 0n) {

    m = 2n * n + 1n;

  } else {

    m = 0n;

  }

  return m;

}

• Code like this was impossible without mutation

– cannot write to a “const” after its declaration

• How do we handle it now?
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Conditionals Worked Example: Cases

// Returns an integer m with m > n

const g = (n: bigint): bigint => {

  let m;

  if (n >= 0n) {

    m = 2n * n + 1n;

  } else {

    m = 0n;

  }

  return m;

}

• Reason separately about each path to a return

– handle each path the same as before

– but now there can be multiple paths to one return
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Conditionals Worked Example: “Then” (1/5)

// Returns an integer m with m > n

const g = (n: bigint): bigint => {

  {{ }}

  let m;

  if (n >= 0n) {

    m = 2n * n + 1n;

  } else {

    m = 0n;

  }

  {{ m > n }}

  return m;

}

• Check correctness path through “then” branch
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Conditionals Worked Example: “Then” (2/5)

// Returns an integer m with m > n

const g = (n: bigint): bigint => {

  {{ }}

  let m;

  if (n >= 0n) {

    {{ n ≥ 0 }}

    m = 2n * n + 1n;

  } else {

    m = 0n;

  }

  {{ m > n }}

  return m;

}
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Conditionals Worked Example: “Then” (3/5)

// Returns an integer m with m > n

const g = (n: bigint): bigint => {

  {{ }}

  let m;

  if (n >= 0n) {

    {{ n ≥ 0 }}

    m = 2n * n + 1n;

    {{ n ≥ 0 and m = 2n + 1}}

  } else {

    m = 0n;

  }

  {{ m > n }}

  return m;

}
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Conditionals Worked Example: “Then” (4/5)

// Returns an integer m with m > n

const g = (n: bigint): bigint => {

  {{ }}

  let m;

  if (n >= 0n) {

    {{ n ≥ 0 }}

    m = 2n * n + 1n;

    {{ n ≥ 0 and m = 2n + 1}}

  } else {

    m = 0n;

  }

  {{ n ≥ 0 and m = 2n + 1 }}

  {{ m > n }}

  return m;

}

m = 2n+1
 > 2n  since 1 > 0
 ≥ n   since n ≥ 0
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Conditionals Worked Example: “Then” (5/5)

// Returns an integer m with m > n

const g = (n: bigint): bigint => {

  {{ }}

  let m;

  if (n >= 0n) {

    m = 2n * n + 1n;

  } else {

    m = 0n;

  }

  {{ n ≥ 0 and m = 2n + 1 }}

  {{ m > n }}

  return m;

}

• Note: no mutation, so we can do this in our head

– read along the path, and collect all the facts
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Conditionals Worked Example: “Else”

// Returns an integer m with m > n

const g = (n: bigint): bigint => {

  {{ }}

  let m;

  if (n >= 0n) {

    m = 2n * n + 1n;

  } else {

    m = 0n;

  }

  {{ n < 0 and m = 0 }}

  {{ m > n }}

  return m;

}

• Check correctness path through “else” branch

– note: no mutation, so we can do this in our head

m = 0
 > n   since 0 > n
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Conditionals Worked Example: Join (1/2)

// Returns an integer m with m > n

const g = (n: bigint): bigint => {

  {{ }}

  let m;

  if (n >= 0n) {

    m = 2n * n + 1n;

    {{ n ≥ 0 and m = 2n + 1 }}

  } else {

    m = 0n;

    {{ n < 0 and m = 0 }}

  }

  {{ _________________________________________________________________ }}

  {{ m > n }}

  return m;

}

What do we know is true

even if we don't know

which branch was taken?
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Conditionals Worked Example: Join (2/2)

// Returns an integer m with m > n

const g = (n: bigint): bigint => {

  {{ }}

  let m;

  if (n >= 0n) {

    m = 2n * n + 1n;

  } else {

    m = 0n;

  }

  {{ (n ≥ 0 and m = 2n + 1) or (n < 0 and m = 0) }}

  {{ m > n }}

  return m;

}

• The “or” means we must reason by cases anyway!
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Generalizing Conditional Floyd Logic (1/2)

{{ P }} 

if (cond) {

  {{ P and cond }}

 S1

} else {

  {{ P and not cond }}

 S2

}

{{ R }} 

{{ Q }} 

• 2 possible paths to execute

• R is in the form of {{A or B}}
–  A being what we know if we had taken the if branch
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Generalizing Conditional Floyd Logic (2/2)

{{ P }} 

if (cond) {

  {{ P and cond }}

 S1

} else {

  {{ P and not cond }}

 S2

}

{{ R }} 

{{ Q }} 

• 2 possible paths to execute

• R is in the form of {{A or B}}
–  A being what we know if we had taken the if branch

–  B being what we know if we had taken the else
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Conditionals and Early Returns (1/2)

// Returns an integer m with m > n

const g = (n: bigint): bigint => {

  {{ }}

  let m;

  if (n >= 0n) {

    m = 2n * n + 1n;

  } else {

    return 0n;

  }

  {{ (n ≥ 0 and m = 2n + 1) or (n < 0 and ??) }}

  {{ m > n }}

  return m;

}

• What is the state after a “return”?
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Conditionals and Early Returns (2/2)

// Returns an integer m with m > n

const g = (n: bigint): bigint => {

  {{ }}

  let m;

  if (n >= 0n) {

    m = 2n * n + 1n;

  } else {

    return 0n;

  }

  {{ (n ≥ 0 and m = 2n + 1) or (n < 0 and false) }}

  {{ m > n }}

  return m;

}

• State after a “return” is false (no states)

simplifies to just n ≥ 0 and m = 2n + 1
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Generalizing Early Returns and Forward Reasoning

• Latter rule for "if .. return" is useful:

  {{ P }}

  if (cond)

    return something;

  {{ P and not cond }}

  …

  return something else;

• Only reach the line after the "if" if cond was false

• Only one path to each "return" statement

– forward reason to the "return" inside the "if"

– forward reason to the "return" after the "if"
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Complex Conditionals Example: Paths? (1/2)

// Returns an integer m, with m > 0

const h = (x: bigint): bigint => {

  {{ }}

  let m = x;

  if (x < 0n) {

    m = m * -1n;

  } else if (x === 0n) {

    return 1n;

  }

  {{ _________________________________________________________________  }}

  m = m + 1n;

  {{ m > 0 }}

  return m;

}

How many paths can 

the code take?
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Complex Conditionals Example: Paths? (2/2)

// Returns an integer m, with m > 0

const h = (x: bigint): bigint => {

  {{ }}

  let m = x;

  if (x < 0n) {

    m = m * -1n;

  } else if (x === 0n) {

    return 1n;

  } else { 

  // do nothing

  }

  {{ ________________ or ________________ or ________________ }}

  m = m + 1n;

  {{ m > 0 }}

  return m;

}

3 paths! else branch is not 

written out, but it’s there 

implicitly 

After the conditional, there are 

3 sets of facts that could be 

true
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Complex Conditionals Example: “Then” (1/3)

// Returns an integer m, with m > 0

const h = (x: bigint): bigint => {

  {{ }}

  let m = x;

  if (x < 0n) {

  {{ ____________________ }}

  m = m * -1n;

   {{ ____________________ }}

  } else if (x === 0n) {

    return 1n;

  } // else: do nothing

  {{ ________________ or ________________ or ________________ }}

  m = m + 1n;

  {{ m > 0 }}

  return m;

}
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Complex Conditionals Example: “Then” (2/3)

// Returns an integer m, with m > 0

const h = (x: bigint): bigint => {

  {{ }}

  let m = x;

  if (x < 0n) {

  {{ m = x and x < 0 }}

  m = m * -1n;

   {{ ____________________ }}

  } else if (x === 0n) {

    return 1n;

  } // else: do nothing

  {{ ________________ or ________________ or ________________ }}

     m = m + 1n;

  {{ m > 0 }}

  return m;

}
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Complex Conditionals Example: “Then” (3/3)

// Returns an integer m, with m > 0

const h = (x: bigint): bigint => {

  {{ }}

  let m = x;

  if (x < 0n) {

  {{ m = x and x < 0 }}

  m = m * -1n;

   {{ m = - x and x < 0 }}

  } else if (x === 0n) {

    return 1n;

  } // else: do nothing

  {{ (m = - x and x < 0) or ________________ or ________________ }}

  m = m + 1n;

  {{ m > 0 }}

  return m;

}
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Complex Conditionals Example: “Else If” (1/3)

// Returns an integer m, with m > 0

const h = (x: bigint): bigint => {

  {{ }}

  let m = x;

  if (x < 0n) {

  m = m * -1n;

  } else if (x === 0n) {

    {{ ____________________ }}

    return 1n;

  } // else: do nothing

  {{ (m = - x and x < 0) or ________________ or ________________ }}

  m = m + 1n;

  {{ m > 0 }}

  return m;

}
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Complex Conditionals Example: “Else If” (2/3)

// Returns an integer m, with m > 0

const h = (x: bigint): bigint => {

  {{ }}

  let m = x;

  if (x < 0n) {

    m = m * -1n;

  } else if (x === 0n) {

    {{ x = 0 and m = x }}

    return 1n;

  } // else: do nothing

  {{ (m = - x and x < 0) or ________________ or ________________ }}

  m = m + 1n;

  {{ m > 0 }}

  return m;

}
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Complex Conditionals Example: “Else If” (3/3)

// Returns an integer m, with m > 0

const h = (x: bigint): bigint => {

  {{ }}

  let m = x;

  if (x < 0n) {

    m = m * -1n;

  } else if (x === 0n) {

    {{ x = 0 and m = x }}

    return 1n;

  } else {

 // 

  }

  {{ (m = - x and x < 0) or (x = 0 and m = x  and false) or _________ }}

  m = m + 1n;

  {{ m > 0 }}

  return m;

}

Must prove that post 

condition holds here

false: no states can 

reach beyond return 

92



Complex Conditionals Example: Implicit Else (1/2)

// Returns an integer m, with m > 0

const h = (x: bigint): bigint => {

  {{ }}

  let m = x;

  if (x < 0n) {

    m = m * -1n;

  } else if (x === 0n) {

    return 1n;

  } // else: do nothing

  

     {{ (m = - x and x < 0) or ________________ }}

  m = m + 1n;

  {{ m > 0 }}

  return m;

}

What do we know in 

implicit else case? 

When neither of the then 

cases were entered
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Complex Conditionals Example: Implicit Else (2/2)

// Returns an integer m, with m > 0

const h = (x: bigint): bigint => {

  {{ }}

  let m = x;

  if (x < 0n) {

    m = m * -1n;

  } else if (x === 0n) {

    return 1n;

  } // else: do nothing

  

     {{ (m = - x and x < 0) or (x > 0 and m = x) }}

  m = m + 1n;

  {{ m > 0 }}

  return m;

}
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Complex Conditionals Example: Backwards Step

// Returns an integer m, with m > 0

const h = (x: bigint): bigint => {

  {{ }}

  let m = x;

  if (x < 0n) {

    m = m * -1n;

  } else if (x === 0n) {

    return 1n;

  } // else: do nothing

     {{ (m = - x and x < 0) or (x > 0 and m = x) }}

  {{ _________________ }}

  m = m + 1n;

  {{ m > 0 }}

  return m;

}

Can reason backward and forward 

and meet in the middle
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Complex Conditionals Example: Prove Implication

// Returns an integer m, with m > 0

const h = (x: bigint): bigint => {

  {{ }}

  let m = x;

  if (x < 0n) {

    m = m * -1n;

  } else if (x === 0n) {

    return 1n;

  } // else: do nothing

     {{ (m = - x and x < 0) or (x > 0 and m = x) }}

  {{ m + 1 > 0 }}

  m = m + 1n;

  {{ m > 0 }}

  return m;

}

check this implication

Does the set of facts we know at this point in the program 

satisfy what must be true to reach our post condition
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Aside: Proving “Or” Implications by Cases

• Prove by cases

 {{ (m = - x and x < 0) or (x > 0 and m = x) }}

 {{ m + 1 > 0 }}

Case 1: m = - x and x < 0

m + 1  =  -x + 1  since m = -x

              > 1   since x < 0

          > 0

Case 2: x > 0 and m = x 

m + 1  =  x + 1  since m = x

              > 1   since x > 0

          > 0

• Already proved for the branch with the return, so 

proved the postcondition holds, in general
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Reasoning about Function Calls

• Causes no extra difficulties if…

1. defined for all inputs

2. no inputs are mutated   (much, much harder with mutation)

• Forward reasoning rule is

{{ P }}

    x = Math.sin(a);

{{ P[x ↦ x0] and x = sin(a) }}

• Backward reasoning rule is

{{ Q[x ↦ sin(a)]  }}

    x = Math.sin(a);

{{ Q }}
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Reasoning about Function Calls: Preconditions

• Preconditions must be checked

– not valid to call the function on disallowed inputs

• Forward reasoning rule is

{{ P }}

    x = Math.log(a);

{{ P[x ↦ x0] and x = ln(a) }}

• Backward reasoning rule is

{{ Q[x ↦ ln(a)] and a > 0 }}

    x = Math.log(a);

{{ Q }}

Must also check a > 0
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Function Calls with Imperative Specs

• Applies to functions we define with imperative specs

// @param n a non-negative integer 

// @returns square(n), where

//       square(0) := 0

//     square(n+1) := square(n) + 2n + 1

const square = (n: bigint): bigint => {..}

• Reasoning is the same. E.g., forward rule is

{{ P }}

    x = square(n);

{{ P[x ↦ x0] and x = square(n) }}

Must also check that n is non-negative
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Admin & Agenda

• HW4 Grades will be released today

– Look at your feedback!

– Remember this was an assignment about notation

• Floyd logic agenda

– Last Friday: vocab, forward reasoning

– Last Monday: backwards reasoning, conditionals

– Today: finish function calls, loops & loop invariants
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Recall: Reasoning about Function Calls

• Spec for Math.log() says:
/** 

 * @param x - A number greater than or equal to 0.

 * @returns natural log (base e) of a, ln(x)

 */

• Forward reasoning rule is
{{ P }}

    x = Math.log(a);

{{ P[x ↦ x0] and x = ln(a) }}

• Backward reasoning rule is
{{ Q[x ↦ log(a)] and a > 0 }}

    x = Math.log(a);

{{ Q }}
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Function Call with Imperative Spec: Forward (1/5)

// Evaluates polynomial with given input

// @param x a non-negative integer

// @returns sqrt(x + 2) + 1 

const f = (x: number): number => {

 {{ x ≥ 0 }}

 let r = x + 2;

 {{ _______________________ }}

 r = Math.sqrt(r);

 {{ _______________________ }}

 r = r + 1;

 {{ _______________________ }}

 {{ r = 𝑥 + 2 + 1 }}

 return r;

}
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Function Call with Imperative Spec: Forward (2/5)

// Evaluates polynomial with given input

// @param x a non-negative integer

// @returns sqrt(x + 2) + 1 

const f = (x: number): number => {

 {{ x ≥ 0 }}

 let r = x + 2;

 {{ x ≥ 0 and r = x + 2 }}

 r = Math.sqrt(r);

 {{ _______________________ }}

 r = r + 1;

 {{ _______________________ }}

 {{ r = 𝑥 + 2 + 1 }}

 return r;

}

x: “A number greater 

 than or equal to 0.”

Returns x, a unique y ≥ 0, y2 = x

r = x + 2
 ≥ 0 + 2   since x ≥ 0
 = 2
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Function Call with Imperative Spec: Forward (3/5)

// Evaluates polynomial with given input

// @param x a non-negative integer

// @returns sqrt(x + 2) + 1 

const f = (x: number): number => {

 {{ x ≥ 0 }}

 let r = x + 2;

 {{ x ≥ 0 and r = x + 2 }}

 r = Math.sqrt(r);

 {{ x ≥ 0 and r = x + 2 }}

 r = r + 1;

 {{ _______________________ }}

 {{ r = x + 2 + 1 }}

 return r;

}

r = x + 2
 ≥ 0 + 2   since x ≥ 0
 = 2

x: “A number greater 

 than or equal to 0.”

Returns x, a unique y ≥ 0, y2 = x
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Function Call with Imperative Spec: Forward (4/5)

// Evaluates polynomial with given input

// @param x a non-negative integer

// @returns sqrt(x + 2) + 1 

const f = (x: number): number => {

 {{ x ≥ 0 }}

 let r = x + 2;

 {{ x ≥ 0 and r = x + 2 }}

 r = Math.sqrt(r);

 {{ x ≥ 0 and r = x + 2 }}

 r = r + 1;

 {{x ≥ 0 and r – 1 = x + 2 }}

 {{ r = x + 2 + 1 }}

 return r;

}

check this implication
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Function Call with Imperative Spec: Forward (5/5)

// Evaluates polynomial with given input

// @param x a non-negative integer

// @returns sqrt(x + 2) + 1 

const f = (x: number): number => {

 {{ x ≥ 0 }}

 let r = x + 2;

 {{ x ≥ 0 and r = x + 2 }}

 r = Math.sqrt(r);

 {{ x ≥ 0 and r = x + 2 }}

 r = r + 1;

 {{x ≥ 0 and r = x + 2 + 1}}

 {{ r = x + 2 + 1 }}

 return r;

}

holds!
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Function Call w/ Imperative Spec: Backward (1/6)

// Evaluates polynomial with given input

// @param x a non-negative integer

// @returns sqrt(x + 2) + 1 

const f = (x: number): number => {

 {{ x ≥ 0 }}

 {{ _______________________ }}

 let r = x + 2;

 {{ _______________________ }}

 r = Math.sqrt(r);

 {{ _______________________ }}

 r = r + 1;

 {{ r = x + 2 + 1 }}

 return r;

}
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Function Call w/ Imperative Spec: Backward (2/6)

// Evaluates polynomial with given input

// @param x a non-negative integer

// @returns sqrt(x + 2) + 1 

const f = (x: number): number => {

 {{ x ≥ 0 }}

 {{ _______________________ }}

 let r = x + 2;

 {{ _______________________ }}

 r = Math.sqrt(r);

 {{ r + 1 = x + 2 + 1 }}

 r = r + 1;

 {{ r = x + 2 + 1 }}

 return r;

}
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Function Call w/ Imperative Spec: Backward (3/6)

// Evaluates polynomial with given input

// @param x a non-negative integer

// @returns sqrt(x + 2) + 1 

const f = (x: number): number => {

 {{ x ≥ 0 }}

 {{ _______________________ }}

 let r = x + 2;

 {{ _______________________ }}

 r = Math.sqrt(r);

 {{ r + 1 = x + 2 + 1 }}

 r = r + 1;

 {{ r = x + 2 + 1 }}

 return r;

}
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Function Call w/ Imperative Spec: Backward (4/6)

// Evaluates polynomial with given input

// @param x a non-negative integer

// @returns sqrt(x + 2) + 1 

const f = (x: number): number => {

 {{ x ≥ 0 }}

 {{ _______________________ }}

 let r = x + 2;

 {{ r + 1 = x + 2 + 1 and r ≥ 0 }}

 r = Math.sqrt(r);

 {{ r + 1 = x + 2 + 1 }}

 r = r + 1;

 {{ r = x + 2 + 1 }}

 return r;

}
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Function Call w/ Imperative Spec: Backward (5/6)

// Evaluates polynomial with given input

// @param x a non-negative integer

// @returns sqrt(x + 2) + 1 

const f = (x: number): number => {

 {{ x ≥ 0 }}

 {{ x + 2 + 1 = x + 2 + 1 and x + 2 ≥ 0 }}

 let r = x + 2;

 {{ r + 1 = x + 2 + 1 and r ≥ 0 }}

 r = Math.sqrt(r);

 {{ r + 1 = x + 2 + 1 }}

 r = r + 1;

 {{ r = x + 2 + 1 }}

 return r;

}
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Function Call w/ Imperative Spec: Backward (6/6)

// Evaluates polynomial with given input

// @param x a non-negative integer

// @returns sqrt(x + 2) + 1 

const f = (x: number): number => {

 {{ x ≥ 0 }}

 {{ x + 2 + 1 = x + 2 + 1 and x + 2 ≥ 0 }}

 let r = x + 2;

 {{ r + 1 = x + 2 + 1 and r ≥ 0 }}

 r = Math.sqrt(r);

 {{ r + 1 = x + 2 + 1 }}

 r = r + 1;

 {{ r = x + 2 + 1 }}

 return r;

}

{{ true and x + 2 ≥ 0 }} 
     → {{x + 2 ≥ 0 }}

x ≥ 0 implies x + 2 ≥ 0
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Function Calls with Declarative Specs

// @requires P2           -- preconditions a, b

// @returns x such that R -- conditions on a, b, x

const f = (a: bigint, b: bigint): bigint => {..}

• Forward reasoning rule is

{{ P }}

    x = f(a, b);

{{ P[x ↦ x0] and R }}

• Backward reasoning rule is

{{ Q1 and P2 }}

    x = f(a, b);

{{ Q1 and Q2 }}

Must also check that P implies P2

Must also check that R implies Q2

Q2 is the part of postcondition using “x”
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Loops



Correctness of Loops

• Assignment and condition reasoning is mechanical

• Loop reasoning cannot be made mechanical

– no way around this

(311 alert: this follows from Rice’s Theorem)

• Thankfully, one extra bit of information fixes this

– need to provide a “loop invariant”

– with the invariant, reasoning is again mechanical
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Recall: Binary Search Trees

• Larger values to the right of a node, smaller values to 

the left

• This is an “invariant” about BSTs

– A property that remains true about the data structure

Must be maintained

If broken, it’s no longer a valid BST

6

3

1 4

9

8
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Loop Invariants (1/2)

• Loop invariant is true every time at the top of the loop

{{ Inv: I }}

while (cond) {

  S

}

– must be true when we get to the top the first time

– must remain true each time execute S and loop back up

• Use “Inv:” to indicate a loop invariant
otherwise, it would be a standard assertion only claiming to be true the first 
time at the loop
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Loop Invariants (2/2)

• Loop invariant is true every time at the top of the loop

{{ Inv: I }}

while (cond) {

  S

}

– must be true 0 times through the loop (at top the first time)

– if true n times through, must be true n+1 times through

• Why do these imply it is always true?

– follows by structural induction (on ℕ)
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Loop Invariants as Three Distinct Triples (1/5)

{{ P }}

{{ Inv: I }}

while (cond) {

  S

}

{{ Q }}

• How do we check validity with a loop invariant?

– intermediate assertion splits into three triples to check
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Loop Invariants as Three Distinct Triples (2/5)

{{ P }}

{{ Inv: I }}

while (cond) {

  S

}

{{ Q }}

Splits correctness into three parts

1.  I holds initially

2.  S preserves I

3.  Q holds when loop exits

1.  I holds initially
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Loop Invariants as Three Distinct Triples (3/5)

{{ P }}

{{ Inv: I }}

while (cond) {

 {{ I and cond }}

  S

 {{ I }}

}

{{ Q }}

Splits correctness into three parts

1.  I holds initially

2.  S preserves I

3.  Q holds when loop exits

1.  I holds initially

2.  S preserves I
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Loop Invariants as Three Distinct Triples (4/5)

{{ P }}

{{ Inv: I }}

while (cond) {

 {{ I and cond }}

  S

 {{ I }}

}

{{ I and not cond }}

{{ Q }}

Splits correctness into three parts

1.  I holds initially      implication

2.  S preserves I      forward/back then implication

3.  Q holds when loop exits   implication

1.  I holds initially

2.  S preserves I

3.  Q holds when loop exits
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Loop Invariants as Three Distinct Triples (5/5)

{{ P }}

{{ Inv: I }}

while (cond) {

  S

}

{{ Q }}

Formally, invariant split this into three Hoare triples:

1. {{ P }}  {{ I }}     I holds initially

2. {{ I and cond }}  S  {{ I }}  S preserves I

3. {{ I and not cond }}  {{ Q }}  Q holds when loop exits
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Loop Invariant Example: Square (1/8)

• This loop claims to calculate n2

{{  }}

let j: bigint = 0n;

let s: bigint = 0n;

{{ Inv: s = j2 }}

while (j !== n) {

  j = j + 1n;

  s = s + j + j - 1;

}

{{ s = n2 }}

return s;

Easy to get this wrong!

– might be initializing “j” wrong (j = 1?)

– might be exiting at the wrong time (j ≠ n–1?)

– might have the assignments in wrong order

– …

Fact that we need to check 3 implications is a

strong indication that more bugs are possible.
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Loop Invariant Example: Square (2/8)

• This loop claims to calculate n2

{{  }}

let j: bigint = 0n;

let s: bigint = 0n;

{{ Inv: s = j2 }}

while (j !== n) {

  j = j + 1n;

  s = s + j + j - 1;

}

{{ s = n2 }}

return s;

Loop Idea

– move j from 0 to n
– keep track of j2 in s

j s

0 0

1 1

2 4

3 9

4 16

… …

Loop Invariant formalizes the Loop Idea
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Loop Invariant Example: Square (3/8)

• This loop claims to calculate n2

{{  }}

let j: bigint = 0n;

let s: bigint = 0n;

{{ j = 0 and s = 0 }}

{{ Inv: s = j2 }}

while (j !== n) {

  j = j + 1n;

  s = s + j + j - 1;

}

{{ s = n2 }}

return s;

s = 0   since s = 0
   = 02   
   = j2   since j = 0
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Loop Invariant Example: Square (4/8)

• This loop claims to calculate n2

{{ Inv: s = j2 }}

while (j !== n) {

  j = j + 1n;

  s = s + j + j - 1;

}

{{ s = j2 and j = n }}

{{ s = n2 }}

return s;

s = j2  since s = j2 (Inv)
   = n2  since j = n
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Loop Invariant Example: Square (5/8)

• This loop claims to calculate n2

{{ Inv: s = j2 }}

while (j !== n) {

  {{ s = j2 and j ≠ n }}

  j = j + 1n;

  s = s + j + j - 1;

  {{ s = j2 }}

}

{{ s = n2 }}

return s;
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Loop Invariant Example: Square (6/8)

• This loop claims to calculate n2

{{ Inv: s = j2 }}

while (j !== n) {

  {{ s = j2 and j ≠ n }}

  j = j + 1n;

  {{ s = (j – 1)2 and j – 1 ≠ n }}

  s = s + j + j - 1;

  {{ s = j2 }}

}

{{ s = n2 }}

return s;

j = j0 + 1 means j0 = j – 1
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Loop Invariant Example: Square (7/8)

• This loop claims to calculate n2

{{ Inv: s = j2 }}

while (j !== n) {

  {{ s = j2 and j ≠ n }}

  j = j + 1n;

  {{ s = (j – 1)2 and j – 1 ≠ n }}

  s = s + j + j - 1;

  {{ s – 2j + 1 = (j – 1)2 and j – 1 ≠ n }}

  {{ s = j2 }}

}

{{ s = n2 }}

return s;

s = s0 + 2j – 1 means s0 = s – 2j + 1
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Loop Invariant Example: Square (8/8)

• This loop claims to calculate n2

{{ Inv: s = j2 }}

while (j !== n) {

  {{ s = j2 and j ≠ n }}

  j = j + 1n;

  {{ s = (j – 1)2 and j – 1 ≠ n }}

  s = s + j + j - 1;

  {{ s – 2j + 1 = (j – 1)2 and j – 1 ≠ n }}

  {{ s = j2 }}

}

{{ s = n2 }}

return s;

s = 2j – 1 + (j – 1)2  since s – 2j + 1  = (j – 1)2

   = 2j – 1 + j2 – 2j + 1
   = j2     
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Loop Invariant Example: Sum of List (1/8)

• Recursive function to calculate sum of list

  sum(nil)  := 0

  sum(x :: L) := x + sum(L)

• This loop claims to calculate it as well:

{{ L = L0 }}

let s: bigint = 0n;

{{ Inv: sum(L0) = s + sum(L) }}

while (L.kind !== "nil") {

  s = s + L.hd;

  L = L.tl;

}

{{ s = sum(L0) }}

return s;

Loop Idea

– move through L front-to-back

– keep sum of prior part in s
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Loop Invariant Example: Sum of List (2/8)

• Recursive function to calculate sum of list

  sum(nil)  := 0

  sum(x :: L) := x + sum(L)

• Check that the invariant holds initially

{{ L = L0 }}

let s: bigint = 0n;

{{ L = L0 and s = 0 }}

{{ Inv: sum(L0) = s + sum(L) }}

while (L.kind !== "nil") {

  …

sum(L0)
  = sum(L)  since L = L0

  = 0 + sum(L) 
  = s + sum(L) since s = 0
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Loop Invariant Example: Sum of List (3/8)

• Recursive function to calculate sum of list

  sum(nil)  := 0

  sum(x :: L) := x + sum(L)

• Check that the postcondition holds at loop exit

{{ Inv: sum(L0) = s + sum(L) }}

while (L.kind !== "nil") {

  s = s + L.hd;

  L = L.tl;

}

{{ sum(L0) = s + sum(L) and L = nil }}

{{ s = sum(L0) }}

return s;

sum(L0)
  = s + sum(L) given (Inv)

  = s + sum(nil) since L = nil
  = s    def of sum
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Loop Invariant Example: Sum of List (4/8)

• Recursive function to calculate sum of list

  sum(nil)  := 0

  sum(x :: L) := x + sum(L)

• Check that the loop body preserves the invariant

{{ Inv: sum(L0) = s + sum(L) }}

while (L.kind !== "nil") {

  {{ sum(L0) = s + sum(L) and L ≠ nil }}

  s = s + L.hd;

  L = L.tl;

  {{ sum(L0) = s + sum(L) }}

}

L ≠ nil means L = L.hd :: L.tl
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Loop Invariant Example: Sum of List (5/8)

• Recursive function to calculate sum of list

  sum(nil)  := 0

  sum(x :: L) := x + sum(L)

• Check that the loop body preserves the invariant

{{ Inv: sum(L0) = s + sum(L) }}

while (L.kind !== "nil") {

  {{ sum(L0) = s + sum(L) and L = L.hd :: L.tl }}

  s = s + L.hd;

  L = L.tl;

  {{ sum(L0) = s + sum(L) }}

}

141



Loop Invariant Example: Sum of List (6/8)

• Recursive function to calculate sum of list

  sum(nil)  := 0

  sum(x :: L) := x + sum(L)

• Check that the loop body preserves the invariant

{{ Inv: sum(L0) = s + sum(L) }}

while (L.kind !== "nil") {

  {{ sum(L0) = s + sum(L) and L = L.hd :: L.tl }}

  s = s + L.hd;

  {{ sum(L0) = s + sum(L.tl) }}

  L = L.tl;

  {{ sum(L0) = s + sum(L) }}

}
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Loop Invariant Example: Sum of List (7/8)

• Recursive function to calculate sum of list

  sum(nil)  := 0

  sum(x :: L) := x + sum(L)

• Check that the loop body preserves the invariant

{{ Inv: sum(L0) = s + sum(L) }}

while (L.kind !== "nil") {

  {{ sum(L0) = s + sum(L) and L = L.hd :: L.tl }}

  {{ sum(L0) = s + L.hd + sum(L.tl) }}

  s = s + L.hd;

  {{ sum(L0) = s + sum(L.tl) }}

  L = L.tl;

  {{ sum(L0) = s + sum(L) }}

}
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Loop Invariant Example: Sum of List (8/8)

• Recursive function to calculate sum of list

  sum(nil)  := 0

  sum(x :: L) := x + sum(L)

• Check that the loop body preserves the invariant

{{ Inv: sum(L0) = s + sum(L) }}

while (L.kind !== "nil") {

  {{ sum(L0) = s + sum(L) and L = L.hd :: L.tl }}

  {{ sum(L0) = s + L.hd + sum(L.tl) }}

  s = s + L.hd;

  {{ sum(L0) = s + sum(L.tl) }}

  L = L.tl;

  {{ sum(L0) = s + sum(L) }}

}

sum(L0)
  = s + sum(L)   given (Inv)

  = s + sum(L.hd :: L.tl) since L = L.hd :: L.tl
  = s + L.hd + sum(L.tl) def of sum
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Loop Invariant Example: List Contains (1/7)

• Recursive function to check if y appears in list L

 contains(y, nil) := false

 contains(y, x :: L) := true    if x = y

 contains(y, x :: L) := contains(y, L)  if x ≠ y

• This loop claims to calculate it as well:

{{ Inv: contains(y, L0) = contains(y, L) }}

while (L.kind !== "nil") {

  if (L.hd === y)

    return true;

  L = L.tl;

}

return false;

Loop Idea

– move through L front-to-back

– answer remains the same as on 

the original list L0

– can only do that if y is not found
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Loop Invariant Example: List Contains (2/7)

• Check that the invariant holds initially

{{ L0 = L }}

{{ Inv: contains(y, L0) = contains(y, L) }}

while (L.kind !== "nil") {

  if (L.hd === y)

    return true;

  L = L.tl;

}

return false;

contains(y, nil) := false
contains(y, x :: L) := true    if x = y
contains(y, x :: L) := contains(y, L)  if x ≠ y

contains(y, L0)
  = contains(y, L)  since L0 = L
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Loop Invariant Example: List Contains (3/7)

• Check that the invariant implies the postcondition

{{ Inv: contains(y, L0) = contains(y, L) }}

while (L.kind !== "nil") {

  if (L.hd === y)

    return true;

  L = L.tl;

}

{{ contains(y, L0) = contains(y, L) and L = nil }}

{{ contains(y, L0) = false }}

return false;

contains(y, nil) := false
contains(y, x :: L) := true    if x = y
contains(y, x :: L) := contains(y, L)  if x ≠ y

contains(y, L0)
  = contains(y, L)  given (Inv)

  = contains(y, nil)  since L = nil
  = false    def of contains
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Loop Invariant Example: List Contains (4/7)

• Check that the body preserves the invariant

{{ Inv: contains(y, L0) = contains(y, L) }}

while (L.kind !== "nil") {

  {{ contains(y, L0) = contains(y, L) and L ≠ nil }}

  if (L.hd === y)

    return true;

  L = L.tl;

  {{ contains(y, L0) = contains(y, L) }}

}

return false;

contains(y, nil) := false
contains(y, x :: L) := true    if x = y
contains(y, x :: L) := contains(y, L)  if x ≠ y

L ≠ nil  means  L = L.hd :: L.tl 
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Loop Invariant Example: List Contains (5/7)

• Check that the body preserves the invariant

{{ Inv: contains(y, L0) = contains(y, L) }}

while (L.kind !== "nil") {

  {{ contains(y, L0) = contains(y, L) and L = L.hd :: L.tl }}

  if (L.hd === y)

    {{ contains(y, L0) = contains(y, L) and L = L.hd :: L.tl and L.hd = y }}

    {{ contains(y, L0) = true }}

    return true;

  L = L.tl;

  {{ contains(y, L0) = contains(y, L) }}

}

return false;

contains(y, nil) := false
contains(y, x :: L) := true    if x = y
contains(y, x :: L) := contains(y, L)  if x ≠ y

contains(y, L0)
  = contains(y, L)      given (Inv)

  = contains(y, L.hd :: L.tl)     since L = L.hd :: L.tl
  = true        since y = L.hd
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Loop Invariant Example: List Contains (6/7)

• Check that the body preserves the invariant

{{ Inv: contains(y, L0) = contains(y, L) }}

while (L.kind !== "nil") {

  {{ contains(y, L0) = contains(y, L) and L = L.hd :: L.tl }}

  if (L.hd === y)

    {{ contains(y, L0) = true }}

    return true;

  {{ contains(y, L0) = contains(y, L) and L = L.hd :: L.tl and L.hd ≠ y }}

  L = L.tl;

  {{ contains(y, L0) = contains(y, L) }}

}

return false;

contains(y, nil) := false
contains(y, x :: L) := true    if x = y
contains(y, x :: L) := contains(y, L)  if x ≠ y
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Loop Invariant Example: List Contains (7/7)

• Check that the body preserves the invariant

{{ Inv: contains(y, L0) = contains(y, L) }}

while (L.kind !== "nil") {

  {{ contains(y, L0) = contains(y, L) and L = L.hd :: L.tl }}

  if (L.hd === y)

    {{ contains(y, L0) = true }}

    return true;

  {{ contains(y, L0) = contains(y, L) and L = L.hd :: L.tl and L.hd ≠ y }}

  {{ contains(y, L0) = contains(y, L.tl) }}

  L = L.tl;

  {{ contains(y, L0) = contains(y, L) }}

}

return false;

contains(y, nil) := false
contains(y, x :: L) := true    if x = y
contains(y, x :: L) := contains(y, L)  if x ≠ y

contains(y, L0)
  = contains(y, L)      given (Inv)

  = contains(y, L.hd :: L.tl)     since L = L.hd :: L.tl
  = contains(y, L.tl)      since y ≠ L.hd
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Hoare Logic & Termination

• This analysis does not check that the code terminates

– it shows that the postcondition holds if the loop exits

– but we never showed that the loop does exit

• Termination follows from the running time analysis

– e.g., if the code runs in O(n2) time, then it terminates

– an infinite loop would be O(infinity)

– any finite bound on the running time proves it terminates

• Normal to also analyze the running time of our code, 

and we get termination already from that analysis
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Evaluating Correctness of Loops

• With straight-line code and conditionals,

if the triple is not valid…

– the code is wrong

– there is some test case that will prove it

(doesn't mean we found that case in our tests, but it exists)

• With loops, if the triples are not valid…

– the code is wrong with that invariant

– there may not be any test case that proves it

the code may behave correctly on all inputs

– the code could be right but with a different invariant

• Loops are inherently more complicated
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Simplification within Assertions

• Valid to do basic arithmetic

– e.g. {{ x – 1 < 3 }} → {{ x < 4 }}

• Valid to substitute in exactly know variable values

– e.g. {{ x = 3 and y = x + 1 }}  → {{ x = 3 and y = 4 }}

• Invalid to apply math definitions:

– e.g. {{ sum(a::b::nil) > b }} → {{ a + b > b }}

• Invalid to substitute in variable value range:

– e.g. {{ x = y + z and y > 10 }} 

 → {{ x > 10 + z and y > 10 }}

– This is a weakening of the assertion
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Loop Invariant Example: sqrt (1/9)

• Declarative spec of sqrt(x)

 return y ∈ ℤ such that (y – 1)2 < x ≤ y2

– precondition that x is positive: 0 < x

– precondition that x is not too large: x < 1012 = (106)2
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Loop Invariant Example: sqrt (2/9)

return y ∈ ℤ such that (y – 1)2 < x ≤ y2

• This loop claims to calculate it:

let a: bigint = 0;

let b: bigint = 1000000;

{{ Inv: a2 < x ≤ b2 }}

while (a !== b - 1) {

  const m = (a + b) / 2n;

  if (m*m < x) {

    a = m;

  } else {

    b = m;

  }

}

return b;

Loop Idea

– maintain a range a ... b
with x in the range a2 ... b2
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Loop Invariant Example: sqrt (3/9)

return y ∈ ℤ such that (y – 1)2 < x ≤ y2

• Check that the invariant holds initially:

{{ Pre: 0 < x ≤ 1012 }}

let a: bigint = 0;

let b: bigint = 1000000;

{{ Inv: a2 < x ≤ b2 }}

while (a !== b - 1) {

  …

}

return b;
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Loop Invariant Example: sqrt (4/9)

return y ∈ ℤ such that (y – 1)2 < x ≤ y2

• Check that the invariant holds initially:

{{ Pre: 0 < x ≤ 1012 }}

let a: bigint = 0;

let b: bigint = 1000000;

{{ 0 < x ≤ 1012 and a = 0 and b = 106 }}

{{ Inv: a2 < x ≤ b2 }}

while (a !== b - 1) {

  …

}

return b; a2 = 02 since a = 0
     = 0
     < x

x < 1012 
    = (106)2

     = b2  since b = 106

158



Loop Invariant Example: sqrt (5/9)

return y ∈ ℤ such that (y – 1)2 < x ≤ y2

• Check that the postcondition hold after exit

{{ Inv: a2 < x ≤ b2 }}

while (a !== b - 1) {

  … 

}

{{ a2 < x ≤ b2 and a = b – 1 }}

{{ (b – 1)2 < x ≤ b2 }}

return b;

(b – 1)2 
   = a2 since a = b – 1
   < x   

Does  (y – 1)2 < x < y2  hold with y = b?
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Loop Invariant Example: sqrt (6/9)

return y ∈ ℤ such that (y – 1)2 < x ≤ y2

• Check that the body preserves the invariant:

{{ Inv: a2 < x ≤ b2 }}

while (a !== b - 1) {

  {{ a2 < x ≤ b2  and a ≠ b – 1 }}

  const m = (a + b) / 2n;

  if (m*m < x) {

    a = m;

  } else {

    b = m;

  }

  {{ a2 < x ≤ b2 }}

}
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Loop Invariant Example: sqrt (7/9)

return y ∈ ℤ such that (y – 1)2 < x ≤ y2

• Check that the body preserves the invariant:

{{ Inv: a2 < x ≤ b2 }}

while (a !== b - 1) {

  {{ a2 < x ≤ b2  and a ≠ b – 1 }}

  const m = (a + b) / 2n;

  if (m*m < x) {

    {{ a2 < x ≤ b2  and a ≠ b – 1 and m = (a + b) / 2 and m2 < x }}

    a = m;

  } else {

    {{ a2 < x ≤ b2  and a ≠ b – 1 and m = (a + b) / 2 and x ≤ m2 }}

    b = m;

  }

  {{ a2 < x ≤ b2 }}
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Loop Invariant Example: sqrt (8/9)

return y ∈ ℤ such that (y – 1)2 < x ≤ y2

• Check that the body preserves the invariant:

{{ Inv: a2 < x ≤ b2 }}

while (a !== b - 1) {

  const m = (a + b) / 2n;

  if (m*m < x) {

    {{ a2 < x ≤ b2  and a ≠ b – 1 and m = (a + b) / 2 and m2 < x }}

    {{ m2 < x ≤ b2 }}

    a = m;

  } else {

    {{ a2 < x ≤ b2  and a ≠ b – 1 and m = (a + b) / 2 and x ≤ m2 }}

    b = m;

  }

  {{ a2 < x ≤ b2 }}

}

Immediate!
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Loop Invariant Example: sqrt (9/9)

return y ∈ ℤ such that (y – 1)2 < x ≤ y2

• Check that the body preserves the invariant:

{{ Inv: a2 < x ≤ b2 }}

while (a !== b - 1) {

  const m = (a + b) / 2n;

  if (m*m < x) {

    a = m;

  } else {

    {{ a2 < x ≤ b2  and a ≠ b – 1 and m = (a + b) / 2 and x ≤ m2 }}

    {{ a2 < x ≤ m2 }}

    b = m;

  }

  {{ a2 < x ≤ b2 }}

}

Immediate!

Correctness of binary search is pretty easy

once you have the invariant clear!
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