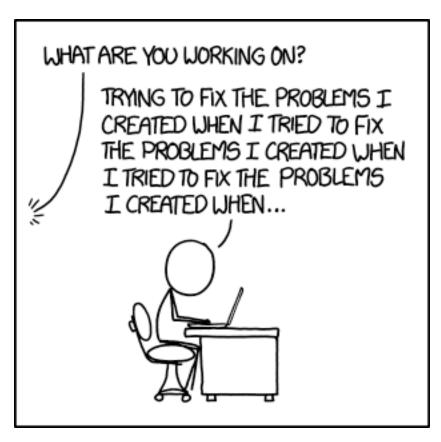
CSE 331Summer 2025

Reasoning



xkcd #1739, ty Matt

Jaela Field

Administrivia

- HW4 is out!
 - it contains math and programming
 - more emphasis on correctness now!
 - Start early!
 - 6 Tasks of varying length

~ 1 a day is a good goal!

Jaela OH today: 12:30 - 1:30 CSE 2/F & zoom

 Bonus lecture on software development coming this weekend!

Agenda

- √ Administrivia
- Finish Testing (finish topic 4)
 - Practice exercises
- Reasoning (start topic 5)

Reacp: Testing so far

Ground Rules

- Only test inputs allowed by the spec
- Test functions individually
- Keep test code simple
- If there are < 10 inputs, test them all!</p>

Metrics

Statement coverage

Execute every statement that is reachable by an allowed input

Branch coverage

For every conditional, execute both branches (if they are reachable by an allowed input

(end of testing in Topic 4 slides)

Agenda

- √ Administrivia
- √ Finish Testing (finish topic 4)
 - √ Practice exercises
- Reasoning (start topic 5)

Reasoning

- "Thinking through" what the code does on <u>all</u> inputs
 - neither testing nor type checking can do this
- Can be done formally or informally
 - most professionals reason informally
 - we will start with formal reasoning and move to informal formal reasoning is a stepping stone to informal reasoning (same core ideas) formal reasoning still needed for the hardest problems
- Definition of correctness comes from the specification...

Correctness Requires a Specification

Specification contains two sets of facts

Precondition:

facts we are *promised* about the inputs

Postcondition:

facts we are required to ensure for the output

Correctness (satisfying the spec):

for every input satisfying the precondition, the output will satisfy the postcondition

Recall: Specifications with JSDoc

TypeScript, like Java, writes specs in /** ... */

```
/**
 * High level description of what function does
 * @param a What "a" represents + any conditions
 * @param b What "b" represents + any conditions
 * @returns Detailed description of return value
 */
const f = (a: bigint, b: bigint): bigint => {..};
```

- these are formatted as "JSDoc" comments
- (in Java, they are JavaDoc comments)

Preconditions & Postconditions in JSDoc

Specifications are written in the comments

```
/**
 * Returns the first n elements from the list L
 * @param n non-negative length of the prefix
 * @param L the list whose prefix should be returned
 * @requires n <= len(L)
 * @returns list S such that L = S ++ T for some T
 */
const prefix = (n: bigint, L: List): List => {..};
```

- precondition written in @param and @requires
- postcondition written in @returns

Aside: Documentation + Testing

- We discussed clear-box testing
 - involves determining cases based on structure of code
 - can result in buggy tests due to bias!
- Alternative: Opaque-Box Testing
 - focuses solely on inputs and outputs
 - testers don't look at the code, instead test to the spec
 still care about different input cases
 - very widely used in industry!
- Our primary approach is clear-box testing
 - rule of only testing inputs allowed by the spec is an opaque testing idea

Facts (1/2)

- Basic inputs to reasoning are "facts"
 - things we know to be true about the variables
 these hold for all inputs (no matter what value the variable has)
 - typically, "=" or "≤"

At the return statement, we know these facts:

```
- n \in \mathbb{N} (or n \in \mathbb{Z} and n \ge 0)

- m = 2n
```

Facts (2/2)

- Basic inputs to reasoning are "facts"
 - things we know to be true about the variables
 these hold for all inputs (no matter what value the variable has)
 - typically, "=" or "≤"

```
// @param n a natural number
const f = (n: bigint): bigint => {
  const m = 2n * n;
  return (m + 1n) * (m - 1n);
};
```

- No need to include the fact that n is an integer $(n \in \mathbb{Z})$
 - that is true, but the type checker takes care of that
 - no need to repeat reasoning done by the type checker

Finding Facts at a Return Statement

Consider this code

facts are math statements about the code

- Known facts include " $a \ge 0$ ", " $b \ge 0$ ", and "L = cons(...)"
- Remains to prove that "sum(L) ≥ 0 "

CSE 331 Summer 2025

Reasoning: Proof by Calculation & Cases

Jaela Field

Administrivia

 optional lecture on Software Development Process available on Panopto

Recall: Correctness Requires a Specification

Specification contains two sets of facts

Precondition:

facts we are *promised* about the inputs

Postcondition:

facts we are required to ensure for the output

Correctness (satisfying the spec):

for every input satisfying the precondition, the output will satisfy the postcondition

Recall: Finding Facts at a Return Statement

Consider this code

facts are math statements about the code

- Known facts include " $a \ge 0$ ", " $b \ge 0$ ", and "L = cons(...)"
- Remains to prove that "sum(L) ≥ 0 "

Implications

- We can use the facts we know to prove more facts
 - if we can prove R using facts P and Q,
 we say that R "follows from" or "is implied by" P and Q
 - proving this fact is proving an "implication"
- Checking correctness requires proving implications
 - need to prove facts about the return values
 - return values must satisfy the facts of the postcondition

Collecting Facts

- Saw how to collect facts in code consisting of
 - "const" variable declarations
 - "if" statements
 - collect facts by reading along <u>path</u> from top to return
- Those elements cover <u>all</u> code without mutation
 - covers everything describable by our math notation
 - we can calculate interesting values with recursion
- Will need more tools to handle code with mutation...

Mutation Makes Reasoning Harder

Description	Testing	Tools	Reasoning
no mutation	full coverage	type checker	calculation induction
local variable mutation	un	un	Floyd logic
array mutation	un	un	for-any facts
heap state mutation	un	un	rep invariants

HW5

HW₆

Correctness with No Mutation

- Proving implications is the core step of reasoning
 - other techniques output implications for us to prove
- Facts are written in our math notation
 - we will use math tools to prove implications
- Core technique is "proof by calculation"
- Other techniques we will need:
 - proof by cases (Today)
 - structural induction (Wednesday)

Proof by Calculation

Proof by Calculation

- Proves an implication
 - fact to be shown is an equation or inequality
- Uses known facts and definitions
 - latter includes, e.g., the fact that len(nil) = 0

Example Proof by Calculation

- Given x = y and $z \le 10$, prove that $x + z \le y + 10$
 - show the third fact follows from the first two
- Start from the left side of the inequality to be proved

$$x + z = y + z \le y + 10$$

since $x = y$ since $z \le 10$

All together, this tells us that $x + z \le y + 10$

Example Proof by Calculation (across lines)

- Given x = y and $z \le 10$, prove that $x + z \le y + 10$
 - show the third fact follows from the first two
- Start from the left side of the inequality to be proved

$$x + z = y + z$$
 since $x = y$
 $\leq y + 10$ since $z \leq 10$

- easier to read when split across lines
- "calculation block", includes explanations in right column proof by calculation means using a calculation block
- "=" or "≤" relates that line to the <u>previous</u> line

Calculation Blocks: Equalities

Chain of "=" shows first = last

$$a = b$$
 $= c$
 $= d$

- proves that a = d
- all 4 of these are the same number

Calculation Blocks: Inequalities

• Chain of "=" and "≤" shows <u>first</u> ≤ <u>last</u>

$$x+z$$
 = $y+z$ since $x=y$
 $\leq y+10$ since $z \leq 10$
= $y+3+7$
 $\leq w+7$ since $y+3 \leq w$

- each number is equal or strictly larger that previous
 last number is strictly larger than the first number
- analogous for "≥"

Calculation Blocks: Mixing Inequalities Gotcha

Consider:

$$1+1 = 2$$
 $\geq 2 * 1$
 $= 1 * 2$
 $\leq 1 * 3$
 ≥ 3

- cannot derive meaningful conclusion from "proof"
 each step is still true, but cannot make final conclusion
- rule of thumb: inequalities should only go in one direction

Proving Code by Calculation: Example 1(1/2)

```
// Inputs x and y are positive integers
// Returns a positive integer.
const f = (x: bigint, y, bigint): bigint => {
  return x + y;
};
```

- Known facts " $x \ge 1$ " and " $y \ge 1$ "
- Correct if the return value is a positive integer

$$x + y$$

Proving Code by Calculation: Example 1(2/2)

```
// Inputs x and y are positive integers
// Returns a positive integer.
const f = (x: bigint, y, bigint): bigint => {
  return x + y;
};
```

- Known facts " $x \ge 1$ " and " $y \ge 1$ "
- Correct if the return value is a positive integer

```
x+y \geq x+1 since y \geq 1
 \geq 1+1 since x \geq 1
 = 2
 \geq 1
```

- calculation shows that $x + y \ge 1$

Proving Code by Calculation: Example 2 (1/2)

```
// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
const f = (x: bigint, y, bigint): bigint => {
  return x + y;
};
```

- Known facts " $x \ge 9$ " and " $y \ge -8$ "
- Correct if the return value is a positive integer

$$x + y$$

Proving Code by Calculation: Example 2 (2/2)

```
// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
const f = (x: bigint, y, bigint): bigint => {
  return x + y;
};
```

- Known facts " $x \ge 9$ " and " $y \ge -8$ "
- Correct if the return value is a positive integer

$$x + y \ge x + -8$$
 since $y \ge -8$
 $\ge 9 - 8$ since $x \ge 9$
 $= 1$

Proving Code by Calculation: Example 3 (1/2)

```
// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
const f = (x: bigint, y, bigint): bigint => {
  return x + y;
};
```

- Known facts "x > 8" and "y > -9"
- Correct if the return value is a positive integer

$$x + y$$

Proving Code by Calculation: Example 3 (2/2)

```
// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
const f = (x: bigint, y, bigint): bigint => {
  return x + y;
};
```

- Known facts "x > 8" and "y > -9"
- Correct if the return value is a positive integer

$$x + y > x + -9$$
 since $y > -9$
> 8 - 9 since $x > 8$
= -1

Proving Code by Calculation: Example 4 (1/2)

```
// Inputs x and y are integers with x > 3 and y > 4
// Returns an integer that is 10 or larger.
const f = (x: bigint, y, bigint): bigint => {
  return x + y;
};
```

- Known facts " $x \ge 4$ " and " $y \ge 5$ "
- Correct if the return value is 10 or larger

$$x + y$$

Proving Code by Calculation: Example 4 (2/2)

```
// Inputs x and y are integers with x > 3 and y > 4
// Returns an integer that is 10 or larger.
const f = (x: bigint, y, bigint): bigint => {
  return x + y;
};
```

- Known facts " $x \ge 4$ " and " $y \ge 5$ "
- Correct if the return value is 10 or larger

$$x + y \ge x + 5$$
 since $y \ge 5$
 $\ge 4 + 5$ since $x \ge 4$
 $= 9$

proof doesn't work because the code is wrong!

Practice #1!

```
// Inputs x and y are integers with x > 0 and y < 0
// Returns a positive integer.
const f = (x: bigint, y: bigint): bigint => {
   return x - y + 1;
};
```

- Prove that the post condition is correct
 - What is the fact to prove? $x-y+1 \ge 1$
 - What are the known facts? $x \ge 1$ and $y \le -1$
 - Proof:

```
x - y + 1 \ge 1 - y + 1 since x \ge 1
 \ge 1 + 1 + 1 since y \le -1
 \ge 1
```

Using Definitions in Calculations

- Most useful with function calls
 - cite the definition of the function to get the return value
- For example:

```
sum(nil) := 0
sum(x :: L) := x + sum(L)
```

- Can cite facts such as
 - sum(nil) = 0
 - sum(a :: b :: nil) = a + sum(b :: nil)

Recall: Finding Facts at a Return Statement

Consider this code

```
// Inputs a and b must be integers.
// Returns a non-negative integer.
const f = (a: bigint, b: bigint): bigint => {
  const L: List = cons(a, cons(b, nil));
  if (a >= 0n && b >= 0n)
    return sum(L);
```

find facts by reading along <u>path</u> from top to return statement

- Known facts include " $a \ge 0$ ", " $b \ge 0$ ", and "L = cons(...)"
- Must prove that $sum(L) \ge 0$

Using Definitions in Calculations (1/2)

```
sum(nil) := 0
sum(x :: L) := x + sum(L)
```

- Know " $a \ge 0$ ", " $b \ge 0$ ", and "L = a :: b :: nil"
- Prove the "sum(L)" is non-negative

```
sum(L)
```

Using Definitions in Calculations (2/2)

```
sum(nil) := 0
sum(x :: L) := x + sum(L)
```

- Know " $a \ge 0$ ", " $b \ge 0$ ", and "L = a :: b :: nil"
- Prove the "sum(L)" is non-negative

```
sum(L)= sum(a :: b :: nil)since L = a :: b :: nil= a + sum(b :: nil)def of sum= a + b + sum(nil)def of sum= a + bdef of sum\geq 0 + bsince a \geq 0\geq 0since b \geq 0
```

Practice #2!

```
// Returns a non-empty List.
const f = (x: bigint): List<bigint> => {
    const L: List = cons(x, cons(-x, nil);
    return L;
};
```

- Recall: len(nil) := 0len(x :: L) := 1 + len(L)
- Prove that the post condition is correct

Proving Correctness with Conditionals (Top)

```
// Inputs x and y are integers.
// Returns a number less than x.
const f = (x: bigint, y, bigint): bigint => {
  if (y < 0n) {
    return x + y;
  } else {
    return x - 1n;
  }
};</pre>
```

• Known fact in "then" (top) branch: " $y \le -1$ "

```
x + y \leq x + -1 since y \leq -1
< x + 0 since -1 < 0
= x
```

Proving Correctness with Conditionals (Bottom)

```
// Inputs x and y are integers.
// Returns a number less than x.
const f = (x: bigint, y, bigint): bigint => {
  if (y < 0n) {
    return x + y;
  } else {
    return x - 1n;
  }
};</pre>
```

• Known fact in else (bottom) branch: " $y \ge 0$ "

$$x-1$$
 $< x+0$ since $-1 < 0$ $= x$

Proving Correctness with Multiple Claims

- Need to check the claim from the spec at each <u>return</u>
- If spec claims multiple facts, then we must prove that <u>each</u> of them holds

```
// Inputs x and y are integers with x < y - 1
// Returns a number less than y and greater than x.
const f = (x: bigint, y, bigint): bigint => { ... };
```

- multiple known facts: $x : \mathbb{Z}$, $y : \mathbb{Z}$, and x < y 1
- multiple claims to prove: x < r and r < y
 where "r" is the return value
- requires two calculation blocks

Example Correctness with Conditionals

```
// Returns r with (r=a or r=b) and r >= a and r >= b
const max = (a: bigint, b, bigint): bigint => {
   if (a >= b) {
      return a;
   } else {
      return b;
   }
};
```

- Three different facts to prove at each return
- Two known facts in each branch (return value is "r"):
 - then branch: $a \ge b$ and r = a
 - else branch: a < b and r = b

Proof by Cases

Proof By Cases

- Sometimes necessary split a proof into cases
 - fact may be hard to prove for all values at once
- Example: can't prove it for all x at once, but can prove it for $x \ge 0$ and x < 0
 - will see an example next
- If we can prove it in those two cases, it holds for all x
 - follows since the cases are exhaustive (don't need to be exclusive in this case)

Example Proof By Cases

$$f: \mathbb{Z} \to \mathbb{Z}$$

$$f(m) := 2m + 1 \qquad \text{if } m \ge 0$$

$$f(m) := 0 \qquad \text{if } m < 0$$

- Want to prove that f(m) > m
- Doesn't seem possible as is
 - can't even apply the definition of f
 - need to know if m < 0 or $m \ge 0$
- Split our analysis into these two separate cases...

Proof By Cases (1/3)

$$\begin{split} f(m) &:= 2m+1 & \text{if } m \geq 0 \\ f(m) &:= 0 & \text{if } m < 0 \end{split}$$

• Prove that f(m) > m

Case
$$m \ge 0$$
:
$$f(m) =$$

> m

Proof By Cases (2/3)

$$\begin{split} f(m) &:= 2m+1 & \text{if } m \geq 0 \\ f(m) &:= 0 & \text{if } m < 0 \end{split}$$

• Prove that f(m) > m

Case $m \ge 0$:

$$f(m) = 2m + 1 \qquad \qquad \text{def of } f \text{ (since } m \ge 0)$$

$$\ge m + 1 \qquad \qquad \text{since } m \ge 0$$

$$> m \qquad \qquad \text{since } 1 > 0$$

Proof By Cases (3/3)

$$f(m) := 2m + 1 \qquad \qquad \text{if } m \ge 0$$

$$f(m) := 0 \qquad \qquad \text{if } m < 0$$

• Prove that f(m) > m

Case $m \ge 0$:

$$f(m) = ... > m$$

Case m < 0:

$$f(m) = 0 \qquad \qquad \text{def of } f \text{ (since } m < 0)$$

$$> m \qquad \qquad \text{since } m < 0$$

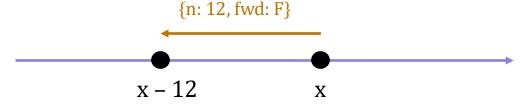
Since these two cases are exhaustive, f(m) > m holds in general.

Recall: Pattern Matching

Define a function by an exhaustive set of patterns

```
type Steps := \{n : \mathbb{N}, \text{ fwd} : \mathbb{B}\}
change(\{n: n, \text{ fwd} : T\}) := n
change(\{n: n, \text{ fwd} : F\}) := -n
```

- Steps describes movement on the number line
- change(s : Steps) says how the position changes



one of these two rules always applies

Proof by Cases, with Records (Case T)

```
change(\{n: n, fwd: T\}) := n
change(\{n: n, fwd: F\}) := -n
```

- Prove that |change(s)| = n for any $s = \{n: n, fwd: f\}$
 - we need to know if f = T or f = F to apply the definition!

```
Case f = T:

|change(\{n: n, fwd: f\})|
= |change(\{n: n, fwd: T\})|
= |n|
= n
since f = T
def of change
= n
since n \ge 0
```

Proof by Cases, with Records (Case F)

```
change(\{n: n, fwd: T\}) := n
change(\{n: n, fwd: F\}) := -n
```

• Prove that |change(s)| = n for any $s = \{n: n, fwd: f\}$

```
\begin{aligned} \text{Case } f &= T \colon |\text{change}(\{n : n, fwd : f\})| = ... = n \\ \\ \text{Case } f &= F \colon \\ |\text{change}(\{n : n, fwd : f\})| \\ &= |\text{change}(\{n : n, fwd : F\})| \\ &= |-n| \\ &= n \end{aligned} \qquad \begin{aligned} &\text{since } f = F \\ &\text{def of change} \\ &\text{since } n \geq 0 \end{aligned}
```

Since these two cases are exhaustive, the claim holds in general.

Proofs in Class & HW versus the "Real World"

- Lecture (mostly) focuses on toy examples
 - Goal is to explain syntax & intuition (and build skill)
 - Thus, pick simple problems (that may feel "obvious")
 Because I prep, I don't get "stuck"
- Section & HW (mostly) focuses on proving that correct code is correct
 - Seems mean to give you incorrect code :')
 Already had our mean era in HW 1-3
 - But, problems will be <u>new</u> and <u>more challenging</u>
- In real world, even harder problems and will not know correctness ahead of time

CSE 331 Summer 2025 Reasoning with Structural Induction Jaela Field

Common Proof by Calculation Mistakes

Assuming claim is true

$$2x + 1 = -(2x + 1)$$
 BAD $(2x + 1)^2 = (-1)^2(2x + 1)^2$ square both sides $4x^2 + 2x + 1 = 1(4x^2 + 2x + 1)$ foil $0 = 0$

Manipulating both sides of the equation

```
Example: prove x^2 + 1 > z, given x^2 = y and y > z
x^2 = y \qquad \qquad \text{since } x^2 = y
x^2 + 1 = y + 1 \qquad \text{add } 1 \text{ to both sides}
x^2 + 1 > z \qquad \qquad \text{since } y > z
```

Common Proof by Calculation Mistakes

- Mixing > and <
 - cannot conclude anything!

```
2 < 4 > 3 therefore 2 > 3... ★
```

- Applying multiple facts/defs in the same step
 - In the "real world" sometimes proof steps skip, here we want to see that you understand what applying each looks like
- Forgetting citations
 - It's okay to skip algebraic steps

Structural Induction

Proof by Calculation on Lists

- Our proofs so far have used fixed-length lists
 - e.g., sum(a :: b :: nil) ≥ 0
- Would like to prove facts about <u>any length</u> list L
- For example...

Example: Echo Function

Consider the following function:

```
echo(nil) := nil
echo(x :: L) := x :: x :: echo(L)
```

Produces a list where every element is repeated twice

```
echo(1 :: 2 :: nil)
= 1 :: 1 :: echo(2 :: nil)
= 1 :: 1 :: 2 :: 2 :: echo(nil)
= 1 :: 1 :: 2 :: 2 :: nil

def of echo
def of echo
```

Example: Proving Len & Echo Correct

```
echo(nil) := nil

echo(x :: L) := x :: x :: echo(L)
```

Suppose we have the following code:

- spec says to return len(echo(S)) but code returns 2 len(S)
- Need to prove that len(echo(S)) = 2 len(S)

Trying Proof by Cases on Len & Echo (1/2)

```
\begin{aligned} & \text{len}(e\text{cho}(S)) = 2 \, \text{len}(S) \\ & \text{Case } S = \text{nil}: \\ & \text{len}(e\text{cho}(S)) & = \text{len}(\text{nil}) & \text{def of echo (since } S = \text{nil}) \\ & = 0 & \text{def of len} \\ & = 2 \, \text{len}(\text{nil}) & \text{def of len} \\ & = 2 \, \text{len}(S) \end{aligned}
```

Trying Proof by Cases on Len & Echo (2/2)

```
len(echo(S)) = 2 len(S)
Case S = x :: L :
     len(echo(x :: L)) = len(x :: x :: echo(L))
                                                   def of echo
                       = 1 + len(x :: echo(L))
                                                   def of len
                       = 2 + len(echo(L))
                                                   def of len
Now need to prove: len(echo(L)) = 2 len(L)
Case L = nil: see previous slide
Case L = x :: M ::
    len(echo(x :: M)) = len(x :: x :: echo(M))
                                                   def of echo
                       = 1 + len(x :: echo(M))
                                                   def of len
                       = 2 + len(echo(M))
                                                   def of len
```

Now need to prove: len(echo(M)) = 2 len(M)

66

Proof by Cases Breaks on Inductive Data

- Our proofs so far have used fixed-length lists
 - e.g., sum(a :: b :: nil) ≥ 0
- Would like to prove facts about <u>any length</u> list L
- Need more tools for this...
 - structural recursion calculates on inductive types
 - structural induction reasons about structural recursion
 or more generally, to prove facts containing variables of an inductive type
 - both tools are specific to inductive types

Structural Induction is Two Implications

Let P(S) be the claim "len(echo(S)) = 2 len(S)"

To prove P(S) holds for <u>any</u> list S, prove two implications

Base Case: prove P(nil)

use any known facts and definitions

Inductive Step: prove P(x :: L)

- x and L are variables
- use any known facts and definitions plus one more fact...
- make use of the fact that L is also a List

Structural Induction: Inductive Hypothesis

To prove P(S) holds for any list S, prove two implications

Base Case: prove P(nil)

use any known facts and definitions

Inductive Hypothesis: assume P(L) is true

use this in the inductive step, but not anywhere else

Inductive Step: prove P(x :: L)

use known facts and definitions and <u>Inductive Hypothesis</u>

Why Structural Induction Works

With Structural Induction, we prove two facts

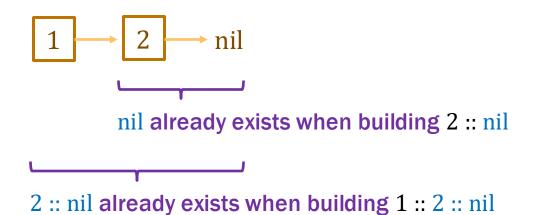
```
P(nil) len(echo(nil)) = 2 len(nil)
P(x :: L) \qquad len(echo(x :: L)) = 2 len(x :: L)
(second assuming len(echo(L)) = 2 len(L))
```

Why is this enough to prove P(S) for any S: List?

Inductive Data is "Built Up" in Steps

Build up an object using constructors:

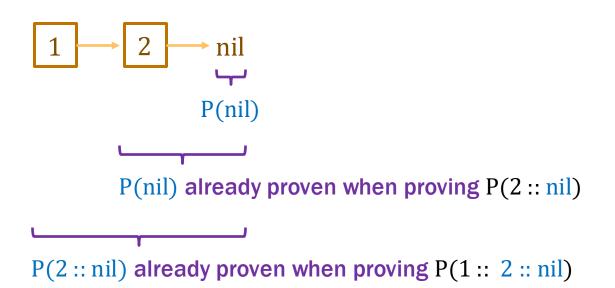
nil first constructor (nil)
2 :: nil second constructor (cons)
1 :: 2 :: nil second constructor (cons)



Inductive Proofs are "Built Up" in Steps

Build up a proof the same way we built up the object

```
P(nil) \qquad \qquad len(echo(nil)) = 2 len(nil) \\ P(x :: L) \qquad \qquad len(echo(x :: L)) = 2 len(x :: L) \\ (second assuming len(echo(L)) = 2 len(L))
```



Example: Echo & Len Base Case (1/2)

```
echo(nil) := nil

echo(x :: L) := x :: x :: echo(L)
```

• Prove that len(echo(S)) = 2 len(S) for any S : List

```
Base Case (nil):
    Need to prove that len(echo(nil)) = 2 len(nil)
    len(echo(nil)) =
```

len(nil) := 0 len(x :: L) := 1 + len(L)

Example: Echo & Len Base Case (2/2)

```
echo(nil) := nil

echo(x :: L) := x :: x :: echo(L)
```

• Prove that len(echo(S)) = 2 len(S) for any S : List

Base Case (nil):

```
len(echo(nil)) = len(nil) def of echo
= 0 def of len
= 2 \cdot 0
= 2 len(nil) def of len
```

Example: Echo & Len Inductive Step (1/3)

```
echo(nil) := nil

echo(x :: L) := x :: x :: echo(L)
```

• Prove that len(echo(S)) = 2 len(S) for any S : List

```
Inductive Step (x :: L):
```

Need to prove that len(echo(x :: L)) = 2 len(x :: L)

Get to assume claim holds for L, i.e., that len(echo(L)) = 2 len(L)

Example: Echo & Len Inductive Step (2/3)

```
echo(nil) := nil

echo(x :: L) := x :: x :: echo(L)
```

• Prove that len(echo(S)) = 2 len(S) for any S : List

```
Inductive Hypothesis: assume that len(echo(L)) = 2 len(L)
Inductive Step (x :: L):
len(echo(x :: L))
```

```
len(nil) := 0

len(x :: L) := 1 + len(L) = 2 len(x :: L)
```

Example: Echo & Len Inductive Step (3/3)

```
echo(nil) := nil

echo(x :: L) := x :: x :: echo(L)
```

• Prove that len(echo(S)) = 2 len(S) for any S : List

```
Inductive Hypothesis: assume that len(echo(L)) = 2 len(L)
```

Inductive Step (x :: L):

```
len(echo(x :: L)) = len(x :: x :: echo(L)) 
= 1 + len(x :: echo(L)) 
= 2 + len(echo(L)) 
= 2 + 2 len(L) 
= 2(1 + len(L)) 
= 2 len(x :: L) 
def of echo def of len def of len
```

Example 2: Echo & Sum

```
echo(nil) := nil

echo(x :: L) := x :: x :: echo(L)
```

Suppose we have the following code:

- spec says to return sum(echo(S)) but code returns 2 sum(S)
- Need to prove that sum(echo(S)) = 2 sum(S)

Example 2: Echo & Sum Base Case (1/2)

```
echo(nil) := nil
echo(x :: L) := x :: x :: echo(L)
```

• Prove that sum(echo(S)) = 2 sum(S) for any S : List

```
Base Case (nil):

sum(echo(nil)) =

= 2 sum(nil)
```

Example 2: Echo & Sum Base Case (2/2)

```
echo(nil) := nil

echo(x :: L) := x :: x :: echo(L)
```

• Prove that sum(echo(S)) = 2 sum(S) for any S : List

Base Case (nil):

```
sum(echo(nil)) = sum(nil) def of echo
= 0 def of sum
= 2 \cdot 0
= 2 sum(nil) def of sum
```

Inductive Step (x :: L):

Need to prove that sum(echo(x :: L)) = 2 sum(x :: L)Get to assume claim holds for L, i.e., that sum(echo(L)) = 2 sum(L)

Example 2: Echo & Sum Inductive Step (1/2)

```
echo(nil) := nil

echo(x :: L) := x :: x :: echo(L)
```

• Prove that sum(echo(S)) = 2 sum(S) for any S : List

```
Inductive Hypothesis: assume that sum(echo(L)) = 2 sum(L)
Inductive Step (x :: L):
sum(echo(x :: L)) =
```

```
= 2 \operatorname{sum}(x :: L)
```

```
sum(nil) := 0
sum(x :: L) := x + sum(L)
```

Example 2: Echo & Sum Inductive Step (2/2)

```
echo(nil) := nil

echo(x :: L) := x :: x :: echo(L)
```

• Prove that sum(echo(S)) = 2 sum(S) for any S : List

```
Inductive Hypothesis: assume that sum(echo(L)) = 2 sum(L)
```

Inductive Step (x :: L):

```
sum(echo(x :: L)) = sum(x :: x :: echo(L)) 
= x + sum(x :: echo(L)) 
= 2x + sum(echo(L)) 
= 2x + 2 sum(L) 
= 2(x + sum(L)) 
= 2 sum(x :: L) 
def of echo def of sum def of su
```

```
sum(nil) := 0
sum(x :: L) := x + sum(L)
```

Recall: Concatenating Two Lists

Mathematical definition of concat(S, R)

```
concat(nil, R) := R important operation concat(x :: L, R) := x :: concat(L, R) abbreviated as "#"
```

Puts all the elements of L before those of R

```
concat(1 :: 2 :: nil, 3 :: 4 :: nil)
= 1 :: concat(2 :: nil, 3 :: 4 :: nil)
= 1 :: 2 :: concat(nil, 3 :: 4 :: nil)
= 1 :: 2 :: 3 :: 4 :: nil

def of concat
def of concat
```

Example 3: Length of Concatenated Lists

```
concat(nil, R) := R important operation concat(x :: L, R) := x :: concat(L, R) abbreviated as "#"
```

Suppose we have the following code:

- spec returns len(concat(S, R)) but code returns len(S) + len(R)
- Need to prove that len(concat(S, R)) = len(S) + len(R)

Example 3: Len & Concat Base Case (1/2)

```
concat(nil, R) := R

concat(x :: L, R) := x :: concat(L, R))
```

- Prove that len(concat(S, R)) = len(S) + len(R)
 - prove by induction on S
 - prove the claim for any choice of R (i.e., R is a variable)

```
Base Case (nil):
    len(concat(nil, R))=
```

$$= len(nil) + len(R)$$

Example 3: Len & Concat Base Case (2/2)

```
concat(nil, R) := R

concat(x :: L, R) := x :: concat(L, R))
```

- Prove that len(concat(S, R)) = len(S) + len(R)
 - prove by induction on S
 - prove the claim for any choice of R (i.e., R is a variable)

```
Base Case (nil):
```

```
len(concat(nil, R)) = len(R) def of concat
= 0 + len(R)
= len(nil) + len(R) def of len
```

Example 3: Len & Concat Inductive Step (1/3)

$$concat(nil, R) := R$$

 $concat(x :: L, R) := x :: concat(L, R))$

Prove that len(concat(S, R)) = len(S) + len(R)

Inductive Step (x :: L):

Need to prove that

$$len(concat(x :: L, R)) = len(x :: L) + len(R)$$

Get to assume claim holds for L, i.e., that

$$len(concat(L, R)) = len(L) + len(R)$$

Example 3: Len & Concat Inductive Step (2/3)

```
concat(nil, R) := R

concat(x :: L, R) := x :: concat(L, R))
```

Prove that len(concat(S, R)) = len(S) + len(R)

```
Inductive Hypothesis: assume that len(concat(L, R)) = len(L) + len(R)
```

Inductive Step (x :: L):

$$len(concat(x :: L, R)) =$$

$$= len(x :: L) + len(R)$$

Example 3: Len & Concat Inductive Step (3/3)

```
concat(nil, R) := R

concat(x :: L, R) := x :: concat(L, R))
```

Prove that len(concat(S, R)) = len(S) + len(R)

```
Inductive Hypothesis: assume that len(concat(L, R)) = len(L) + len(R)
```

Inductive Step (x :: L):

```
len(concat(x :: L, R)) = len(x :: concat(L, R))  def of concat = 1 + len(concat(L, R))  def of len = 1 + len(L) + len(R)  Ind. Hyp. = len(x :: L) + len(R)  def of len
```

Comparing Reasoning vs Testing

```
const concat = (S: List, R: List): List => {
  if (S.kind === "nil") {
    return R;
  } else {
    return cons(S.hd, concat(S.tl, R));
  }
};
```

- Testing: 3 cases
 - loop coverage requires 0, 1, and many recursive calls
- Reasoning: 2 calculations

Structural Induction ... Gone Wrong? (1/3)

```
allEqual(nil) := true
allEqual(x :: nil) := true
allEqual(x :: y :: L) := x = y and allEqual(y :: L)
```

Claim: this function satisfies the above spec

```
const allEqual(S: List): boolean => {
  return true;
};
```

Need to prove that allEqual(S) = true

Structural Induction ... Gone Wrong? (2/3)

```
allEqual(nil) := true
              allEqual(x :: nil) := true
              allEqual(x :: y :: L) := x = y and allEqual(y :: L)
                       allEqual(nil) = true
Base Case (nil):
                                                     def of allEqual
Now, what if we got a bit sloppy?
Inductive Hypothesis: assume that allEqual(S) = true for lists S
Inductive Step (x :: S):
    Case (S = nil): allEqual(x:: nil) = true def of allEqual
    Case (S = y :: L):
    y :: L \text{ is a list - so, allEqual}(y :: L) = true
                                                          inductive hypothesis
    x :: y :: nil is a list - so allEqual(x :: y :: nil) = true
                                                          inductive hypothesis
         thus, x = y
                                                          definition of allEqual
    allEqual(x :: y :: L) = true
                                                          definition of allEqual
```

Structural Induction ... Gone Wrong? (3/3)

```
allEqual(nil) := true
              allEqual(x :: nil) := true
              allEqual(x :: y :: L) := x = y and allEqual(y :: L)
Base Case (nil):
                        allEqual(nil) = true
                                                     def of allEqual
Now, what if we got a bit sloppy?
Inductive Hypothesis: assume that all Equal (S) = true for lists S
                                                               can't assume claim!
Inductive Step (x :: S):
    Case (S = nil): allEqual(x:: nil) = true
                                                          def of allEqual
    Case (S = y :: L):
    y :: L \text{ is a list - so, allEqual}(y :: L) = true
                                                          not true!
    x :: y :: nil is a list - so allEqual(x :: y :: nil) = true
                                                          not true!
                                                          not true!
         thus, x = y
    allEqual(x :: y :: L) = true
                                                          not true!
```

Proof Strategy Advice

- Stuck on a proof and...
 - the data type is not inductive? Try splitting into cases!
 - the data type is inductive? Try structural induction!
- When using structural induction, consider
 - where can the inductive hypothesis be used? the power of structural induction!
 - which variable should be inducted on?
 - definitions can be applied in both directions

Example 4: Faster Sum

```
sum-acc(nil, r) := r

sum-acc(x :: L, r) := sum-acc(L, x + r)
```

Suppose we have the following code:

```
const s = sum_acc(S, 0);  // S is some List
...
return s; // = sum(S)
```

- spec says to return sum(S) but code returns sum-acc(S, 0)
- Need to prove that sum-acc(S, 0) = sum(S)
 - will prove, more generally, that sum-acc(S, r) = sum(S) + r

Example 4: Faster Sum Base Case (1/2)

```
sum-acc(nil, r) := r

sum-acc(x :: L, r) := sum-acc(L, x + r)
```

- Prove that sum-acc(S, r) = sum(S) + r
 - prove by induction on S
 - prove the claim for any choice of r (i.e., r is a variable)

```
Base Case (nil):

sum-acc(nil, r) =
```

$$= sum(nil) + r$$

Example 4: Faster Sum Base Case (2/2)

```
sum-acc(nil, r) := r

sum-acc(x :: L, r) := sum-acc(L, x + r)
```

- Prove that sum-acc(S, r) = sum(S) + r
 - prove by induction on S
 - prove the claim for any choice of r (i.e., r is a variable)

```
Base Case (nil):
```

```
sum-acc(nil, r) = r def of sum-acc
= 0 + r
= sum(nil) + r def of sum
```

Example 4: Faster Sum Inductive Step (1/3)

$$sum-acc(nil, r) := r$$

 $sum-acc(x :: L, r) := sum-acc(L, x + r)$

• Prove that sum-acc(S, r) = sum(S) + r

Inductive Step (x :: L):

Need to prove that

$$sum-acc(x :: L, r) = sum(x :: L) + r$$

Get to assume claim holds for L, i.e., that

$$sum-acc(L, r) = sum(L) + r$$
 holds for any r

Example 4: Faster Sum Inductive Step (2/3)

```
sum-acc(nil, r) := r

sum-acc(x :: L, r) := sum-acc(L, x + r)
```

• Prove that sum-acc(S, r) = sum(S) + r

```
Inductive Hypothesis: assume that sum-acc(L, r) = sum(L) + r

Inductive Step (x :: L):

sum-acc(x :: L, r) =
```

$$= sum(x :: L) + r$$

Example 4: Faster Sum Inductive Step (3/3)

```
sum-acc(nil, r) := r

sum-acc(x :: L, r) := sum-acc(L, x + r)
```

• Prove that sum-acc(S, r) = sum(S) + r

```
Inductive Hypothesis: assume that sum-acc(L, r) = sum(L) + r

Inductive Step (x :: L):

sum-acc(x :: L, r) = sum-acc(L, x + r) \qquad \text{def of sum-acc}
= sum(L) + x + r \qquad \text{Ind. Hyp.}
= x + sum(L) + r
= sum(x :: L) + r \qquad \text{def of sum}
```

Structural Induction in General

General case: assume P holds for constructor arguments

```
type T := A \mid B(x : \mathbb{Z}) \mid C(y : \mathbb{Z}, t : T) \mid D(z : \mathbb{Z}, u : T, v : T)
```

- To prove P(t) for any t, we need to prove:
 - P(A)
 - P(B(x)) for any $x : \mathbb{Z}$
 - P(C(y, t)) for any $y : \mathbb{Z}$ and t : T assuming P(t) is true
 - P(D(z, u, v)) for any $z : \mathbb{Z}$ and u, v : T assuming P(u) and P(v)
- These four facts are enough to prove P(t) for any t
 - for each constructor, have proof that it produces an object satisfying P
 - generally, each inductive type has its own form of induction

Defining Cases

- Case in inductive data type = case in structural inductive proof
 - "Smallest" form of data type = Base case in proof
 - Recursive case in data type = Inductive step in proof
- To prove P(t) for any t of type T:
 - We have 2 base cases

```
type T := A \mid B(x : \mathbb{Z}) \mid C(y : \mathbb{Z}, t : T) \mid D(z : \mathbb{Z}, u : T, v : T)
```

and 2 recursive cases

```
type T := A \mid B(x : \mathbb{Z}) \mid C(y : \mathbb{Z}, t : T) \mid D(z : \mathbb{Z}, u : T, v : T)
```

 Inductive proof will cover base cases in base case and recursive cases cases in inductive step

Induction Wrap up: Defining Cases

- If math def defines a case for recursive form of with a fixed size, that is still part of inductive step!
 - Example, from last lecture:

```
allEqual(nil) := true

allEqual(x:: nil) := true

allEqual(x:: y:: L) := x = y and allEqual(y :: L)
```

x :: nil uses recursive constructor of a List, so it should be part of the inductive step:

The following examples were not covered in lecture, but are useful practice, if needed!

Definition of List Reversal

- Reversal of a List: "same values but in reverse order"
- Look at some examples...

```
L rev(L)
nil nil
[3] [3] [3] 3 :: nil
[2, 3] [3, 2] 3 :: 2 :: nil
[1, 2, 3] [3, 2, 1] 3 :: 2 :: 1 :: nil
```

Structural Recursion in List Reversal

Look at some examples...

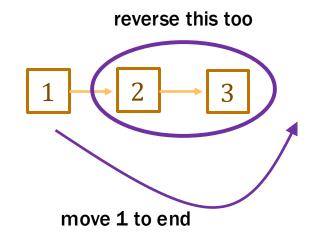
- Where does rev([2, 3]) show up in rev([1, 2, 3])?
 - at the beginning, with 1 :: nil after it
- Where does rev([3]) show up in rev([2, 3])?
 - at the beginning, with 2 :: nil after it

Recall: Reversing a List

Mathematical definition of rev(S)

```
rev(nil) := nil
rev(x:: L) := rev(L) # [x]
```

note that rev uses concat (#) as a helper function



Definition of List Reversal: Checking Examples

Mathematical definition of rev : List → List

$$rev(nil) := nil$$

 $rev(x :: L) := rev(L) + [x]$

Check that this matches examples...

```
rev(1 :: 2 :: 3 :: nil)
= rev(2 :: 3 :: nil) + [1] def of rev

= rev(3 :: nil) + [2] + [1] def of rev

= rev(nil) + [3] + [2] + [1] def of rev

= [] + [3] + [2] + [1] def of rev

= [] + [3] + [2] + [1] def of concat (many times)
```

Example 5: Length of Reversed List: Setup

```
rev(nil) := nil

rev(x :: L) := rev(L) \# [x]
```

Suppose we have the following code:

- spec returns len(rev(S)) but code returns len(S)
- Need to prove that len(rev(S)) = len(S) for any S : List

Example 5: Length of Reversed List (1/3)

```
rev(nil) := nil

rev(x :: L) := rev(L) \# [x]
```

• Prove that len(rev(S)) = len(S) for any S : List

```
Base Case (nil):  len(rev(nil)) = len(nil) \qquad \qquad def \ of \ rev   lnductive \ Step \ (cons(x,L)):   Need \ to \ prove \ that \ len(rev(x::L)) = len(x::L)   Get \ to \ assume \ that \ len(rev(L)) = len(L)
```

Example 5: Length of Reversed List (2/3)

```
rev(nil) := nil

rev(x :: L) := rev(L) \# [x]
```

• Prove that len(rev(S)) = len(S) for any S : List

= len(x :: L)

Example 5: Length of Reversed List (3/3)

```
rev(nil) := nil

rev(x :: L) := rev(L) \# [x]
```

• Prove that len(rev(S)) = len(S) for any S : List

```
Inductive Hypothesis: assume that len(rev(L)) = len(L)

Inductive Step (x :: L):

len(rev(x :: L))
= len(rev(L) \# [x]) \qquad \text{def of rev}
= len(rev(L)) + len([x]) \qquad \text{by Example 3}
= len(L) + len([x]) \qquad \text{Ind. Hyp.}
= len(L) + 1 + len(nil) \qquad \text{def of len}
= len(L) + 1 \qquad \text{def of len}
= len(x :: L) \qquad \text{def of len}
```

Finer Points of Structural Induction

- Structural Induction is how we reason about recursion
- Reasoning also follows structure of code
 - code uses structural recursion, so reasoning uses structural induction
- Note that rev is defined in terms of concat
 - reasoning about len(rev(...)) used fact about len(concat(...))
 - this is common

Example 6: Reversing a List Performance

```
rev(nil) := nil

rev(x :: L) := rev(L) \# [x]
```

- This correctly reverses a list but is slow
 - concat takes $\Theta(n)$ time, where n is length of L
 - n calls to concat takes $\theta(n^2)$ time
- Can we do this faster?
 - yes, but we need a helper function

Example 6: Reversing a List, Linear Time (1/3)

• **Helper function** rev-acc(S, R) **for any** S, R : List

```
rev-acc(nil, R) := R

rev-acc(x :: L, R) := rev-acc(L, x :: R)
```

rev-acc
$$\left(\begin{array}{c} 3 \\ \end{array}\right)$$
 $\left(\begin{array}{c} 4 \\ \end{array}\right)$ $\left(\begin{array}{c} 2 \\ \end{array}\right)$ $\left(\begin{array}{c} 1 \\ \end{array}\right)$ $\left(\begin{array}{c} 1 \\ \end{array}\right)$

Example 6: Reversing a List, Linear Time (2/3)

• **Helper function** rev-acc(S, R) **for any** S, R : List

Example 6: Reversing a List

• **Helper function** rev-acc(S, R) **for any** S, R : List

$$rev-acc(nil, R) := R$$

 $rev-acc(x :: L, R) := rev-acc(L, x :: R)$

Proving that rev-acc works, in pieces

```
rev-acc(nil, R) := R

rev-acc(x :: L, R) := rev-acc(L, x :: R)
```

- Can prove that rev-acc(S, R) = concat(rev(S), R) (Lemma 1)
- Can prove that concat(L, nil) = L (Lemma 2)
 - structural induction like prior examples
- Prove that rev(S) = rev-acc(S, nil)

Proving Lemma 2: Setup

```
rev-acc(nil, R) := R

rev-acc(x :: L, R) := rev-acc(L, x :: R)
```

Prove that concat(S, nil) = S

Proving Lemma 2: Inductive Step (1/2)

```
rev-acc(nil, R) := R

rev-acc(x :: L, R) := rev-acc(L, x :: R)
```

Prove that concat(S, nil) = S

Proving Lemma 2: Inductive Step (2/2)

```
rev-acc(nil, R) := R

rev-acc(x :: L, R) := rev-acc(L, x :: R)
```

Prove that concat(S, nil) = S

```
Inductive Hypothesis: assume that concat(L, nil) = L

Inductive Step (x :: L):

concat(x :: L, nil) = x :: concat(L, nil) \qquad \text{def of } concat
= x :: L \qquad \qquad \text{Ind. Hyp.}
```

Proving Lemma 1: Setup

$$rev-acc(nil, R) := R$$

 $rev-acc(x :: L, R) := rev-acc(L, x :: R)$

- Prove that rev-acc(S, R) = concat(rev(S), R)
 - prove by structural induction
- Need the following property of concat (#)

$$A + (B + C) = (A + B) + C$$

- with strings, we know that "A + (B + C) = (A + B) + C"
- this says the same thing for lists with "#"

Proving Lemma 1: Base Case (1/2)

```
rev-acc(nil, R) := R

rev-acc(x :: L, R) := rev-acc(L, x :: R)
```

- Prove that rev-acc(S, R) = concat(rev(S), R)
 - prove by induction on S (so R is a variable)

Proving Lemma 1: Base Case (2/2)

```
rev-acc(nil, R) := R

rev-acc(x :: L, R) := rev-acc(L, x :: R)
```

- Prove that rev-acc(S, R) = concat(rev(S), R)
 - prove by induction on S (so R is a variable)

Base Case (nil):

```
 rev-acc(nil, R) = R 
 = concat(nil, R) 
 = concat(rev(nil), R) 
 def of rev-acc 
 def of concat 
 def of rev
```

Proving Lemma 1: Inductive Step (1/4)

```
rev-acc(nil, R) := R

rev-acc(x :: L, R) := rev-acc(L, x :: R)
```

• **Prove that** rev-acc(S, R) = concat(rev(S), R)

```
Inductive Hypothesis: assume that rev-acc(L, R) = concat(rev(L), R) for any R
```

```
Inductive Step (x :: L):
```

```
rev-acc(x :: L, R) =
```

```
= concat(rev(x :: L), R)
```

Proving Lemma 1: Inductive Step (2/4)

```
rev-acc(nil, R) := R

rev-acc(x :: L, R) := rev-acc(L, x :: R)
```

Prove that rev-acc(S, R) = concat(rev(S), R)

Inductive Hypothesis: assume that rev-acc(L, R) = concat(rev(L), R) for any R

Inductive Step (x :: L):

```
rev-acc(x :: L, R) = rev-acc(L, x :: R) def of rev-acc = concat(rev(L), x :: R) lnd. Hyp.
```

=
$$(rev(L) + [x]) + R$$
 ??
= $concat(rev(L) + [x], R)$

= concat(rev(x :: L), R) **def of** rev

 $\begin{array}{lll} concat(nil,R) & := R & rev(nil) & := nil \\ concat(x::L,R) & := x::concat(L,R) & rev(x::L) & := rev(L) \# [x] \end{array}$

Proving Lemma 1: Inductive Step (3/4)

```
rev-acc(nil, R) := R

rev-acc(x :: L, R) := rev-acc(L, x :: R)
```

Prove that rev-acc(S, R) = concat(rev(S), R)

Inductive Hypothesis: assume that rev-acc(L, R) = concat(rev(L), R) for any R

Inductive Step (x :: L):

```
rev-acc(x :: L, R) = rev-acc(L, x :: R)  def of rev-acc = concat(rev(L), x :: R)  Ind. Hyp. = rev(L) \# ([x] \# R)  = (rev(L) \# [x]) \# R  assoc. of \# = concat(rev(L) \# [x], R)  = concat(rev(x :: L), R)  def of rev
```

concat(nil, R) := Rconcat(x :: L, R) := x :: concat(L, R) rev(nil) := nilrev(x :: L) := rev(L) + [x]

Proving Lemma 1: Inductive Step (4/4)

```
rev-acc(nil, R) := R

rev-acc(x :: L, R) := rev-acc(L, x :: R)
```

Prove that rev-acc(S, R) = concat(rev(S), R)

Inductive Hypothesis: assume that rev-acc(L, R) = concat(rev(L), R) for any R

Inductive Step (x :: L):

```
\begin{split} rev\text{-}acc(x :: L, R) &= rev\text{-}acc(L, x :: R) & \text{def of rev--acc} \\ &= concat(rev(L), x :: R) & \text{Ind. Hyp.} \\ &= rev(L) \# (x :: R) & \text{def of concat} \\ &= rev(L) \# (x :: R) & \text{def of concat} \\ &= (rev(L) \# (x :: L) \# R) & \text{assoc. of } \# \\ &= concat(rev(L) \# (x :: L), R) & \text{def of rev} \\ \end{split}
```

concat(nil, R) := Rconcat(x :: L, R) := x :: concat(L, R) rev(nil) := nilrev(x :: L) := rev(L) + [x]