
Reasoning

Jaela Field

CSE 331

Summer 2025

xkcd #1739, ty Matt

Administrivia

• HW4 is out!

– it contains math and programming

– more emphasis on correctness now!

– Start early!

– 6 Tasks of varying length

~ 1 a day is a good goal!

• Jaela OH today: 12:30 - 1:30 CSE 2/F & zoom

• Bonus lecture on software development coming

this weekend!
2

Agenda

✓ Administrivia

• Finish Testing (finish topic 4)

– Practice exercises

• Reasoning (start topic 5)

3

Reacp: Testing so far

• Ground Rules

– Only test inputs allowed by the spec

– Test functions individually

– Keep test code simple

– If there are < 10 inputs, test them all!

• Metrics

– Statement coverage

Execute every statement that is reachable by an allowed input

– Branch coverage

For every conditional, execute both branches (if they are reachable
by an allowed input

4

(end of testing in Topic 4 slides)

Agenda

✓ Administrivia

✓ Finish Testing (finish topic 4)

✓ Practice exercises

• Reasoning (start topic 5)

6

Reasoning

• “Thinking through” what the code does on all inputs

– neither testing nor type checking can do this

• Can be done formally or informally

– most professionals reason informally

– we will start with formal reasoning and move to informal

formal reasoning is a stepping stone to informal reasoning (same core ideas)

formal reasoning still needed for the hardest problems

• Definition of correctness comes from the

specification…

7

Correctness Requires a Specification

Specification contains two sets of facts

 Precondition:
facts we are promised about the inputs

 Postcondition:
facts we are required to ensure for the output

 Correctness (satisfying the spec):
for every input satisfying the precondition,

the output will satisfy the postcondition

8

Recall: Specifications with JSDoc

• TypeScript, like Java, writes specs in /** … */

/**

 * High level description of what function does

 * @param a What "a" represents + any conditions

 * @param b What "b" represents + any conditions

 * @returns Detailed description of return value

 */

const f = (a: bigint, b: bigint): bigint => {..};

– these are formatted as “JSDoc” comments

– (in Java, they are JavaDoc comments)

9

Preconditions & Postconditions in JSDoc

• Specifications are written in the comments

/**

 * Returns the first n elements from the list L

 * @param n non-negative length of the prefix

 * @param L the list whose prefix should be returned

 * @requires n <= len(L)

 * @returns list S such that L = S ++ T for some T

 */

const prefix = (n: bigint, L: List): List => {..};

– precondition written in @param and @requires

– postcondition written in @returns

10

Aside: Documentation + Testing

• We discussed clear-box testing

– involves determining cases based on structure of code

– can result in buggy tests due to bias!

• Alternative: Opaque-Box Testing

– focuses solely on inputs and outputs

– testers don’t look at the code, instead test to the spec

still care about different input cases

– very widely used in industry!

• Our primary approach is clear-box testing

– rule of only testing inputs allowed by the spec is an

opaque testing idea

11

Facts (1/2)

• Basic inputs to reasoning are “facts”

– things we know to be true about the variables

these hold for all inputs (no matter what value the variable has)

– typically, “=” or “≤”

// @param n a natural number

const f = (n: bigint): bigint => {

 const m = 2n * n;

 return (m + 1n) * (m – 1n);

};

• At the return statement, we know these facts:

– n ∈ ℕ (or n ∈ ℤ and n ≥ 0)

– m = 2n

find facts by reading along path

from top to return statement

12

Facts (2/2)

• Basic inputs to reasoning are “facts”

– things we know to be true about the variables

these hold for all inputs (no matter what value the variable has)

– typically, “=” or “≤”

// @param n a natural number

const f = (n: bigint): bigint => {

 const m = 2n * n;

 return (m + 1n) * (m – 1n);

};

• No need to include the fact that n is an integer (n ∈ ℤ)

– that is true, but the type checker takes care of that

– no need to repeat reasoning done by the type checker

13

Finding Facts at a Return Statement

• Consider this code

// Returns a non-negative integer.

const f = (a: bigint, b: bigint): bigint => {

 const L: List = cons(a, cons(b, nil));

 if (a >= 0n && b >= 0n)

 return sum(L);

 …

• Known facts include “a ≥ 0”, “b ≥ 0”, and “L = cons(…)”

• Remains to prove that “sum(L) ≥ 0”

find facts by reading along path

from top to return statement

facts are math statements about the code

14

Reasoning: Proof by Calculation

 & Cases
Jaela Field

CSE 331 Summer 2025

Administrivia

• optional lecture on Software Development Process

available on Panopto

16

Recall: Correctness Requires a Specification

Specification contains two sets of facts

 Precondition:
facts we are promised about the inputs

 Postcondition:
facts we are required to ensure for the output

 Correctness (satisfying the spec):
for every input satisfying the precondition,

the output will satisfy the postcondition

17

Recall: Finding Facts at a Return Statement

• Consider this code

// Returns a non-negative integer.

const f = (a: bigint, b: bigint): bigint => {

 const L: List = cons(a, cons(b, nil));

 if (a >= 0n && b >= 0n)

 return sum(L);

 …

• Known facts include “a ≥ 0”, “b ≥ 0”, and “L = cons(…)”

• Remains to prove that “sum(L) ≥ 0”

find facts by reading along path

from top to return statement

facts are math statements about the code

18

Implications

• We can use the facts we know to prove more facts

– if we can prove R using facts P and Q,

we say that R “follows from” or “is implied by” P and Q

– proving this fact is proving an “implication”

• Checking correctness requires proving implications

– need to prove facts about the return values

– return values must satisfy the facts of the postcondition

19

Collecting Facts

• Saw how to collect facts in code consisting of

– "const" variable declarations

– "if" statements

– collect facts by reading along path from top to return

• Those elements cover all code without mutation

– covers everything describable by our math notation

– we can calculate interesting values with recursion

• Will need more tools to handle code with mutation…

20

Mutation Makes Reasoning Harder

Description Testing Tools Reasoning

no mutation full coverage type checker calculation
induction

local variable mutation “” “” Floyd logic

array mutation “” “” for-any facts

heap state mutation “” “” rep invariants

HW5

HW6

21

Correctness with No Mutation

• Proving implications is the core step of reasoning

– other techniques output implications for us to prove

• Facts are written in our math notation

– we will use math tools to prove implications

• Core technique is "proof by calculation"

• Other techniques we will need:

– proof by cases (Today)

– structural induction (Wednesday)

22

Proof by Calculation

Proof by Calculation

• Proves an implication

– fact to be shown is an equation or inequality

• Uses known facts and definitions

– latter includes, e.g., the fact that len(nil) = 0

24

Example Proof by Calculation

• Given x = y and z ≤ 10, prove that x + z ≤ y + 10
– show the third fact follows from the first two

• Start from the left side of the inequality to be proved

x + z

since x = y

= y + z ≤ y + 10

since z ≤ 10

All together, this tells us that x + z ≤ y + 10

25

Example Proof by Calculation (across lines)

• Given x = y and z ≤ 10, prove that x + z ≤ y + 10
– show the third fact follows from the first two

• Start from the left side of the inequality to be proved

x + z = y + z since x = y

 ≤ y + 10 since z ≤ 10

– easier to read when split across lines

– “calculation block”, includes explanations in right column

proof by calculation means using a calculation block

– “=” or “≤” relates that line to the previous line

26

Calculation Blocks: Equalities

• Chain of “=” shows first = last

a = b

 = c

 = d

– proves that a = d

– all 4 of these are the same number

27

Calculation Blocks: Inequalities

• Chain of “=” and “≤” shows first ≤ last

x + z = y + z since x = y

 ≤ y + 10 since z ≤ 10

 = y + 3 + 7

 ≤ w + 7 since y + 3 ≤ w

– each number is equal or strictly larger that previous

last number is strictly larger than the first number

– analogous for “≥”

28

Calculation Blocks: Mixing Inequalities Gotcha

• Consider:

1 + 1 = 2

 ≥ 2 ∗ 1

 = 1 * 2

 ≤ 1 * 3

 ≥ 3

– cannot derive meaningful conclusion from “proof”

each step is still true, but cannot make final conclusion

– rule of thumb: inequalities should only go in one direction

29

Proving Code by Calculation: Example 1 (1/2)

// Inputs x and y are positive integers

// Returns a positive integer.

const f = (x: bigint, y, bigint): bigint => {

 return x + y;

};

• Known facts “x ≥ 1” and “y ≥ 1”

• Correct if the return value is a positive integer

x + y

30

Proving Code by Calculation: Example 1 (2/2)

// Inputs x and y are positive integers

// Returns a positive integer.

const f = (x: bigint, y, bigint): bigint => {

 return x + y;

};

• Known facts “x ≥ 1” and “y ≥ 1”

• Correct if the return value is a positive integer

x + y ≥ x + 1 since y ≥ 1

 ≥ 1 + 1 since x ≥ 1

 = 2

 ≥ 1

– calculation shows that x + y ≥ 1
31

Proving Code by Calculation: Example 2 (1/2)

// Inputs x and y are integers with x > 8 and y > -9

// Returns a positive integer.

const f = (x: bigint, y, bigint): bigint => {

 return x + y;

};

• Known facts “x ≥ 9” and “y ≥ –8”

• Correct if the return value is a positive integer

x + y

32

Proving Code by Calculation: Example 2 (2/2)

// Inputs x and y are integers with x > 8 and y > -9

// Returns a positive integer.

const f = (x: bigint, y, bigint): bigint => {

 return x + y;

};

• Known facts “x ≥ 9” and “y ≥ –8”

• Correct if the return value is a positive integer

x + y ≥ x + -8 since y ≥ -8

 ≥ 9 – 8 since x ≥ 9

 = 1

33

Proving Code by Calculation: Example 3 (1/2)

// Inputs x and y are integers with x > 8 and y > -9

// Returns a positive integer.

const f = (x: bigint, y, bigint): bigint => {

 return x + y;

};

• Known facts “x > 8” and “y > –9”

• Correct if the return value is a positive integer

x + y

34

Proving Code by Calculation: Example 3 (2/2)

// Inputs x and y are integers with x > 8 and y > -9

// Returns a positive integer.

const f = (x: bigint, y, bigint): bigint => {

 return x + y;

};

• Known facts “x > 8” and “y > –9”

• Correct if the return value is a positive integer

x + y > x + -9 since y > -9

 > 8 - 9 since x > 8

 = -1

warning: avoid using “>” (or “<“) multiple times in a calculation block 35

Proving Code by Calculation: Example 4 (1/2)

// Inputs x and y are integers with x > 3 and y > 4

// Returns an integer that is 10 or larger.

const f = (x: bigint, y, bigint): bigint => {

 return x + y;

};

• Known facts “x ≥ 4” and “y ≥ 5”

• Correct if the return value is 10 or larger

x + y

36

Proving Code by Calculation: Example 4 (2/2)

// Inputs x and y are integers with x > 3 and y > 4

// Returns an integer that is 10 or larger.

const f = (x: bigint, y, bigint): bigint => {

 return x + y;

};

• Known facts “x ≥ 4” and “y ≥ 5”

• Correct if the return value is 10 or larger

x + y ≥ x + 5 since y ≥ 5

 ≥ 4 + 5 since x ≥ 4

 = 9

proof doesn’t work because the code is wrong!

37

Practice #1!

// Inputs x and y are integers with x > 0 and y < 0

 // Returns a positive integer.

 const f = (x: bigint, y: bigint): bigint => {

 return x – y + 1;

 };

• Prove that the post condition is correct

– What is the fact to prove?

– What are the known facts?

– Proof:

38

x – y + 1 ≥ 1

x ≥ 1 and y ≤ -1

x – y + 1 ≥ 1 – y + 1 since x ≥ 1
 ≥ 1 + 1 + 1 since y ≤ -1
 ≥ 1

Using Definitions in Calculations

• Most useful with function calls

– cite the definition of the function to get the return value

• For example:

 sum(nil) := 0

 sum(x :: L) := x + sum(L)

• Can cite facts such as

– sum(nil) = 0

– sum(a :: b :: nil) = a + sum(b :: nil)

second case of definition with x = a and L = b :: nil

39

Recall: Finding Facts at a Return Statement

• Consider this code

// Inputs a and b must be integers.

// Returns a non-negative integer.

const f = (a: bigint, b: bigint): bigint => {

 const L: List = cons(a, cons(b, nil));

 if (a >= 0n && b >= 0n)

 return sum(L);

 …

• Known facts include “a ≥ 0”, “b ≥ 0”, and “L = cons(…)”

• Must prove that sum(L) ≥ 0

find facts by reading along path

from top to return statement

40

Using Definitions in Calculations (1/2)

 sum(nil) := 0

 sum(x :: L) := x + sum(L)

• Know “a ≥ 0”, “b ≥ 0”, and “L = a :: b :: nil”

• Prove the “sum(L)” is non-negative

sum(L)

41

Using Definitions in Calculations (2/2)

 sum(nil) := 0

 sum(x :: L) := x + sum(L)

• Know “a ≥ 0”, “b ≥ 0”, and “L = a :: b :: nil”

• Prove the “sum(L)” is non-negative

sum(L) = sum(a :: b :: nil) since L = a :: b :: nil

 = a + sum(b :: nil) def of sum

 = a + b + sum(nil) def of sum

 = a + b def of sum

 ≥ 0 + b since a ≥ 0

 ≥ 0 since b ≥ 0

42

Practice #2!

// Returns a non-empty List.

 const f = (x: bigint): List<bigint> => {

 const L: List = cons(x, cons(-x, nil);

 return L;

 };

• Recall: len(nil) := 0

 len(x :: L) := 1 + len(L)

• Prove that the post condition is correct

– What is the fact to prove?

– What are the known facts?

– Proof:

43

len(L) > 0

L = x :: -x :: nil

len(L) = len(x :: -x :: nil) since L = x :: -x :: nil
 = 1 + len(-x :: nil) def of len
 = 1 + 1 + len(nil) def of len
 = 1 + 1 + 0 def of len
 > 0

Proving Correctness with Conditionals (Top)

// Inputs x and y are integers.

// Returns a number less than x.

const f = (x: bigint, y, bigint): bigint => {

 if (y < 0n) {

 return x + y;

 } else {

 return x – 1n;

 }

};

• Known fact in “then” (top) branch: “y ≤ -1”

x + y ≤ x + -1 since y ≤ -1

 < x + 0 since -1 < 0

 = x

44

x + y

Proving Correctness with Conditionals (Bottom)

// Inputs x and y are integers.

// Returns a number less than x.

const f = (x: bigint, y, bigint): bigint => {

 if (y < 0n) {

 return x + y;

 } else {

 return x – 1n;

 }

};

• Known fact in else (bottom) branch: “y ≥ 0”

x – 1 < x + 0 since –1 < 0

 = x

45

x – 1

Proving Correctness with Multiple Claims

• Need to check the claim from the spec at each return

• If spec claims multiple facts, then

we must prove that each of them holds

// Inputs x and y are integers with x < y - 1

// Returns a number less than y and greater than x.

const f = (x: bigint, y, bigint): bigint => { .. };

– multiple known facts: x : ℤ, y : ℤ, and x < y – 1

– multiple claims to prove: x < r and r < y
where “r” is the return value

– requires two calculation blocks

46

Example Correctness with Conditionals

// Returns r with (r=a or r=b) and r >= a and r >= b

const max = (a: bigint, b, bigint): bigint => {

 if (a >= b) {

 return a;

 } else {

 return b;

 }

};

• Three different facts to prove at each return

• Two known facts in each branch (return value is “r”):

– then branch: a ≥ b and r = a

– else branch: a < b and r = b

declarative spec of max

47

Proof by Cases

Proof By Cases

• Sometimes necessary split a proof into cases

– fact may be hard to prove for all values at once

• Example: can't prove it for all x at once,

but can prove it for x ≥ 0 and x < 0
– will see an example next

• If we can prove it in those two cases, it holds for all x
– follows since the cases are exhaustive

(don’t need to be exclusive in this case)

49

Example Proof By Cases

f : ℤ → ℤ

 f(m) := 2m + 1 if m ≥ 0

 f(m) := 0 if m < 0

• Want to prove that f(m) > m

• Doesn't seem possible as is

– can't even apply the definition of f

– need to know if m < 0 or m ≥ 0

• Split our analysis into these two separate cases…

50

Proof By Cases (1/3)

f(m) := 2m + 1 if m ≥ 0

 f(m) := 0 if m < 0

• Prove that f(m) > m

Case m ≥ 0:

 f(m) =

 > m

51

Proof By Cases (2/3)

f(m) := 2m + 1 if m ≥ 0

 f(m) := 0 if m < 0

• Prove that f(m) > m

Case m ≥ 0:

 f(m) = 2m + 1 def of f (since m ≥ 0)

 ≥ m + 1 since m ≥ 0

 > m since 1 > 0

52

Proof By Cases (3/3)

f(m) := 2m + 1 if m ≥ 0

 f(m) := 0 if m < 0

• Prove that f(m) > m

Case m ≥ 0:

 f(m) = … > m

Case m < 0:

 f(m) = 0 def of f (since m < 0)

 > m since m < 0

Since these two cases are exhaustive, f(m) > m holds in general.

53

Recall: Pattern Matching

• Define a function by an exhaustive set of patterns

 type Steps := {n : ℕ, fwd : 𝔹}

 change({n: n, fwd: T}) := n

 change({n: n, fwd: F}) := –n

– Steps describes movement on the number line

– change(s : Steps) says how the position changes

– one of these two rules always applies

xx – 12

{n: 12, fwd: F}

54

Proof by Cases, with Records (Case T)

 change({n: n, fwd: T}) := n

 change({n: n, fwd: F}) := -n

• Prove that |change(s)| = n for any s = {n: n, fwd: f}

– we need to know if f = T or f = F to apply the definition!

Case f = T:

 |change({n: n, fwd: f})|

 = |change({n: n, fwd: T})| since f = T

 = |n| def of change

 = n since n ≥ 0

55

Proof by Cases, with Records (Case F)

 change({n: n, fwd: T}) := n

 change({n: n, fwd: F}) := -n

• Prove that |change(s)| = n for any s = {n: n, fwd: f}

Case f = T: |change({n: n, fwd: f})| = … = n

Case f = F:

 |change({n: n, fwd: f})|

 = |change({n: n, fwd: F})| since f = F

 = |-n| def of change

 = n since n ≥ 0

Since these two cases are exhaustive, the claim holds in general.

56

Proofs in Class & HW versus the “Real World”

• Lecture (mostly) focuses on toy examples

– Goal is to explain syntax & intuition (and build skill)

– Thus, pick simple problems (that may feel “obvious”)

Because I prep, I don’t get “stuck”

• Section & HW (mostly) focuses on proving that

correct code is correct

– Seems mean to give you incorrect code :’)

Already had our mean era in HW 1-3

– But, problems will be new and more challenging

• In real world, even harder problems and

will not know correctness ahead of time
57

Reasoning with Structural Induction

Jaela Field

CSE 331 Summer 2025

Common Proof by Calculation Mistakes

• Assuming claim is true
 2x + 1 = -(2x + 1) BAD

 (2x + 1)2 = (-1)2(2x + 1)2 square both sides

4x2 + 2x + 1 = 1(4x2+2x+1) foil

 0 = 0

• Manipulating both sides of the equation
Example: prove x2 + 1 > z, given x2 = y and y > z

 x2 = y since x2 = y

x2 + 1 = y + 1 add 1 to both sides

x2 + 1 > z since y > z

59

Common Proof by Calculation Mistakes

• Mixing > and <
– cannot conclude anything!

2 < 4

 > 3 therefore 2 > 3…

• Applying multiple facts/defs in the same step

– In the “real world” sometimes proof steps skip, here we want

to see that you understand what applying each looks like

• Forgetting citations

– It’s okay to skip algebraic steps

60

Structural Induction

Proof by Calculation on Lists

• Our proofs so far have used fixed-length lists

– e.g., sum(a :: b :: nil) ≥ 0

• Would like to prove facts about any length list L

• For example…

62

Example: Echo Function

• Consider the following function:

 echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Produces a list where every element is repeated twice

echo(1 :: 2 :: nil)

 = 1 :: 1 :: echo(2 :: nil) def of echo

 = 1 :: 1 :: 2 :: 2 :: echo(nil) def of echo

 = 1 :: 1 :: 2 :: 2 :: nil def of echo

63

Example: Proving Len & Echo Correct

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Suppose we have the following code:

const m = len(S); // S is some List

const R = echo(S);

…

return 2*m; // = len(echo(S))

– spec says to return len(echo(S)) but code returns 2 len(S)

• Need to prove that len(echo(S)) = 2 len(S)

64

Trying Proof by Cases on Len & Echo (1/2)

len(echo(S)) = 2 len(S)

Case S = nil:

 len(echo(S)) = len(nil) def of echo (since S = nil)

 = 0 def of len

 = 2 len(nil) def of len

 = 2 len(S)

65

Trying Proof by Cases on Len & Echo (2/2)

len(echo(S)) = 2 len(S)

Case S = x :: L :

 len(echo(x :: L)) = len(x :: x :: echo(L)) def of echo

 = 1 + len(x :: echo(L)) def of len

 = 2 + len(echo(L)) def of len

Now need to prove: len(echo(L)) = 2 len(L)

Case L = nil: see previous slide

Case L = x :: M :

 len(echo(x :: M)) = len(x :: x :: echo(M)) def of echo

 = 1 + len(x :: echo(M)) def of len

 = 2 + len(echo(M)) def of len

Now need to prove: len(echo(M)) = 2 len(M)

66

Proof by Cases Breaks on Inductive Data

• Our proofs so far have used fixed-length lists

– e.g., sum(a :: b :: nil) ≥ 0

• Would like to prove facts about any length list L

• Need more tools for this…

– structural recursion calculates on inductive types

– structural induction reasons about structural recursion

or more generally, to prove facts containing variables of an inductive type

– both tools are specific to inductive types

67

Structural Induction is Two Implications

Let P(S) be the claim “len(echo(S)) = 2 len(S)”

To prove P(S) holds for any list S, prove two implications

 Base Case: prove P(nil)

– use any known facts and definitions

 Inductive Step: prove P(x :: L)

– x and L are variables

– use any known facts and definitions plus one more fact…

– make use of the fact that L is also a List

68

Structural Induction: Inductive Hypothesis

To prove P(S) holds for any list S, prove two implications

 Base Case: prove P(nil)

– use any known facts and definitions

 Inductive Hypothesis: assume P(L) is true

– use this in the inductive step, but not anywhere else

 Inductive Step: prove P(x :: L)

– use known facts and definitions and Inductive Hypothesis

69

Why Structural Induction Works

With Structural Induction, we prove two facts

 P(nil) len(echo(nil)) = 2 len(nil)

 P(x :: L) len(echo(x :: L)) = 2 len(x :: L)

 (second assuming len(echo(L)) = 2 len(L))

Why is this enough to prove P(S) for any S : List?

70

Inductive Data is “Built Up” in Steps

Build up an object using constructors:

 nil first constructor (nil)

 2 :: nil second constructor (cons)

 1 :: 2 :: nil second constructor (cons)

1 2 nil

nil already exists when building 2 :: nil

2 :: nil already exists when building 1 :: 2 :: nil

71

Inductive Proofs are “Built Up” in Steps

Build up a proof the same way we built up the object

 P(nil) len(echo(nil)) = 2 len(nil)

 P(x :: L) len(echo(x :: L)) = 2 len(x :: L)

 (second assuming len(echo(L)) = 2 len(L))

1 2 nil

P(nil) already proven when proving P(2 :: nil)

P(2 :: nil) already proven when proving P(1 :: 2 :: nil)

P(nil)

72

Example: Echo & Len Base Case (1/2)

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that len(echo(S)) = 2 len(S) for any S : List

Base Case (nil):

 Need to prove that len(echo(nil)) = 2 len(nil)

 len(echo(nil)) =

len(nil) := 0

len(x :: L) := 1 + len(L)
73

Example: Echo & Len Base Case (2/2)

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that len(echo(S)) = 2 len(S) for any S : List

Base Case (nil):

 len(echo(nil)) = len(nil) def of echo

= 0 def of len

= 2 · 0
 def of len = 2 len(nil)

74

Example: Echo & Len Inductive Step (1/3)

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that len(echo(S)) = 2 len(S) for any S : List

Inductive Step (x :: L):

 Need to prove that len(echo(x :: L)) = 2 len(x :: L)

 Get to assume claim holds for L, i.e., that len(echo(L)) = 2 len(L)

75

Example: Echo & Len Inductive Step (2/3)

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that len(echo(S)) = 2 len(S) for any S : List

Inductive Hypothesis: assume that len(echo(L)) = 2 len(L)

Inductive Step (x :: L):

 len(echo(x :: L))

 = 2 len(x :: L)
len(nil) := 0

len(x :: L) := 1 + len(L)
76

Example: Echo & Len Inductive Step (3/3)

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that len(echo(S)) = 2 len(S) for any S : List

Inductive Hypothesis: assume that len(echo(L)) = 2 len(L)

Inductive Step (x :: L):

 len(echo(x :: L)) = len(x :: x :: echo(L)) def of echo

 = 2 len(x :: L)

= 1 + len(x :: echo(L)) def of len

= 2 + len(echo(L)) def of len

= 2 + 2 len(L) Ind. Hyp.

= 2(1 + len(L))

def of len

77

Example 2: Echo & Sum

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Suppose we have the following code:

const y = sum(S); // S is some List

const R = echo(S);

…

return 2*y; // = sum(echo(S))

– spec says to return sum(echo(S)) but code returns 2 sum(S)

• Need to prove that sum(echo(S)) = 2 sum(S)

78

Example 2: Echo & Sum Base Case (1/2)

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that sum(echo(S)) = 2 sum(S) for any S : List

Base Case (nil):

 sum(echo(nil)) =

 = 2 sum(nil)

sum(nil) := 0

sum(x :: L) := x + sum(L)
79

Example 2: Echo & Sum Base Case (2/2)

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that sum(echo(S)) = 2 sum(S) for any S : List

Base Case (nil):

 sum(echo(nil)) = sum(nil) def of echo

 = 2 sum(nil)

Inductive Step (x :: L):

 Need to prove that sum(echo(x :: L)) = 2 sum(x :: L)

 Get to assume claim holds for L, i.e., that sum(echo(L)) = 2 sum(L)

= 0 def of sum

= 2 · 0

def of sum

80

Example 2: Echo & Sum Inductive Step (1/2)

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that sum(echo(S)) = 2 sum(S) for any S : List

Inductive Hypothesis: assume that sum(echo(L)) = 2 sum(L)

Inductive Step (x :: L):

 sum(echo(x :: L)) =

 = 2 sum(x :: L)

sum(nil) := 0

sum(x :: L) := x + sum(L)
81

Example 2: Echo & Sum Inductive Step (2/2)

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that sum(echo(S)) = 2 sum(S) for any S : List

Inductive Hypothesis: assume that sum(echo(L)) = 2 sum(L)

Inductive Step (x :: L):

 sum(echo(x :: L)) = sum(x :: x :: echo(L)) def of echo

 = x + sum(x :: echo(L)) def of sum

 = 2x + sum(echo(L)) def of sum

 = 2x + 2 sum(L) Ind. Hyp.

 = 2(x + sum(L))

 = 2 sum(x :: L) def of sum

82

sum(nil) := 0

sum(x :: L) := x + sum(L)

Recall: Concatenating Two Lists

• Mathematical definition of concat(S, R)

 concat(nil, R) := R

 concat(x :: L, R) := x :: concat(L, R)

• Puts all the elements of L before those of R

concat(1 :: 2 :: nil, 3 :: 4 :: nil)

 = 1 :: concat(2 :: nil, 3 :: 4 :: nil) def of concat

 = 1 :: 2 :: concat(nil, 3 :: 4 :: nil) def of concat

 = 1 :: 2 :: 3 :: 4 :: nil def of concat

important operation

abbreviated as "⧺"

83

Example 3: Length of Concatenated Lists

concat(nil, R) := R

 concat(x :: L, R) := x :: concat(L, R))

• Suppose we have the following code:

const m = len(S); // S is some List

const n = len(R); // R is some List

…

return m + n; // = len(concat(S, R))

– spec returns len(concat(S, R)) but code returns len(S) + len(R)

• Need to prove that len(concat(S, R)) = len(S) + len(R)

important operation

abbreviated as "⧺"

84

Example 3: Len & Concat Base Case (1/2)

concat(nil, R) := R

 concat(x :: L, R) := x :: concat(L, R))

• Prove that len(concat(S, R)) = len(S) + len(R)
– prove by induction on S

– prove the claim for any choice of R (i.e., R is a variable)

Base Case (nil):

 len(concat(nil, R)) =

 = len(nil) + len(R)

85

Example 3: Len & Concat Base Case (2/2)

concat(nil, R) := R

 concat(x :: L, R) := x :: concat(L, R))

• Prove that len(concat(S, R)) = len(S) + len(R)
– prove by induction on S

– prove the claim for any choice of R (i.e., R is a variable)

Base Case (nil):

 len(concat(nil, R)) = len(R) def of concat

 = 0 + len(R)

 = len(nil) + len(R) def of len

86

Example 3: Len & Concat Inductive Step (1/3)

concat(nil, R) := R

 concat(x :: L, R) := x :: concat(L, R))

• Prove that len(concat(S, R)) = len(S) + len(R)

Inductive Step (x :: L):

 Need to prove that

 len(concat(x :: L, R)) = len(x :: L) + len(R)

 Get to assume claim holds for L, i.e., that

 len(concat(L, R)) = len(L) + len(R)

87

Example 3: Len & Concat Inductive Step (2/3)

concat(nil, R) := R

 concat(x :: L, R) := x :: concat(L, R))

• Prove that len(concat(S, R)) = len(S) + len(R)

Inductive Hypothesis: assume that len(concat(L, R)) = len(L) + len(R)

Inductive Step (x :: L):

 len(concat(x :: L, R)) =

 = len(x :: L) + len(R)

88

Example 3: Len & Concat Inductive Step (3/3)

concat(nil, R) := R

 concat(x :: L, R) := x :: concat(L, R))

• Prove that len(concat(S, R)) = len(S) + len(R)

Inductive Hypothesis: assume that len(concat(L, R)) = len(L) + len(R)

Inductive Step (x :: L):

 len(concat(x :: L, R)) = len(x :: concat(L, R)) def of concat

 = 1 + len(concat(L, R)) def of len

 = 1 + len(L) + len(R) Ind. Hyp.

 = len(x :: L) + len(R) def of len

89

Comparing Reasoning vs Testing

const concat = (S: List, R: List): List => {

 if (S.kind === "nil") {

 return R;

 } else {

 return cons(S.hd, concat(S.tl, R));

 }

};

• Testing: 3 cases

– loop coverage requires 0, 1, and many recursive calls

• Reasoning: 2 calculations

90

Structural Induction … Gone Wrong? (1/3)

allEqual(nil) := true

 allEqual(x :: nil) := true

 allEqual(x :: y :: L) := x = y and allEqual(y :: L)

• Claim: this function satisfies the above spec

const allEqual(S: List): boolean => {

 return true;

};

• Need to prove that allEqual(S) = true

91

Structural Induction … Gone Wrong? (2/3)

allEqual(nil) := true

 allEqual(x :: nil) := true

 allEqual(x :: y :: L) := x = y and allEqual(y :: L)

Base Case (nil): allEqual(nil) = true def of allEqual

Now, what if we got a bit sloppy?

Inductive Hypothesis: assume that allEqual(S) = true for lists S

Inductive Step (x :: S):

 Case (S = nil): allEqual(x:: nil) = true def of allEqual

 Case (S = y :: L):

 y :: L is a list – so, allEqual(y :: L) = true inductive hypothesis

 x :: y :: nil is a list – so allEqual(x :: y :: nil) = true inductive hypothesis

 thus, x = y definition of allEqual

 allEqual(x :: y :: L) = true definition of allEqual

92

Structural Induction … Gone Wrong? (3/3)

allEqual(nil) := true

 allEqual(x :: nil) := true

 allEqual(x :: y :: L) := x = y and allEqual(y :: L)

Base Case (nil): allEqual(nil) = true def of allEqual

Now, what if we got a bit sloppy?

Inductive Hypothesis: assume that allEqual(S) = true for lists S
 can’t assume claim!

Inductive Step (x :: S):

 Case (S = nil): allEqual(x:: nil) = true def of allEqual

 Case (S = y :: L):

 y :: L is a list – so, allEqual(y :: L) = true not true!

 x :: y :: nil is a list – so allEqual(x :: y :: nil) = true not true!

 thus, x = y not true!

 allEqual(x :: y :: L) = true not true!
93

Proof Strategy Advice

• Stuck on a proof and…

– the data type is not inductive? Try splitting into cases!

– the data type is inductive? Try structural induction!

• When using structural induction, consider

– where can the inductive hypothesis be used?

the power of structural induction!

– which variable should be inducted on?

– definitions can be applied in both directions

94

Example 4: Faster Sum

sum-acc(nil, r) := r

 sum-acc(x :: L, r) := sum-acc(L, x + r)

• Suppose we have the following code:

const s = sum_acc(S, 0); // S is some List

…

return s; // = sum(S)

– spec says to return sum(S) but code returns sum-acc(S, 0)

• Need to prove that sum-acc(S, 0) = sum(S)

– will prove, more generally, that sum-acc(S, r) = sum(S) + r

linear time

95

Example 4: Faster Sum Base Case (1/2)

sum-acc(nil, r) := r

 sum-acc(x :: L, r) := sum-acc(L, x + r)

• Prove that sum-acc(S, r) = sum(S) + r
– prove by induction on S

– prove the claim for any choice of r (i.e., r is a variable)

Base Case (nil):

 sum-acc(nil, r) =

 = sum(nil) + r

96

Example 4: Faster Sum Base Case (2/2)

sum-acc(nil, r) := r

 sum-acc(x :: L, r) := sum-acc(L, x + r)

• Prove that sum-acc(S, r) = sum(S) + r
– prove by induction on S

– prove the claim for any choice of r (i.e., r is a variable)

Base Case (nil):

 sum-acc(nil, r) = r def of sum-acc

 = 0 + r

 = sum(nil) + r def of sum

97

Example 4: Faster Sum Inductive Step (1/3)

sum-acc(nil, r) := r

 sum-acc(x :: L, r) := sum-acc(L, x + r)

• Prove that sum-acc(S, r) = sum(S) + r

Inductive Step (x :: L):

 Need to prove that

 sum-acc(x :: L, r) = sum(x :: L) + r

 Get to assume claim holds for L, i.e., that

 sum-acc(L, r) = sum(L) + r holds for any r

98

Example 4: Faster Sum Inductive Step (2/3)

sum-acc(nil, r) := r

 sum-acc(x :: L, r) := sum-acc(L, x + r)

• Prove that sum-acc(S, r) = sum(S) + r

Inductive Hypothesis: assume that sum-acc(L, r) = sum(L) + r

Inductive Step (x :: L):

 sum-acc(x :: L, r) =

 = sum(x :: L) +r

99

Example 4: Faster Sum Inductive Step (3/3)

sum-acc(nil, r) := r

 sum-acc(x :: L, r) := sum-acc(L, x + r)

• Prove that sum-acc(S, r) = sum(S) + r

Inductive Hypothesis: assume that sum-acc(L, r) = sum(L) + r

Inductive Step (x :: L):

 sum-acc(x :: L, r) = sum-acc(L, x + r) def of sum-acc

 = sum(L) + x + r Ind. Hyp.

 = x + sum(L) + r

 = sum(x :: L) +r def of sum

100

Structural Induction in General

• General case: assume P holds for constructor arguments

type T := A | B(x : ℤ) | C(y : ℤ , t : T) | D(z : ℤ , u : T, v : T)

• To prove P(t) for any t, we need to prove:

– P(A)

– P(B(x)) for any x : ℤ

– P(C(y, t)) for any y : ℤ and t : T assuming P(t) is true

– P(D(z, u, v)) for any z : ℤ and u, v : T assuming P(u) and P(v)

• These four facts are enough to prove P(t) for any t

– for each constructor, have proof that it produces an object

satisfying P

– generally, each inductive type has its own form of induction
101

Defining Cases

• Case in inductive data type = case in structural

inductive proof

– “Smallest” form of data type = Base case in proof

– Recursive case in data type = Inductive step in proof

• To prove P(t) for any t of type T:

– We have 2 base cases

type T := A | B(x : ℤ) | C(y : ℤ , t : T) | D(z : ℤ , u : T, v : T)

– and 2 recursive cases

type T := A | B(x : ℤ) | C(y : ℤ , t : T) | D(z : ℤ , u : T, v : T)

– Inductive proof will cover base cases in base case and

recursive cases cases in inductive step

102

Induction Wrap up: Defining Cases

• If math def defines a case for recursive form of

with a fixed size, that is still part of inductive step!

– Example, from last lecture:

 allEqual(nil) := true

 allEqual(x :: nil) := true

 allEqual(x :: y :: L) := x = y and allEqual(y :: L)

x :: nil uses recursive constructor of a List, so it should be part of the
inductive step:

 Base Case (nil): allEqual(nil) = true def of allEqual

 Inductive Step (x :: S):

 Case (S = nil): allEqual(x:: nil) = true def of allEqual

 Case (S = y :: L): …

103

we don’t use the IH in

every case. That’s okay!

The following examples were

not covered in lecture, but are

useful practice, if needed!

Definition of List Reversal

• Reversal of a List: “same values but in reverse order”

• Look at some examples…

L rev(L)

nil nil

[3] [3] 3 :: nil

[2, 3] [3, 2] 3 :: 2 :: nil

[1, 2, 3] [3, 2, 1] 3 :: 2 :: 1 :: nil

… …

105

Structural Recursion in List Reversal

• Look at some examples…

L rev(L)

nil nil

3 :: nil 3 :: nil

2 :: 3 :: nil 3 :: 2 :: nil

1 :: 2 :: 3 :: nil 3 :: 2 :: 1 :: nil

• Where does rev([2, 3]) show up in rev([1, 2, 3])?

– at the beginning, with 1 :: nil after it

• Where does rev([3]) show up in rev([2, 3])?

– at the beginning, with 2 :: nil after it

106

Recall: Reversing a List

• Mathematical definition of rev(S)

 rev(nil) := nil

 rev(x :: L) := rev(L) ⧺ [x]

– note that rev uses concat (⧺) as a helper function

1 2 3

move 1 to end

reverse this too

107

Definition of List Reversal: Checking Examples

1 :: 2 :: 3 :: nil 3 :: 2 :: 1 :: nil

• Mathematical definition of rev : List → List

rev(nil) := nil

rev(x :: L) := rev(L) ⧺ [x]

• Check that this matches examples…

rev(1 :: 2 :: 3 :: nil)

 = rev(2 :: 3 :: nil) ⧺ [1] def of rev

 = rev(3 :: nil) ⧺ [2] ⧺ [1] def of rev

 = rev(nil) ⧺ [3] ⧺ [2] ⧺ [1] def of rev

 = [] ⧺ [3] ⧺ [2] ⧺ [1] def of rev

 = … = [3, 2, 1] def of concat (many times)
108

Example 5: Length of Reversed List: Setup

rev(nil) := nil

 rev(x :: L) := rev(L) ⧺ [x]

• Suppose we have the following code:

const m = len(S); // S is some List

const R = rev(S);

…

return m; // = len(rev(S))

– spec returns len(rev(S)) but code returns len(S)

• Need to prove that len(rev(S)) = len(S) for any S : List

109

Example 5: Length of Reversed List (1/3)

rev(nil) := nil

 rev(x :: L) := rev(L) ⧺ [x]

• Prove that len(rev(S)) = len(S) for any S : List

Base Case (nil):

 len(rev(nil)) = len(nil) def of rev

Inductive Step (cons(x, L)):

 Need to prove that len(rev(x :: L)) = len(x :: L)

 Get to assume that len(rev(L)) = len(L)

110

Example 5: Length of Reversed List (2/3)

rev(nil) := nil

 rev(x :: L) := rev(L) ⧺ [x]

• Prove that len(rev(S)) = len(S) for any S : List

Inductive Hypothesis: assume that len(rev(L)) = len(L)

Inductive Step (x :: L):

 len(rev(x :: L))

 =

 = len(x :: L)

111

Example 5: Length of Reversed List (3/3)

rev(nil) := nil

 rev(x :: L) := rev(L) ⧺ [x]

• Prove that len(rev(S)) = len(S) for any S : List

Inductive Hypothesis: assume that len(rev(L)) = len(L)

Inductive Step (x :: L):

 len(rev(x :: L)

 = len(rev(L) ⧺ [x]) def of rev

 = len(rev(L)) + len([x]) by Example 3

 = len(L) + len([x]) Ind. Hyp.

 = len(L) + 1 + len(nil) def of len

 = len(L) + 1 def of len

 = len(x :: L) def of len

112

Finer Points of Structural Induction

• Structural Induction is how we reason about recursion

• Reasoning also follows structure of code

– code uses structural recursion, so

reasoning uses structural induction

• Note that rev is defined in terms of concat

– reasoning about len(rev(…)) used fact about len(concat(…))

– this is common

113

Example 6: Reversing a List Performance

rev(nil) := nil

 rev(x :: L) := rev(L) ⧺ [x]

• This correctly reverses a list but is slow

– concat takes ϴ(n) time, where n is length of L

– n calls to concat takes ϴ(n2) time

• Can we do this faster?

– yes, but we need a helper function

114

Example 6: Reversing a List, Linear Time (1/3)

• Helper function rev-acc(S, R) for any S, R : List

 rev-acc(nil, R) := R

 rev-acc(x :: L, R) := rev-acc(L, x :: R)

3 4 nil 2 1 nil(),rev-acc

115

Example 6: Reversing a List, Linear Time (2/3)

• Helper function rev-acc(S, R) for any S, R : List

 rev-acc(nil, R) := R

 rev-acc(x :: L, R) := rev-acc(L, x :: R)

34 nil 2 1 nil(),= rev-acc

116

3 4 nil 2 1 nil(),rev-acc

Example 6: Reversing a List

• Helper function rev-acc(S, R) for any S, R : List

 rev-acc(nil, R) := R

 rev-acc(x :: L, R) := rev-acc(L, x :: R)

34nil 2 1 nil(),= rev-acc

117

34 nil 2 1 nil(),= rev-acc

3 4 nil 2 1 nil(),rev-acc

Proving that rev-acc works, in pieces

rev-acc(nil, R) := R

 rev-acc(x :: L, R) := rev-acc(L, x :: R)

• Can prove that rev-acc(S, R) = concat(rev(S), R) (Lemma 1)

• Can prove that concat(L, nil) = L (Lemma 2)

– structural induction like prior examples

• Prove that rev(S) = rev-acc(S, nil)

 rev-acc(S, nil) = concat(rev(S), nil) Lemma 1

 = rev(S) Lemma 2

118

Proving Lemma 2: Setup

rev-acc(nil, R) := R

 rev-acc(x :: L, R) := rev-acc(L, x :: R)

• Prove that concat(S, nil) = S

Base Case (nil):

 concat(nil, nil) = nil def of concat

Inductive Hypothesis: assume that concat(L, nil) = nil

Inductive Step (cons(x, L)): prove that concat(cons(x, L), nil) = cons(x, L)

119

Proving Lemma 2: Inductive Step (1/2)

rev-acc(nil, R) := R

 rev-acc(x :: L, R) := rev-acc(L, x :: R)

• Prove that concat(S, nil) = S

Inductive Hypothesis: assume that concat(L, nil) = L

Inductive Step (x :: L):

 concat(x :: L, nil) =

 = x :: L

120

Proving Lemma 2: Inductive Step (2/2)

rev-acc(nil, R) := R

 rev-acc(x :: L, R) := rev-acc(L, x :: R)

• Prove that concat(S, nil) = S

Inductive Hypothesis: assume that concat(L, nil) = L

Inductive Step (x :: L):

 concat(x :: L, nil) = x :: concat(L, nil) def of concat

 = x :: L Ind. Hyp.

121

Proving Lemma 1: Setup

rev-acc(nil, R) := R

 rev-acc(x :: L, R) := rev-acc(L, x :: R)

• Prove that rev-acc(S, R) = concat(rev(S), R)
– prove by structural induction

• Need the following property of concat (⧺)

 A ⧺ (B ⧺ C) = (A ⧺ B) ⧺ C

– with strings, we know that “A + (B + C) = (A + B) + C”

– this says the same thing for lists with "⧺"

122

Proving Lemma 1: Base Case (1/2)

rev-acc(nil, R) := R

 rev-acc(x :: L, R) := rev-acc(L, x :: R)

• Prove that rev-acc(S, R) = concat(rev(S), R)
– prove by induction on S (so R is a variable)

Base Case (nil):

 rev-acc(nil, R) =

 = concat(rev(nil), R)

concat(nil, R) := R
 concat(x :: L, R) := x :: concat(L, R)

 rev(nil) := nil
 rev(x :: L) := rev(L) ⧺ [x]

123

Proving Lemma 1: Base Case (2/2)

rev-acc(nil, R) := R

 rev-acc(x :: L, R) := rev-acc(L, x :: R)

• Prove that rev-acc(S, R) = concat(rev(S), R)
– prove by induction on S (so R is a variable)

Base Case (nil):

 rev-acc(nil, R) = R def of rev-acc

 = concat(nil, R) def of concat

 = concat(rev(nil), R) def of rev

concat(nil, R) := R
 concat(x :: L, R) := x :: concat(L, R)

 rev(nil) := nil
 rev(x :: L) := rev(L) ⧺ [x]

124

Proving Lemma 1: Inductive Step (1/4)

rev-acc(nil, R) := R

 rev-acc(x :: L, R) := rev-acc(L, x :: R)

• Prove that rev-acc(S, R) = concat(rev(S), R)

Inductive Hypothesis: assume that rev-acc(L, R) = concat(rev(L), R) for any R

Inductive Step (x :: L):

rev-acc(x :: L, R) =

 = concat(rev(x :: L), R)

func concat(nil, R) := R
 concat(cons(x, L), R) := cons(x, concat(L, R))

func rev(nil) := nil
 rev(cons(x, L)) := concat(rev(L), cons(x, nil))

125

Proving Lemma 1: Inductive Step (2/4)

rev-acc(nil, R) := R

 rev-acc(x :: L, R) := rev-acc(L, x :: R)

• Prove that rev-acc(S, R) = concat(rev(S), R)

Inductive Hypothesis: assume that rev-acc(L, R) = concat(rev(L), R) for any R

Inductive Step (x :: L):

rev-acc(x :: L, R) = rev-acc(L, x :: R) def of rev-acc

 = concat(rev(L), x :: R) Ind. Hyp.

 = (rev(L) ⧺ [x]) ⧺ R ??

 = concat(rev(L) ⧺ [x], R)

 = concat(rev(x :: L), R) def of rev

concat(nil, R) := R
 concat(x :: L, R) := x :: concat(L, R)

 rev(nil) := nil
 rev(x :: L) := rev(L) ⧺ [x]

126

Proving Lemma 1: Inductive Step (3/4)

rev-acc(nil, R) := R

 rev-acc(x :: L, R) := rev-acc(L, x :: R)

• Prove that rev-acc(S, R) = concat(rev(S), R)

Inductive Hypothesis: assume that rev-acc(L, R) = concat(rev(L), R) for any R

Inductive Step (x :: L):

rev-acc(x :: L, R) = rev-acc(L, x :: R) def of rev-acc

 = concat(rev(L), x :: R) Ind. Hyp.

 = rev(L) ⧺ ([x] ⧺ R)

 = (rev(L) ⧺ [x]) ⧺ R assoc. of ⧺

 = concat(rev(L) ⧺ [x], R)

 = concat(rev(x :: L), R) def of rev

concat(nil, R) := R
 concat(x :: L, R) := x :: concat(L, R)

 rev(nil) := nil
 rev(x :: L) := rev(L) ⧺ [x]

127

Proving Lemma 1: Inductive Step (4/4)

rev-acc(nil, R) := R

 rev-acc(x :: L, R) := rev-acc(L, x :: R)

• Prove that rev-acc(S, R) = concat(rev(S), R)

Inductive Hypothesis: assume that rev-acc(L, R) = concat(rev(L), R) for any R

Inductive Step (x :: L):

rev-acc(x :: L, R) = rev-acc(L, x :: R) def of rev-acc

 = concat(rev(L), x :: R) Ind. Hyp.

 = rev(L) ⧺ (x :: R)

 = rev(L) ⧺ ([x] ⧺ R) def of concat

 = (rev(L) ⧺ [x]) ⧺ R assoc. of ⧺

 = concat(rev(L) ⧺ [x], R)

 = concat(rev(x :: L), R) def of rev

concat(nil, R) := R
 concat(x :: L, R) := x :: concat(L, R)

 rev(nil) := nil
 rev(x :: L) := rev(L) ⧺ [x]

128

	Testing recap
	Slide 1: Reasoning
	Slide 2: Administrivia
	Slide 3: Agenda
	Slide 4: Reacp: Testing so far
	Slide 5: (end of testing in Topic 4 slides)

	Reasoning
	Slide 6: Agenda
	Slide 7: Reasoning
	Slide 8: Correctness Requires a Specification
	Slide 9: Recall: Specifications with JSDoc
	Slide 10: Preconditions & Postconditions in JSDoc
	Slide 11: Aside: Documentation + Testing
	Slide 12: Facts (1/2)
	Slide 13: Facts (2/2)
	Slide 14: Finding Facts at a Return Statement
	Slide 15: Reasoning: Proof by Calculation & Cases
	Slide 16: Administrivia
	Slide 17: Recall: Correctness Requires a Specification
	Slide 18: Recall: Finding Facts at a Return Statement
	Slide 19: Implications
	Slide 20: Collecting Facts
	Slide 21: Mutation Makes Reasoning Harder
	Slide 22: Correctness with No Mutation

	Proof by calculation + cases
	Slide 23: Proof by Calculation
	Slide 24: Proof by Calculation
	Slide 25: Example Proof by Calculation
	Slide 26: Example Proof by Calculation (across lines)
	Slide 27: Calculation Blocks: Equalities
	Slide 28: Calculation Blocks: Inequalities
	Slide 29: Calculation Blocks: Mixing Inequalities Gotcha
	Slide 30: Proving Code by Calculation: Example 1 (1/2)
	Slide 31: Proving Code by Calculation: Example 1 (2/2)
	Slide 32: Proving Code by Calculation: Example 2 (1/2)
	Slide 33: Proving Code by Calculation: Example 2 (2/2)
	Slide 34: Proving Code by Calculation: Example 3 (1/2)
	Slide 35: Proving Code by Calculation: Example 3 (2/2)
	Slide 36: Proving Code by Calculation: Example 4 (1/2)
	Slide 37: Proving Code by Calculation: Example 4 (2/2)
	Slide 38: Practice #1!
	Slide 39: Using Definitions in Calculations
	Slide 40: Recall: Finding Facts at a Return Statement
	Slide 41: Using Definitions in Calculations (1/2)
	Slide 42: Using Definitions in Calculations (2/2)
	Slide 43: Practice #2!
	Slide 44: Proving Correctness with Conditionals (Top)
	Slide 45: Proving Correctness with Conditionals (Bottom)
	Slide 46: Proving Correctness with Multiple Claims
	Slide 47: Example Correctness with Conditionals
	Slide 48: Proof by Cases
	Slide 49: Proof By Cases
	Slide 50: Example Proof By Cases
	Slide 51: Proof By Cases (1/3)
	Slide 52: Proof By Cases (2/3)
	Slide 53: Proof By Cases (3/3)
	Slide 54: Recall: Pattern Matching
	Slide 55: Proof by Cases, with Records (Case T)
	Slide 56: Proof by Cases, with Records (Case F)
	Slide 57: Proofs in Class & HW versus the “Real World”

	Induction
	Slide 58: Reasoning with Structural Induction
	Slide 59: Common Proof by Calculation Mistakes
	Slide 60: Common Proof by Calculation Mistakes
	Slide 61: Structural Induction
	Slide 62: Proof by Calculation on Lists
	Slide 63: Example: Echo Function
	Slide 64: Example: Proving Len & Echo Correct
	Slide 65: Trying Proof by Cases on Len & Echo (1/2)
	Slide 66: Trying Proof by Cases on Len & Echo (2/2)
	Slide 67: Proof by Cases Breaks on Inductive Data
	Slide 68: Structural Induction is Two Implications
	Slide 69: Structural Induction: Inductive Hypothesis
	Slide 70: Why Structural Induction Works
	Slide 71: Inductive Data is “Built Up” in Steps
	Slide 72: Inductive Proofs are “Built Up” in Steps
	Slide 73: Example: Echo & Len Base Case (1/2)
	Slide 74: Example: Echo & Len Base Case (2/2)
	Slide 75: Example: Echo & Len Inductive Step (1/3)
	Slide 76: Example: Echo & Len Inductive Step (2/3)
	Slide 77: Example: Echo & Len Inductive Step (3/3)
	Slide 78: Example 2: Echo & Sum
	Slide 79: Example 2: Echo & Sum Base Case (1/2)
	Slide 80: Example 2: Echo & Sum Base Case (2/2)
	Slide 81: Example 2: Echo & Sum Inductive Step (1/2)
	Slide 82: Example 2: Echo & Sum Inductive Step (2/2)
	Slide 83: Recall: Concatenating Two Lists
	Slide 84: Example 3: Length of Concatenated Lists
	Slide 85: Example 3: Len & Concat Base Case (1/2)
	Slide 86: Example 3: Len & Concat Base Case (2/2)
	Slide 87: Example 3: Len & Concat Inductive Step (1/3)
	Slide 88: Example 3: Len & Concat Inductive Step (2/3)
	Slide 89: Example 3: Len & Concat Inductive Step (3/3)
	Slide 90: Comparing Reasoning vs Testing
	Slide 91: Structural Induction … Gone Wrong? (1/3)
	Slide 92: Structural Induction … Gone Wrong? (2/3)
	Slide 93: Structural Induction … Gone Wrong? (3/3)
	Slide 94: Proof Strategy Advice
	Slide 95: Example 4: Faster Sum
	Slide 96: Example 4: Faster Sum Base Case (1/2)
	Slide 97: Example 4: Faster Sum Base Case (2/2)
	Slide 98: Example 4: Faster Sum Inductive Step (1/3)
	Slide 99: Example 4: Faster Sum Inductive Step (2/3)
	Slide 100: Example 4: Faster Sum Inductive Step (3/3)
	Slide 101: Structural Induction in General
	Slide 102: Defining Cases
	Slide 103: Induction Wrap up: Defining Cases

	induction extras
	Slide 104: The following examples were not covered in lecture, but are useful practice, if needed!
	Slide 105: Definition of List Reversal
	Slide 106: Structural Recursion in List Reversal
	Slide 107: Recall: Reversing a List
	Slide 108: Definition of List Reversal: Checking Examples
	Slide 109: Example 5: Length of Reversed List: Setup
	Slide 110: Example 5: Length of Reversed List (1/3)
	Slide 111: Example 5: Length of Reversed List (2/3)
	Slide 112: Example 5: Length of Reversed List (3/3)
	Slide 113: Finer Points of Structural Induction
	Slide 114: Example 6: Reversing a List Performance
	Slide 115: Example 6: Reversing a List, Linear Time (1/3)
	Slide 116: Example 6: Reversing a List, Linear Time (2/3)
	Slide 117: Example 6: Reversing a List
	Slide 118: Proving that rev-acc works, in pieces
	Slide 119: Proving Lemma 2: Setup
	Slide 120: Proving Lemma 2: Inductive Step (1/2)
	Slide 121: Proving Lemma 2: Inductive Step (2/2)
	Slide 122: Proving Lemma 1: Setup
	Slide 123: Proving Lemma 1: Base Case (1/2)
	Slide 124: Proving Lemma 1: Base Case (2/2)
	Slide 125: Proving Lemma 1: Inductive Step (1/4)
	Slide 126: Proving Lemma 1: Inductive Step (2/4)
	Slide 127: Proving Lemma 1: Inductive Step (3/4)
	Slide 128: Proving Lemma 1: Inductive Step (4/4)

