CSE 331
WHAT ARE. YOU LJORKING ON?
Summer 2025 TRVING T FIX THE PROBLEMS T

CREATED WHEN I TRIED To FiX

. THE PROGLENS T (REATED \JHEN
Reasoning T TRED T FIX THE. PROBLEMS

T CREATED LJHEN....

/

P

xked #1739, ty Matt
Jaela Field

Administrivia

 HW4 is out!

— it contains math and programming
— more emphasis on correctness now!
— Start early!

— 6 Tasks of varying length
~ 1 a dayis a good goal!

e Jaela OH today: 12:30 - 1:30 CSE 2/F & zoom

 Bonus lecture on software development coming
this weekend!

Agenda

* Finish Testing (finish topic 4)
— Practice exercises

* Reasoning (start topic 5)

Reacp: Testing so far

e Ground Rules

— Only test inputs allowed by the spec
— Test functions individually

— Keep test code simple

— If there are < 10 inputs, test them all!

e Metrics

— Statement coverage
Execute every statement that is reachable by an allowed input

— Branch coverage

For every conditional, execute both branches (if they are reachable
by an allowed input

4

(end of testing in Topic 4 slides)

Agenda

v Administrivia

v Finish Testing (finish topic 4)
v Practice exercises

* Reasoning (start topic 5)

Reasoning

 “Thinking through” what the code does on all inputs
— heither testing nor type checking can do this

 Can be done formally or informally

— most professionals reason informally

— we will start with formal reasoning and move to informal
formal reasoning is a stepping stone to informal reasoning (same core ideas)
formal reasoning still needed for the hardest problems

 Definition of correctness comes from the
specification...

Correctness Requires a Specification

Specification contains two sets of facts

Precondition:

facts we are promised about the inputs

Postcondition:

facts we are required to ensure for the output

Correctness (satisfying the spec):

for every input satisfying the precondition,
the output will satisfy the postcondition

Recall: Specifications with JSDoc

* TypeScript, like Java, writes specs in /** ... */

/**

* High level description of what function does
* @param a What "a" represents + any conditions
* @param b What "b" represents + any conditions
* @returns Detailed description of return wvalue
*/

const £ = (a: bigint, b: bigint): bigint => {..};

— these are formatted as “JSDoc” comments
— (in Java, they are JavaDoc comments)

Preconditions & Postconditions in JSDoc

* Specifications are written in the comments

/**

Returns the first n elements from the list L
@param n non-negative length of the prefix

@param L the list whose prefix should be returned
@requires n <= len (L)

* % * ¥ *

@Qreturns list S such that L. =S ++ T for some T
*/
const prefix = (n: bigint, L: List): List => {..};

— precondition written in @param and @requires
— postcondition written in @returns

10

Aside: Documentation + Testing

* We discussed clear-box testing

— involves determining cases based on structure of code
— can result in buggy tests due to bias!

* Alternative: Opaque-Box Testing
— focuses solely on inputs and outputs

— testers don’t look at the code, instead test to the spec
still care about different input cases

— very widely used in industry!

 Our primary approach is clear-box testing

— rule of only testing inputs allowed by the spec is an
opaque testing idea

11

Facts (1/2)

* Basic inputs to reasoning are “facts”

— things we know to be true about the variables
these hold for all inputs (no matter what value the variable has)

— typically, “=" or “<”

// @param n a natural number
const f = (n: bigint): bigint => {
= 2n * nj find facts by reading along path

const m
* (m - 1In); from top to return statement

return (m + 1n)

}s

* At the return statement, we know these facts:
—neN (orn €Zandn = 0)

— m=2n
12

Facts (2/2)

* Basic inputs to reasoning are “facts”

— things we know to be true about the variables
these hold for all inputs (no matter what value the variable has)

— typically, “=" or “<”
// @param n a natural number
const f = (n: bigint): bigint => {

const m = 2n * n;
return (m + 1n) * (m — 1n);

}s

* No need to include the fact that n is an integer (n € Z)
— that is true, but the type checker takes care of that

— ho need to repeat reasoning done by the type checker
13

Finding Facts at a Return Statement

 Consider this code

// Returns a non-negative integer.

const £ = (a: bigint, b: bigint): bigint => {
const L: List = cons(a, cons (b, nil));
if (a >= On && b >= 0n)

return sum (L) ;
find facts by reading along path

from top to return statement

facts are math statements about the code

* Known facts include “a > 07, “b = 0”, and “L = cons(...)”
* Remains to prove that “sum(L) = 0"

14

CSE 331 Summer 2025

Reasoning: Proof by Calculation

& Cases
Jaela Field

Administrivia

e optional lecture on Software Development Process
available on Panopto

16

Recall: Correctness Requires a Specification

Specification contains two sets of facts

Precondition:

facts we are promised about the inputs

Postcondition:

facts we are required to ensure for the output

Correctness (satisfying the spec):

for every input satisfying the precondition,
the output will satisfy the postcondition

17

Recall: Finding Facts at a Return Statement

 Consider this code

// Returns a non-negative integer.

const £ = (a: bigint, b: bigint): bigint => {
const L: List = cons(a, cons (b, nil));
if (a >= On && b >= 0n)

return sum (L) ;
find facts by reading along path

from top to return statement

facts are math statements about the code

* Known facts include “a > 07, “b = 0”, and “L = cons(...)”
* Remains to prove that “sum(L) = 0"

18

Implications

 We can use the facts we know to prove more facts

— if we can prove R using facts P and Q,
we say that R “follows from” or “is implied by” P and Q

— proving this fact is proving an “implication”

 Checking correctness requires proving implications
— need to prove facts about the return values
— return values must satisfy the facts of the postcondition

19

Collecting Facts

 Saw how to collect facts in code consisting of
— "const" variable declarations
— "if" statements

— collect facts by reading along path from top to return

* Those elements cover all code without mutation
— covers everything describable by our math notation
— we can calculate interesting values with recursion

 Will need more tools to handle code with mutation...

20

Mutation Makes Reasoning Harder

no mutation full coverage type checker calculation
:) HW5

induction

local variable mutation “ “w Floyd logic
yaiog HW6

own own

array mutation for-any facts

aun own

heap state mutation rep invariants

21

Correctness with No Mutation

Proving implications is the core step of reasoning
— other techniques output implications for us to prove

Facts are written in our math notation
— we will use math tools to prove implications

Core technique is "proof by calculation

Other techniques we will need:
— proof by cases (Today)
— structural induction (Wednesday)

22

Proof by Calculation

Proof by Calculation

Proves an implication
— fact to be shown is an equation or inequality

Uses known facts and definitions
— latter includes, e.g., the fact that len(nil) =0

24

Example Proof by Calculation

* Givenx=yandz <10, provethatx+z<y+ 10
— show the third fact follows from the first two

e Start from the left side of the inequality to be proved

x+z =y+z <y+10

| J

I
| J

||
Y sincez<10

since x =

All together, this tellsus that x +z < y+ 10

25

Example Proof by Calculation (across lines)

* Givenx=yandz <10, provethatx+z<y+ 10
— show the third fact follows from the first two

e Start from the left side of the inequality to be proved

X+z =y+z sincex =y
<y+10 sincez< 10

— easier to read when split across lines

— “calculation block”, includes explanations in right column
proof by calculation means using a calculation block

— “="or “<” relates that line to the previous line

26

Calculation Blocks: Equalities

e Chain of “=" shows first = last

— proves thata =d
— all 4 of these are the same number

27

Calculation Blocks: Inequalities

e Chain of “=" and “<” shows first < last

X+z =y+z since x =y
<y+10 sincez< 10
=y+3+7
<w-+7 sincey +3<w

— each number is equal or strictly larger that previous
last number is strictly larger than the first number

— analogous for “2”

28

Calculation Blocks: Mixing Inequalities Gotcha

 Consider:
141 =
> 21
=1%*2
<1%*3
> 3

— canhnot derive meaningful conclusion from “proof”
each step is still true, but cannot make final conclusion

— rule of thumb: inequalities should only go in one direction

29

Proving Code by Calculation: Example 1 (1/2)

// Inputs x and y are positive integers

// Returns a positive integer.

const f = (x: bigint, y, bigint): bigint => {
return x + y;

Y

* Known facts “x=>1" and “y > 1"

* Correct if the return value is a positive integer

X+y

30

Proving Code by Calculation: Example 1 (2/2)

// Inputs x and y are positive integers

// Returns a positive integer.

const f = (x: bigint, y, bigint): bigint => {
return x + y;

Y

* Known facts “x=>1" and “y > 1"

* Correct if the return value is a positive integer

X+y =>x+1 sincey > 1
=>1+1 sincex =1
=2
>1

— calculation shows that x + y =1 a1

Proving Code by Calculation: Example 2 (1/2)

// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
const f = (x: bigint, y, bigint): bigint => {

return x + y;

Y

* Known facts “x = 9” and “y = -8”

* Correct if the return value is a positive integer

X+y

32

Proving Code by Calculation: Example 2 (2/2)

// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
const f = (x: bigint, y, bigint): bigint => {

return x + y;

Y

* Known facts “x = 9” and “y = -8”

* Correct if the return value is a positive integer

X+y =X+ -8 sincey > -8
>9-8 sincex =9
=1

33

Proving Code by Calculation: Example 3 (1/2)

// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
const f = (x: bigint, y, bigint): bigint => {

return x + y;

Y

* Known facts “x > 8" and “y > -9”

* Correct if the return value is a positive integer

X+y

34

Proving Code by Calculation: Example 3 (2/2)

// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
const f = (x: bigint, y, bigint): bigint => {

return x + y;

Y

* Known facts “x > 8" and “y > -9”

* Correct if the return value is a positive integer

X+y >x+ -9 sincey > -9
>8-9 sincex > 8
=-1

warning: avoid using “>” (or “<“) multiple times in a calculation block 35

Proving Code by Calculation: Example 4 (1/2)

// Inputs x and y are integers with x > 3 and y > 4

// Returns an integer that is 10 or larger.

const f = (x: bigint, y, bigint): bigint => {
return x + y;

Y

* Known facts “x > 4” and “y > 5"

* Correct if the return value is 10 or larger

X+y

36

Proving Code by Calculation: Example 4 (2/2)

// Inputs x and y are integers with x > 3 and y > 4

// Returns an integer that is 10 or larger.

const f = (x: bigint, y, bigint): bigint => {
return x + y;

Y

* Known facts “x > 4” and “y > 5"

* Correct if the return value is 10 or larger

X+y >x+5 sincey =5
>4 +5 sincex > 4
=9

proof doesn’t work because the code is wrong!

37

Practice #1!

// Inputs x and y are integers with x > 0 and y < 0

// Returns a positive integer.

const £ = (x: bigint, y: bigint): bigint => {
return x -y + 1;

}s

* Prove that the post condition is correct

— What s the fact to prove? x-y+1>1
— What are the known facts? x>1landy<-1
— Proof:
Xx-y+1=21-y+1 sincex > 1
>1+1+1 sincey <-1

=1

38

Using Definitions in Calculations

* Most useful with function calls
— cite the definition of the function to get the return value

* For example:

sum(nil) = 0
sum(x:: L) := x4+ sum(L)

e (Can cite facts such as
— sum(nil) =0
— sum(a :: b :: nil) = a + sum(b :: nil)

second case of definition with x =a and L = b :: nil
39

Recall: Finding Facts at a Return Statement

 Consider this code

// Inputs a and b must be integers.

// Returns a non-negative integer.

const £ = (a: bigint, b: bigint): bigint => {
const L: List = cons(a, cons(b, nil));
if (a > On && b >= 0On)

return sum (L) ;

find facts by reading along path
from top to return statement

* Known facts include “a = 0", “b = 0”, and “L = cons(...)”
* Must prove that sum(L) = 0

40

Using Definitions in Calculations (1/2)

sum(nil) =0
x + sum(L)

sum(x:: L)
e Know“a>=>0",“b>0"and “L =a:: b::nil”

* Prove the “sum(L)” is non-negative

sum(L)

41

Using Definitions in Calculations (2/2)

sum(nil) =0
sum(x:: L) := x+sum(L)

e Know“a>=>0",“b>0"and “L =a:: b::nil”

* Prove the “sum(L)” is non-negative

sum(L) =sum(a:: b :: nil) since L=a:: b:: nil
= a + sum(b :: nil) def of sum
=a+ b+ sum(nil) def of sum
=a+b def of sum
>0+b sincea=>0

>0 sinceb >0

Practice #2!

// Returns a non-empty List.

const f

(x: bigint) : List<bigint> => {

const L: List = cons(x, cons(-x, nil);

return 1;

}s

e Recall:

len(nil) =0
len(x :: L) 1+ len(L)

* Prove that the post condition is correct
— What is the fact to prove?
— What are the known facts?

— Proof:

len(L) = len(x :: -x :: nil)
=1+ len(-x:: nil)
=1+ 1+ len(nil)
=1+1+0
>0

len(L) >0
L=x:-x:nil

since L =x:: -x:: nil
def of len
def of len
def of len

43

Proving Correctness with Conditionals (Top)

// Inputs x and y are integers.

// Returns a number less than x.

const f = (x: bigint, y, bigint): bigint => {
if (y < On) {
return x + vy;
} else {
return x - 1n;

}
Y

* Known fact in “then” (top) branch: “y < -17

X+y <x+-1 sincey < -1
<x+0 since-1 <0

=X

44

Proving Correctness with Conditionals (Bottom)

// Inputs x and y are integers.

// Returns a number less than x.

const f = (x: bigint, y, bigint): bigint => {
if (y < On) {
return x + vy;
} else {
return x - 1n;

}
Y

* Known fact in else (bottom) branch: “y = 0”

x-1 <x+4+0 since-1<0

=X

45

Proving Correctness with Multiple Claims

* Need to check the claim from the spec at each return

* If spec claims multiple facts, then
we must prove that each of them holds

// Inputs x and y are integers with x <y -1
// Returns a number less than y and greater than x.
const f = (x: bigint, y, bigint): bigint => { .. };

— multiple known facts: x:Z,y:Z, andx <y -1

— multiple claims to prove: x <randr <y
where “r” is the return value

— requires two calculation blocks

46

Example Correctness with Conditionals

// Returns r with (r=a or r=b) and r > > a and r > b
const max = (a: bigint, b, bigint): bigint => {
if (a >= b) {

return a;
declarative spec of max

} else {

return b;

}
}s

* Three different facts to prove at each return

 Two known facts in each branch (return value is “r”):

— then branch: a=>b and r=a
— else branch: a<band r=b

47

Proof by Cases

Proof By Cases

 Sometimes necessary split a proof into cases
— fact may be hard to prove for all values at once

 Example: can't prove it for all x at once,
but can prove itforx >0 and x <0
— will see an example next

* If we can prove it in those two cases, it holds for all x

— follows since the cases are exhaustive
(don’t need to be exclusive in this case)

49

Example Proof By Cases

f.Z-17Z
f(m) :=2m+1 ifm=>0
f(m) :=0 ifm<O0

* Want to prove that f(m) > m

* Doesn't seem possible as is
— can't even apply the definition of f
— needtoknowifm<0Oorm=0

e Split our analysis into these two separate cases...

50

Proof By Cases (1/3)

f(m) :=2m + 1
f(m) :=0

* Prove that f(m) > m

Casem = 0:

f(m) =

ifm=>0
ifm<O0

51

Proof By Cases (2/3)

f(m) :=2m + 1
f(m) :=0

* Prove that f(m) > m

Casem = 0:

flm) =2m+1
=>m+1
> m

ifm=>0
ifm<O0

def of f (since m = 0)
sincem =0
sincel >0

52

Proof By Cases (3/3)

f(m) :=2m+ 1 ifm=>0
f(m) :=0 ifm<O

* Prove that f(m) > m

Casem = 0:
f(m) =...>m
Casem < 0:
f(m) =0 def of f (since m < 0)
>m sincem<0

Since these two cases are exhaustive, f{(m) > m holds in general.

53

Recall: Pattern Matching

* Define a function by an exhaustive set of patterns
type Steps := {n:N, fwd : B}

change({n: n, fwd: T}) :=n
change({n: n, fwd: F}) :=-n

— Steps describes movement on the number line

— change(s : Steps) says how the position changes
{n: 12, fwd: F}

o o
x-12 X

— one of these two rules always applies

54

Proof by Cases, with Records (Case T)

change({n:n, fwd: T}) := n
change({n: n, fwd: F}) := -n

* Prove that |change(s)| = n for any s = {n: n, fwd: f}
— we need to know if f =T or f = F to apply the definition!

Casef=T:

|change({n: n, fwd: f})|
= |change({n: n, fwd: T})| since f =T
= |n| def of change
=n sincen =0

55

Proof by Cases, with Records (Case F)

change({n:n, fwd: T}) := n
change({n: n, fwd: F}) :

I
=

* Prove that |change(s)| = n for any s = {n: n, fwd: f}
Case f =T: |change({n:n,fwd: f})| = ... =n
Case f =F:

|change({n: n, fwd: f})|

= |change({n: n, fwd: F})| since f=F
= |-n| def of change
=1 sincen =0

Since these two cases are exhaustive, the claim holds in general.

56

Proofs in Class & HW versus the “Real World”

* Lecture (mostly) focuses on toy examples

— Goal is to explain syntax & intuition (and build skill)

— Thus, pick simple problems (that may feel “obvious”)
Because | prep, | don’t get “stuck”

e Section & HW (mostly) focuses on proving that
correct code is correct

— Seems mean to give you incorrect code ')
Already had our mean erain HW 1-3

— But, problems will be hew and more challenging

* |In real world, even harder problems and
will not know correctness ahead of time

57

CSE 331 Summer 2025

Reasoning with Structural Induction
Jaela Field

Common Proof by Calculation Mistakes

* Assuming claim is true

2x+1=-2x+1) BAD ¥
(2x+1)?2=(-1)?(2x+ 1)? square both sides
4x2 + 2x + 1 = 1(4x*+2x+1) foil
0=0

 Manipulating both sides of the equation

Example: prove x* + 1 >z, givenx?=yandy >z
X2 =y since x> =y
X*+1=y+1 add 1 to both sides
X>+1>7z since y > z

59

Common Proof by Calculation Mistakes

* Mixing > and <

— cannot conclude anything!
2<4
> 3 therefore 2 > 3... ¥

 Applying multiple facts/defs in the same step

— In the “real world” sometimes proof steps skip, here we want
to see that you understand what applying each looks like

* Forgetting citations
— It’s okay to skip algebraic steps

60

Structural Induction

Proof by Calculation on Lists

* Our proofs so far have used fixed-length lists
— e.g.,sum(a::b:nil) =0

 Would like to prove facts about any length list L

* For example...

62

Example: Echo Function

* Consider the following function:

echo(nil) := nil
echo(x:: L) :=x:x:echo(L)

* Produces a list where every element is repeated twice

echo(1 :: 2::nil)
=1:1:echo(2:: nil) def of echo
=1:1:2:2:echo(nil) def of echo
=1:1:2:2:nil def of echo

63

Example: Proving Len & Echo Correct

echo(nil) := nil
echo(x:: L) :=x:x:echo(L)

* Suppose we have the following code:

const m = len(S); // S is some List

const R = echo (S);

return 2*m; // = len(echo(S))

— spec says to return len(echo(S)) but code returns 2 len(S)

* Need to prove that len(echo(S)) = 2 len(S)

64

Trying Proof by Cases on Len & Echo (1/2)

len(echo(S)) = 2 len(S)

Case S = nil:
len(echo(S)) = len(nil) def of echo (since S = nil)
=0 def of len
= 2 len(nil) def of len

= 2 len(S)

65

Trying Proof by Cases on Len & Echo (2/2)

len(echo(S)) = 2 len(S)
CaseS=x:L:

len(echo(x:: L)) =len(x: x: echo(L)) def of echo
=1 + len(x :: echo(L)) def of len
=2 + len(echo(L)) def of len

Now need to prove: len(echo(L)) = 2 len(L)

Case L = nil: see previous slide
CaseL=x:M:
len(echo(x:: M)) =len(x: x: echo(M)) def of echo
=1 + len(x :: echo(M)) def of len
=2 + len(echo(M)) def of len

Now need to prove: len(echo(M)) = 2 len(M)

66

Proof by Cases Breaks on Inductive Data

* Our proofs so far have used fixed-length lists
— e.g.,sum(a::b:nil) =0

 Would like to prove facts about any length list L

 Need more tools for this...
— structural recursion calculates on inductive types

— structural induction reasons about structural recursion
or more generally, to prove facts containing variables of an inductive type

— both tools are specific to inductive types

67

Structural Induction is Two Implications

Let P(S) be the claim “len(echo(S)) = 2 len(S)”

To prove P(S) holds for any list S, prove two implications

Base Case: prove P(nil)
— use any known facts and definitions

Inductive Step: prove P(x :: L)

— x and L are variables
— use any known facts and definitions plus one more fact...

— make use of the fact that L is also a List

68

Structural Induction: Inductive Hypothesis

To prove P(S) holds for any list S, prove two implications

Base Case: prove P(nil)
— use any known facts and definitions

Inductive Hypothesis: assume P(L) is true
— use this in the inductive step, but not anywhere else

Inductive Step: prove P(x :: L)
— use known facts and definitions and Inductive Hypothesis

69

Why Structural Induction Works

With Structural Induction, we prove two facts

P(nil) len(echo(nil)) = 2 len(nil)
P(x: L) len(echo(x:: L)) =2len(x:: L)
(second assuming len(echo(L)) = 2 len(L))

Why is this enough to prove P(S) for any S : List?

70

Inductive Data is “Built Up” in Steps

Build up an object using constructors:

nil first constructor (nil)

2 nil second constructor (cons)

1: 2 :nil second constructor (cons)
1 2 nil

| J
|

nil already exists when building 2 :: nil

\ J
||

2 :: nil already exists when building 1 :: 2 :: nil

71

Inductive Proofs are “Built Up” in Steps

Build up a proof the same way we built up the object

P(nil) len(echo(nil)) = 2 len(nil)
P(x: L) len(echo(x:: L)) =2len(x:: L)
(second assuming len(echo(L)) = 2 len(L))

1 2 nil
!_'_!
P(nil)

\ J
|

P(nil) already proven when proving P(2 :: nil)

L J
I

P(2 :: nil) already proven when proving P(1:: 2 :: nil)

72

Example: Echo & Len Base Case (1/2)

echo(nil) := nil
echo(x:: L) :=x:x:echo(L)

* Prove that len(echo(S)) =2 len(S) for any S : List

Base Case (nil):

Need to prove that len(echo(nil)) = 2 len(nil)

len(echo(nil)) =

len(nil) 0
len(x:: L) := 1 +len(L)

73

Example: Echo & Len Base Case (2/2)

echo(nil) := nil
echo(x:: L) :=x:x:echo(L)

Prove that len(echo(S)) = 2 len(S) for any S : List

Base Case (nil):

len(echo(nil)) = len(nil) def of echo
=0 def of len
=20

=2]en(ni]) def of len

74

Example: Echo & Len Inductive Step (1/3)

echo(nil) := nil
echo(x:: L) :=x:x:echo(L)

* Prove that len(echo(S)) =2 len(S) for any S : List

Inductive Step (x :: L):

Need to prove that len(echo(x:: L)) = 2 len(x:: L)

Get to assume claim holds for L, i.e., that len(echo(L)) = 2 len(L)

75

Example: Echo & Len Inductive Step (2/3)

echo(nil) := nil
echo(x:: L) :=x:x:echo(L)

* Prove that len(echo(S)) =2 len(S) for any S : List

Inductive Hypothesis: assume that len(echo(L)) = 2 len(L)

Inductive Step (x:: L):
len(echo(x:: L))

len(nil) 0
len(x:: L) := 1 +len(L)

=2len(x:: L)

Example: Echo & Len Inductive Step (3/3)

echo(nil) := nil
echo(x:: L) :=x:x:echo(L)

* Prove that len(echo(S)) =2 len(S) for any S : List

Inductive Hypothesis: assume that len(echo(L)) = 2 len(L)

Inductive Step (x:: L):

len(echo(x:: L)) =len(x: x: echo(L)) def of echo
=1 + len(x :: echo(L)) def of len
= 2 + len(echo(L)) def of len
=2+ 2len(L) Ind. Hyp.

=2(1+ len(L))
=2len(x:: L) def of len

77

Example 2: Echo & Sum

echo(nil) := nil
echo(x:: L) :=x:x:echo(L)

* Suppose we have the following code:

const y = sum(S); // S is some List

const R = echo (S);

return 2*y; // = sum(echo(S))

— spec says to return sum(echo(S)) but code returns 2 sum(S)

* Need to prove that sum(echo(S)) = 2 sum(S)

78

Example 2: Echo & Sum Base Case (1/2)

echo(nil) := nil
echo(x:: L) :=x:x:echo(L)

* Prove that sum(echo(S)) = 2 sum(S) for any S : List

Base Case (nil):

sum(echo(nil)) =

= 2 sum(nil)

sum(nil) =0
sum(x: L) = x+sum(L)

79

Example 2: Echo & Sum Base Case (2/2)

echo(nil) := nil
echo(x:: L) :=x:x:echo(L)

* Prove that sum(echo(S)) = 2 sum(S) for any S : List

Base Case (nil):

sum(echo(nil)) = sum(nil) def of echo
=0 def of sum
=20
= 2 sum(nil) def of sum

Inductive Step (x :: L):

Need to prove that sum(echo(x:: L)) =2 sum(x:: L)
Get to assume claim holds for L, i.e., that sum(echo(L)) = 2 sum(L)

80

Example 2: Echo & Sum Inductive Step (1/2)

echo(nil) := nil
echo(x:: L) :=x:x:echo(L)

* Prove that sum(echo(S)) = 2 sum(S) for any S : List

Inductive Hypothesis: assume that sum(echo(L)) = 2 sum(L)

Inductive Step (x:: L):

sum(echo(x:: L)) =

=2 sum(x: L)
sum(nil) =0

sum(x: L) = x+sum(L) 5

Example 2: Echo & Sum Inductive Step (2/2)

echo(nil) := nil
echo(x:: L) :=x:x:echo(L)

* Prove that sum(echo(S)) = 2 sum(S) for any S : List

Inductive Hypothesis: assume that sum(echo(L)) = 2 sum(L)

Inductive Step (x:: L):

sum(echo(x:: L)) =sum(x: x:: echo(L)) def of echo
= x + sum(x :: echo(L)) def of sum
= 2x + sum(echo(L)) def of sum
= 2x + 2 sum(L) Ind. Hyp.
=2(x + sum(L))
=2 sum(x: L) def of sum
sum(nil) =0

sum(x: L) = x+sum(L) -

Recall: Concatenating Two Lists

Mathematical definition of concat(S, R)

concat(nil, R) = R important operation
concat(x :: L, R) := x:: concat(L, R) abbreviated as "4"

Puts all the elements of L. before those of R

concat(1 :: 2 ::nil, 3 :: 4 ::nil)

=1 :: concat(2 :: nil, 3 :: 4 :: nil) def of concat
=1: 2 :: concat(nil, 3 :: 4 :: nil) def of concat
=1:2:3:4::nil def of concat

83

Example 3: Length of Concatenated Lists

concat(nil, R) = R important operation
concat(x:: L,R) := x: concat(L, R)) abbreviated as "#"

* Suppose we have the following code:

const m = len(S); // S is some List
const n = len(R); // R is some List
return m + n; // = len(concat(S, R))

— spec returns len(concat(S, R)) but code returns len(S) + len(R)

* Need to prove that len(concat(S, R)) =len(S) + len(R)

84

Example 3: Len & Concat Base Case (1/2)

concat(nil, R) = R
concat(x:: L,R) := x: concat(L, R))

* Prove that len(concat(S, R)) =len(S) + len(R)

— prove by induction on S
— prove the claim for any choice of R (i.e., R is a variable)

Base Case (nil):

len(concat(nil, R))=

= len(nil) + len(R)

85

Example 3: Len & Concat Base Case (2/2)

concat(nil, R) = R
concat(x:: L,R) := x: concat(L, R))

* Prove that len(concat(S, R)) =len(S) + len(R)

— prove by induction on S
— prove the claim for any choice of R (i.e., R is a variable)

Base Case (nil):

len(concat(nil, R))=len(R) def of concat
=0 + len(R)
= len(nil) + len(R) def of len

86

Example 3: Len & Concat Inductive Step (1/3)

concat(nil, R) = R
concat(x:: L,R) := x: concat(L, R))

* Prove that len(concat(S, R)) =len(S) + len(R)

Inductive Step (x :: L):

Need to prove that
len(concat(x :: L, R)) =len(x:: L) + len(R)
Get to assume claim holds for L, i.e., that

len(concat(L, R)) = len(L) + len(R)

87

Example 3: Len & Concat Inductive Step (2/3)

concat(nil, R) = R
concat(x:: L,R) := x: concat(L, R))

* Prove that len(concat(S, R)) =len(S) + len(R)

Inductive Hypothesis: assume that len(concat(L, R)) =len(L) + len(R)

Inductive Step (x:: L):

len(concat(x:: L,R)) =

= len(x:: L) + len(R)

88

Example 3: Len & Concat Inductive Step (3/3)

concat(nil, R) = R
concat(x:: L,R) := x: concat(L, R))

* Prove that len(concat(S, R)) =len(S) + len(R)

Inductive Hypothesis: assume that len(concat(L, R)) =len(L) + len(R)

Inductive Step (x:: L):

len(concat(x:: L,R)) =len(x:: concat(L, R)) def of concat
=1 + len(concat(L, R)) def of len
=1 + len(L) + len(R) Ind. Hyp.
= len(x:: L) + len(R) def of len

89

Comparing Reasoning vs Testing

const concat = (S: List, R: List): List => {
if (S.kind === "nil") {
return R;
} else {

return cons(S.hd, concat(S.tl, R));

}
s

* Testing: 3 cases
— loop coverage requires 0, 1, and many recursive calls

 Reasoning: 2 calculations

90

Structural Induction ... Gone Wrong? (1/3)

allEqual(nil) ;= true
allEqual(x :: nil) := true
allEqual(x::y:: L) := x=y andallEqual(y :: L)

* Claim: this function satisfies the above spec

const allEqual (S: List): boolean => {

return true;

Y

* Need to prove that allEqual(S) = true

91

Structural Induction ... Gone Wrong? (2/3)

allEqual(nil) ;= true
allEqual(x :: nil) := true
allEqual(x::y:: L) := x=y andallEqual(y :: L)

Base Case (nil): allEqual(nil) = true def of allEqual

Now, what if we got a bit sloppy?
Inductive Hypothesis: assume that allEqual(S) = true for lists S

Inductive Step (x :: S):

Case (S =nil): allEqual(x:: nil) = true def of allEqual

Case (S=y: L)

y :: Lis alist - so, allEqual(y :: L) = true inductive hypothesis

x 1y nilis alist - so allEqual(x :: y :: nil) = true inductive hypothesis
thus, x =y definition of allEqual

allEqual(x :: y :: L) = true definition of allEqual

92

Structural Induction ... Gone Wrong? (3/3)

allEqual(nil) ;= true
allEqual(x :: nil) := true
allEqual(x::y:: L) := x=y andallEqual(y :: L)

Base Case (nil): allEqual(nil) = true def of allEqual

Now, what if we got a bit sloppy?

Inductive Hypothesis: assume that allEqualfSy = true fortists-S
can’t assume claim!
Inductive Step (x :: S):

Case (S =nil): allEqual(x:: nil) = true def of allEqual
Case (S=y: L)
y :: Lis a list - so, allEqual(y :: L) = true not true!

x 1y nilis alist - so allEqual(x :: y :: nil) = true not true!
thus,x =y not true!

allEqual(x ::y :: L) = true not true!
93

Proof Strategy Advice

e Stuck on a proof and...
— the data type is not inductive? Try splitting into cases!
— the data type is inductive? Try structural induction!

* When using structural induction, consider

— where can the inductive hypothesis be used?
the power of structural induction!

— which variable should be inducted on?
— definitions can be applied in both directions

94

Example 4: Faster Sum

sum-acc(nil, r) =T

linear time
sum-acc(x :: L, r) :=sum-acc(L,x+r)
* Suppose we have the following code:
const s = sum acc(S, 0); // S is some List

return s; // = sum(S)

— spec says to return sum(S) but code returns sum-acc(S, 0)

* Need to prove that sum-acc(S, 0) = sum(S)
— will prove, more generally, that sum-acc(S, r) = sum(S) +r

95

Example 4: Faster Sum Base Case (1/2)

sum-acc(nil, r) =T
sum-acc(x :: L, r) :=sum-acc(L,x+r)

* Prove that sum-acc(S, r) = sum(S) +r
— prove by induction on S
— prove the claim for any choice of r (i.e., r is a variable)

Base Case (nil):

sum-acc(nil, r) =

=sum(nil) +r

96

Example 4: Faster Sum Base Case (2/2)

sum-acc(nil, r) =T
sum-acc(x :: L, r) :=sum-acc(L,x+r)

* Prove that sum-acc(S, r) = sum(S) +r
— prove by induction on S
— prove the claim for any choice of r (i.e., r is a variable)

Base Case (nil):

sum-acc(nil, r) =r def of sum-acc
=0+r
=sum(nil) +r def of sum

97

Example 4: Faster Sum Inductive Step (1/3)

sum-acc(nil, r) =T
sum-acc(x :: L, r) :=sum-acc(L,x+r)

* Prove that sum-acc(S, r) = sum(S) +r

Inductive Step (x :: L):

Need to prove that
sum-acc(Xx:: L, r)=sum(x::L)+r
Get to assume claim holds for L, i.e., that

sum-acc(L, r) =sum(L) +r holds for any r

98

Example 4: Faster Sum Inductive Step (2/3)

sum-acc(nil, r) =T
sum-acc(x :: L, r) :=sum-acc(L,x+r)

* Prove that sum-acc(S, r) = sum(S) +r
Inductive Hypothesis: assume that sum-acc(L, r) = sum(L) +r

Inductive Step (x:: L):

sum-acc(x: L, r) =

=sum(x: L) +r

99

Example 4: Faster Sum Inductive Step (3/3)

sum-acc(nil, r) =T
sum-acc(x :: L, r) :=sum-acc(L,x+r)

* Prove that sum-acc(S, r) = sum(S) +r
Inductive Hypothesis: assume that sum-acc(L, r) = sum(L) +r

Inductive Step (x:: L):

sum-acc(x:: L, r) =sum-acc(L,x+r) defof sum-acc

=sum(L)+x+r Ind. Hyp.
=x+sum(L) +r
=sum(x: L) +r def of sum

100

Structural Induction in General

 General case: assume P holds for constructor arguments

typeT := A | Bx:Z) | C(y:Z,t:T) |D(z:Z,u:T,v:T)

* To prove P(t) for any t, we need to prove:
— P(A)
— P(B(x)) forany x:Z
— P(C(y,t)) foranyy:Zand t: T assuming P(t) is true
— P(D(z,u,v)) foranyz:Zandu,v: T assuming P(u) and P(v)

* These four facts are enough to prove P(t) for any t

— for each constructor, have proof that it produces an object
satisfying P

— generally, each inductive type has its own form of induction
101

Defining Cases

e Case in inductive data type = case in structural
inductive proof
— “Smallest” form of data type = Base case in proof
— Recursive case in data type = Inductive step in proof

* To prove P(t) for any t of type T:
— We have 2 base cases
typeT := A | B(x:Z) | C(y:Z,t:T) | D(z:Z,u:T,v:T)
— and 2 recursive cases
typeT := A | B(x:Z) | C(y:Z,t:T) | D(z:Z,u:T,v:T)

— Inductive proof will cover base cases in base case and
recursive cases cases in inductive step

102

Induction Wrap up: Defining Cases

 |f math def defines a case for recursive form of
with a fixed size, that is still part of inductive step!

— Example, from last lecture:
allEqual(nil) ;= true
allEqual(x::nil) :=true
allEqual(x::y:: L) := x=y andallEqual(y :: L)

X :: nil uses recursive constructor of a List, so it should be part of the
inductive step:

Base Case (nil): allEqual(nil) = true def of allEqual
Inductive Step (x :: S):

Case (S = nil): allEqual(x:: nil) = true def of allEqual
Case (S=y: L) _
we don’t use the IH in

every case. That’s okay!
103

The following examples were
hot covered in lecture, but are
useful practice, if needed!

Definition of List Reversal

e Reversal of a List: “same values but in reverse order”

 Look at some examples...

nil

rev(L)

nil

[3] 3 :: nil

[3, 2] 3:2:nil

[3, 2, 1] 3:2:1 il

105

Structural Recursion in List Reversal

 Look at some examples...

L rev(L)

nil nil

3 nil 3 :: nil

2 :: 3 il 3::2:nil
1:2::3:nil 3:2:1:nil

* Where does rev([2, 3]) show up in rev([1, 2, 3])?
— at the beginning, with 1 :: nil after it

* Where does rev([3]) show up in rev([2, 3])?
— at the beginning, with 2 :: nil after it

106

Recall: Reversing a List

* Mathematical definition of rev(S)

rev(nil) := nil
rev(x::L) := rev(L) # [x]

— note that rev uses concat (#) as a helper function

reverse this too

&

move 1 to end

107

Definition of List Reversal: Checking Examples

1::2::3:nil 3:2:1 il

e Mathematical definition of rev : List — List

rev(nil) :=nil
rev(x:: L) :=rev(L) # [x]

* Check that this matches examples...

rev(1l: 2: 3::nil)

=rev(2:: 3 nil) # [1] def of rev
=rev(3::nil) # [2] # [1] def of rev
= rev(nil) # [3] # [2] # [1] def of rev
=[] [3] #[2] # [1] def of rev

=[3, 2, 1] def of concat (many times)
108

Example 5: Length of Reversed List: Setup

rev(nil) := nil
rev(x:: L) :=rev(L) # [x]

* Suppose we have the following code:

const m = len(S); // S is some List

const R = rev(S);

return m; // = len(rev(S))

— spec returns len(rev(S)) but code returns len(S)

* Need to prove that len(rev(S)) = len(S) for any S : List

109

Example 5: Length of Reversed List (1/3)

rev(nil) := nil
rev(x:: L) :=rev(L) # [x]

* Prove that len(rev(S)) = len(S) for any S : List

Base Case (nil):

len(rev(nil)) = len(nil) def of rev

Inductive Step (cons(x, L)):

Need to prove that len(rev(x:: L)) =len(x:: L)

Get to assume that len(rev(L)) = len(L)

110

Example 5: Length of Reversed List (2/3)

rev(nil) := nil
rev(x:: L) :=rev(L) # [x]

* Prove that len(rev(S)) = len(S) for any S : List

Inductive Hypothesis: assume that len(rev(L)) = len(L)

Inductive Step (x :: L):

len(rev(x:: L))

=len(x:: L)

111

Example 5: Length of Reversed List (3/3)

rev(nil) := nil
rev(x:: L) :=rev(L) # [x]

* Prove that len(rev(S)) = len(S) for any S : List

Inductive Hypothesis: assume that len(rev(L)) = len(L)

Inductive Step (x :: L):

len(rev(x:: L)

= len(rev(L) # [X]) def of rev

= len(rev(L)) + len([x]) by Example 3
= len(L) + len([x]) Ind. Hyp.

= len(L) + 1 + len(nil) def of len
=len(L) + 1 def of len

=len(x:: L) def of len

112

Finer Points of Structural Induction

e Structural Induction is how we reason about recursion

* Reasoning also follows structure of code

— code uses structural recursion, so
reasoning uses structural induction

 Note that rev is defined in terms of concat
— reasoning about len(rev(...)) used fact about len(concat(...))
— thisis common

113

Example 6: Reversing a List Performance

rev(nil) := nil
rev(x:: L) :=rev(L) # [x]

* This correctly reverses a list but is slow
— concat takes O(n) time, where n is length of L
— n calls to concat takes 6(n?) time

 Can we do this faster?
— yes, but we need a helper function

114

Example 6: Reversing a List, Linear Time (1/3)

* Helper function rev-acc(S, R) for any S, R : List

rev-acc(nil, R) =R
rev-acc(x:: L, R) := rev-acc(L,x:: R)

rev-acc (3 4 nil 2 1 niD

115

Example 6: Reversing a List, Linear Time (2/3)

* Helper function rev-acc(S, R) for any S, R : List

rev-acc(nil, R)
rev-acc(x:: L, R)

rev-acc(3 4 nil
= rev-acc (

)

R

rev-acc(L, x :: R)

4 nil

niD

116

Example 6: Reversing a List

* Helper function rev-acc(S, R) for any S, R : List

rev-acc(nil, R) =R
rev-acc(x:: L, R) := rev-acc(L,x:: R)

rev-acc (3 4 nil 2 1 niD

= rev-acc 4 nil 3 2 1

= rev-acc (nil ’ 4 3 2 1

niD
niD

117

Proving that rev-acc works, in pieces

rev-acc(nil, R) = R
rev-acc(x :: L, R) := rev-acc(L, x:: R)

* Can prove that rev-acc(S, R) = concat(rev(S), R) (Lemma 1)

* Can prove that concat(L, nil) =L (Lemma 2)
— structural induction like prior examples

* Prove that rev(S) = rev-acc(S, nil)

rev-acc(S, nil) = concat(rev(S), nil) Lemma 1
=rev(S) Lemma 2

118

Proving Lemma 2: Setup

rev-acc(nil, R) = R
rev-acc(x :: L, R) := rev-acc(L, x:: R)

* Prove that concat(§, nil) =S

Base Case (nil):

concat(nil, nil) = nil def of concat

Inductive Hypothesis: assume that concat(L, nil) = nil

Inductive Step (cons(x, L)): prove that concat(cons(x, L), nil) = cons(x, L)

119

Proving Lemma 2: Inductive Step (1/2)

rev-acc(nil, R) = R
rev-acc(x :: L, R) := rev-acc(L, x:: R)

* Prove that concat(§, nil) =S

Inductive Hypothesis: assume that concat(L, nil) =L

Inductive Step (x :: L):

concat(x:: L,nil) =

120

Proving Lemma 2: Inductive Step (2/2)

rev-acc(nil, R) = R
rev-acc(x :: L, R) := rev-acc(L, x:: R)

* Prove that concat(§, nil) =S

Inductive Hypothesis: assume that concat(L, nil) =L

Inductive Step (x :: L):

concat(x :: L, nil) =x::concat(L, nil) def of concat
=x:L Ind. Hyp.

121

Proving Lemma 1: Setup

rev-acc(nil, R) = R
rev-acc(x :: L, R) := rev-acc(L, x:: R)

* Prove that rev-acc(S, R) = concat(rev(S), R)
— prove by structural induction

* Need the following property of concat (#)
A+ BH#C)=(A#B)#C

— with strings, we know that “A+(B+C)=(A+B)+ C”
— this says the same thing for lists with "4#"

122

Proving Lemma 1: Base Case (1/2)

rev-acc(nil, R) = R
rev-acc(x :: L, R) := rev-acc(L, x:: R)

* Prove that rev-acc(S, R) = concat(rev(S), R)
— prove by induction on S (so R is a variable)

Base Case (nil):

rev-acc(nil, R) =

= concat(rev(nil), R)

concat(nil, R) := R rev(nil) := nil
concat(x :: L, R) := x::concat(L, R) rev(x::L) :=rev(L) # [X]

123

Proving Lemma 1: Base Case (2/2)

rev-acc(nil, R) = R
rev-acc(x :: L, R) := rev-acc(L, x:: R)

* Prove that rev-acc(S, R) = concat(rev(S), R)
— prove by induction on S (so R is a variable)

Base Case (nil):

rev-acc(nil, R) =R def of rev-acc
= concat(nil, R) def of concat
= concat(rev(nil), R) def of rev
concat(nil, R) := R rev(nil) := nil 194

concat(x :: L, R) := x::concat(L, R) rev(x::L) :=rev(L) # [X]

Proving Lemma 1: Inductive Step (1/4)

rev-acc(nil, R) = R
rev-acc(x :: L, R) := rev-acc(L, x:: R)

* Prove that rev-acc(S, R) = concat(rev(S), R)

Inductive Hypothesis: assume that rev-acc(L, R) = concat(rev(L), R) for any R

Inductive Step (x:: L):

rev-acc(x:: L,R) =

= concat(rev(x:: L), R)

func concat(nil, R) =R func rev(nil) := nil 125
concat(cons(x, L), R) := cons(x, concat(L, R)) rev(cons(x, L)) := concat(rev(L), cons(x, nil))

Proving Lemma 1: Inductive Step (2/4)

rev-acc(nil, R) = R
rev-acc(x :: L, R) := rev-acc(L, x:: R)

* Prove that rev-acc(S, R) = concat(rev(S), R)

Inductive Hypothesis: assume that rev-acc(L, R) = concat(rev(L), R) for any R

Inductive Step (x:: L):

rev-acc(x:: L, R) =rev-acc(L, x :: R) def of rev-acc
= concat(rev(L), x :: R) Ind. Hyp.
= (rev(L) # [x]) # R ?7?
= concat(rev(L) # [x], R)
= concat(rev(x:: L), R) def of rev
concat(nil, R) := R rev(nil) := nil 126

concat(x :: L, R) := x::concat(L, R) rev(x::L) :=rev(L) # [X]

Proving Lemma 1: Inductive Step (3/4)

rev-acc(nil, R) = R
rev-acc(x :: L, R) := rev-acc(L, x:: R)

* Prove that rev-acc(S, R) = concat(rev(S), R)

Inductive Hypothesis: assume that rev-acc(L, R) = concat(rev(L), R) for any R

Inductive Step (x:: L):

rev-acc(x:: L, R) =rev-acc(L, x :: R) def of rev-acc
= concat(rev(L), x :: R) Ind. Hyp.

=rev(L) # ([x] # R)

= (rev(L) # [x]) # R assoc. of
= concat(rev(L) # [x], R)
= concat(rev(x:: L), R) def of rev
concat(nil, R) := R rev(nil) := nil 197

concat(x :: L, R) := x::concat(L, R) rev(x::L) :=rev(L) # [X]

Proving Lemma 1: Inductive Step (4/4)

rev-acc(nil, R) = R
rev-acc(x :: L, R) := rev-acc(L, x:: R)

* Prove that rev-acc(S, R) = concat(rev(S), R)

Inductive Hypothesis: assume that rev-acc(L, R) = concat(rev(L), R) for any R

Inductive Step (x:: L):

rev-acc(x:: L, R) =rev-acc(L, x :: R) def of rev-acc
= concat(rev(L), x :: R) Ind. Hyp.
=rev(L) # (x:: R)
=rev(L) # ([x] # R) def of concat
= (rev(L) # [x]) # R assoc. of
= concat(rev(L) # [x], R)
= concat(rev(x:: L), R) def of rev

concat(nil, R) := R rev(nil) := nil 128

concat(x :: L, R) := x::concat(L, R) rev(x::L) :=rev(L) # [X]

	Testing recap
	Slide 1: Reasoning
	Slide 2: Administrivia
	Slide 3: Agenda
	Slide 4: Reacp: Testing so far
	Slide 5: (end of testing in Topic 4 slides)

	Reasoning
	Slide 6: Agenda
	Slide 7: Reasoning
	Slide 8: Correctness Requires a Specification
	Slide 9: Recall: Specifications with JSDoc
	Slide 10: Preconditions & Postconditions in JSDoc
	Slide 11: Aside: Documentation + Testing
	Slide 12: Facts (1/2)
	Slide 13: Facts (2/2)
	Slide 14: Finding Facts at a Return Statement
	Slide 15: Reasoning: Proof by Calculation & Cases
	Slide 16: Administrivia
	Slide 17: Recall: Correctness Requires a Specification
	Slide 18: Recall: Finding Facts at a Return Statement
	Slide 19: Implications
	Slide 20: Collecting Facts
	Slide 21: Mutation Makes Reasoning Harder
	Slide 22: Correctness with No Mutation

	Proof by calculation + cases
	Slide 23: Proof by Calculation
	Slide 24: Proof by Calculation
	Slide 25: Example Proof by Calculation
	Slide 26: Example Proof by Calculation (across lines)
	Slide 27: Calculation Blocks: Equalities
	Slide 28: Calculation Blocks: Inequalities
	Slide 29: Calculation Blocks: Mixing Inequalities Gotcha
	Slide 30: Proving Code by Calculation: Example 1 (1/2)
	Slide 31: Proving Code by Calculation: Example 1 (2/2)
	Slide 32: Proving Code by Calculation: Example 2 (1/2)
	Slide 33: Proving Code by Calculation: Example 2 (2/2)
	Slide 34: Proving Code by Calculation: Example 3 (1/2)
	Slide 35: Proving Code by Calculation: Example 3 (2/2)
	Slide 36: Proving Code by Calculation: Example 4 (1/2)
	Slide 37: Proving Code by Calculation: Example 4 (2/2)
	Slide 38: Practice #1!
	Slide 39: Using Definitions in Calculations
	Slide 40: Recall: Finding Facts at a Return Statement
	Slide 41: Using Definitions in Calculations (1/2)
	Slide 42: Using Definitions in Calculations (2/2)
	Slide 43: Practice #2!
	Slide 44: Proving Correctness with Conditionals (Top)
	Slide 45: Proving Correctness with Conditionals (Bottom)
	Slide 46: Proving Correctness with Multiple Claims
	Slide 47: Example Correctness with Conditionals
	Slide 48: Proof by Cases
	Slide 49: Proof By Cases
	Slide 50: Example Proof By Cases
	Slide 51: Proof By Cases (1/3)
	Slide 52: Proof By Cases (2/3)
	Slide 53: Proof By Cases (3/3)
	Slide 54: Recall: Pattern Matching
	Slide 55: Proof by Cases, with Records (Case T)
	Slide 56: Proof by Cases, with Records (Case F)
	Slide 57: Proofs in Class & HW versus the “Real World”

	Induction
	Slide 58: Reasoning with Structural Induction
	Slide 59: Common Proof by Calculation Mistakes
	Slide 60: Common Proof by Calculation Mistakes
	Slide 61: Structural Induction
	Slide 62: Proof by Calculation on Lists
	Slide 63: Example: Echo Function
	Slide 64: Example: Proving Len & Echo Correct
	Slide 65: Trying Proof by Cases on Len & Echo (1/2)
	Slide 66: Trying Proof by Cases on Len & Echo (2/2)
	Slide 67: Proof by Cases Breaks on Inductive Data
	Slide 68: Structural Induction is Two Implications
	Slide 69: Structural Induction: Inductive Hypothesis
	Slide 70: Why Structural Induction Works
	Slide 71: Inductive Data is “Built Up” in Steps
	Slide 72: Inductive Proofs are “Built Up” in Steps
	Slide 73: Example: Echo & Len Base Case (1/2)
	Slide 74: Example: Echo & Len Base Case (2/2)
	Slide 75: Example: Echo & Len Inductive Step (1/3)
	Slide 76: Example: Echo & Len Inductive Step (2/3)
	Slide 77: Example: Echo & Len Inductive Step (3/3)
	Slide 78: Example 2: Echo & Sum
	Slide 79: Example 2: Echo & Sum Base Case (1/2)
	Slide 80: Example 2: Echo & Sum Base Case (2/2)
	Slide 81: Example 2: Echo & Sum Inductive Step (1/2)
	Slide 82: Example 2: Echo & Sum Inductive Step (2/2)
	Slide 83: Recall: Concatenating Two Lists
	Slide 84: Example 3: Length of Concatenated Lists
	Slide 85: Example 3: Len & Concat Base Case (1/2)
	Slide 86: Example 3: Len & Concat Base Case (2/2)
	Slide 87: Example 3: Len & Concat Inductive Step (1/3)
	Slide 88: Example 3: Len & Concat Inductive Step (2/3)
	Slide 89: Example 3: Len & Concat Inductive Step (3/3)
	Slide 90: Comparing Reasoning vs Testing
	Slide 91: Structural Induction … Gone Wrong? (1/3)
	Slide 92: Structural Induction … Gone Wrong? (2/3)
	Slide 93: Structural Induction … Gone Wrong? (3/3)
	Slide 94: Proof Strategy Advice
	Slide 95: Example 4: Faster Sum
	Slide 96: Example 4: Faster Sum Base Case (1/2)
	Slide 97: Example 4: Faster Sum Base Case (2/2)
	Slide 98: Example 4: Faster Sum Inductive Step (1/3)
	Slide 99: Example 4: Faster Sum Inductive Step (2/3)
	Slide 100: Example 4: Faster Sum Inductive Step (3/3)
	Slide 101: Structural Induction in General
	Slide 102: Defining Cases
	Slide 103: Induction Wrap up: Defining Cases

	induction extras
	Slide 104: The following examples were not covered in lecture, but are useful practice, if needed!
	Slide 105: Definition of List Reversal
	Slide 106: Structural Recursion in List Reversal
	Slide 107: Recall: Reversing a List
	Slide 108: Definition of List Reversal: Checking Examples
	Slide 109: Example 5: Length of Reversed List: Setup
	Slide 110: Example 5: Length of Reversed List (1/3)
	Slide 111: Example 5: Length of Reversed List (2/3)
	Slide 112: Example 5: Length of Reversed List (3/3)
	Slide 113: Finer Points of Structural Induction
	Slide 114: Example 6: Reversing a List Performance
	Slide 115: Example 6: Reversing a List, Linear Time (1/3)
	Slide 116: Example 6: Reversing a List, Linear Time (2/3)
	Slide 117: Example 6: Reversing a List
	Slide 118: Proving that rev-acc works, in pieces
	Slide 119: Proving Lemma 2: Setup
	Slide 120: Proving Lemma 2: Inductive Step (1/2)
	Slide 121: Proving Lemma 2: Inductive Step (2/2)
	Slide 122: Proving Lemma 1: Setup
	Slide 123: Proving Lemma 1: Base Case (1/2)
	Slide 124: Proving Lemma 1: Base Case (2/2)
	Slide 125: Proving Lemma 1: Inductive Step (1/4)
	Slide 126: Proving Lemma 1: Inductive Step (2/4)
	Slide 127: Proving Lemma 1: Inductive Step (3/4)
	Slide 128: Proving Lemma 1: Inductive Step (4/4)

