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Administrivia

• HW4 is out!

– it contains math and programming

– more emphasis on correctness now!

– Start early!

– 6 Tasks of varying length

~ 1 a day is a good goal!

• Jaela OH today: 12:30 - 1:30 CSE 2/F & zoom

• Bonus lecture on software development coming 

this weekend!
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Agenda

✓ Administrivia

• Finish Testing (finish topic 4)

– Practice exercises

• Reasoning (start topic 5)
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Reacp: Testing so far 

• Ground Rules

– Only test inputs allowed by the spec

– Test functions individually

– Keep test code simple

– If there are < 10 inputs, test them all!

• Metrics

– Statement coverage

Execute every statement that is reachable by an allowed input

– Branch coverage

For every conditional, execute both branches (if they are reachable 
by an allowed input
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(end of testing in Topic 4 slides)



Agenda

✓ Administrivia

✓ Finish Testing (finish topic 4)

✓ Practice exercises

• Reasoning (start topic 5)
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Reasoning

• “Thinking through” what the code does on all inputs

– neither testing nor type checking can do this

• Can be done formally or informally

– most professionals reason informally

– we will start with formal reasoning and move to informal

formal reasoning is a stepping stone to informal reasoning (same core ideas)

formal reasoning still needed for the hardest problems

• Definition of correctness comes from the 

specification…
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Correctness Requires a Specification

Specification contains two sets of facts

 Precondition:
facts we are promised about the inputs

 Postcondition:
facts we are required to ensure for the output

 Correctness (satisfying the spec):
for every input satisfying the precondition,

the output will satisfy the postcondition
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Recall: Specifications with JSDoc

• TypeScript, like Java, writes specs in /** … */

/**

 * High level description of what function does

 * @param a What "a" represents + any conditions

 * @param b What "b" represents + any conditions

 * @returns Detailed description of return value

 */

const f = (a: bigint, b: bigint): bigint => {..};

– these are formatted as “JSDoc” comments

– (in Java, they are JavaDoc comments)
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Preconditions & Postconditions in JSDoc

• Specifications are written in the comments

/**

 * Returns the first n elements from the list L

 * @param n non-negative length of the prefix

 * @param L the list whose prefix should be returned

 * @requires n <= len(L)

 * @returns list S such that L = S ++ T for some T

 */

const prefix = (n: bigint, L: List): List => {..};

–  precondition written in @param and @requires

–  postcondition written in @returns
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Aside: Documentation + Testing

• We discussed clear-box testing

– involves determining cases based on structure of code

– can result in buggy tests due to bias!

• Alternative: Opaque-Box Testing 

– focuses solely on inputs and outputs

– testers don’t look at the code, instead test to the spec

still care about different input cases

– very widely used in industry!

• Our primary approach is clear-box testing

– rule of only testing inputs allowed by the spec is an 

opaque testing idea 
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Facts (1/2)

• Basic inputs to reasoning are “facts”

– things we know to be true about the variables

these hold for all inputs (no matter what value the variable has)

– typically, “=” or “≤”

// @param n a natural number

const f = (n: bigint): bigint => {

  const m = 2n * n;

  return (m + 1n) * (m – 1n);

};

• At the return statement, we know these facts:

– n ∈ ℕ   (or n ∈ ℤ and n ≥ 0)

– m = 2n

find facts by reading along path 

from top to return statement
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Facts (2/2)

• Basic inputs to reasoning are “facts”

– things we know to be true about the variables

these hold for all inputs (no matter what value the variable has)

– typically, “=” or “≤”

// @param n a natural number

const f = (n: bigint): bigint => {

  const m = 2n * n;

  return (m + 1n) * (m – 1n);

};

• No need to include the fact that n is an integer (n ∈ ℤ)

– that is true, but the type checker takes care of that

– no need to repeat reasoning done by the type checker
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Finding Facts at a Return Statement

• Consider this code

// Returns a non-negative integer.

const f = (a: bigint, b: bigint): bigint => {

  const L: List = cons(a, cons(b, nil));

  if (a >= 0n && b >= 0n)

    return sum(L);

  …

• Known facts include “a ≥ 0”, “b ≥ 0”, and “L = cons(…)”

• Remains to prove that “sum(L) ≥ 0”

find facts by reading along path 

from top to return statement

facts are math statements about the code
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Reasoning: Proof by Calculation 

    & Cases
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Administrivia

• optional lecture on Software Development Process 

available on Panopto
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Recall: Correctness Requires a Specification

Specification contains two sets of facts

 Precondition:
facts we are promised about the inputs

 Postcondition:
facts we are required to ensure for the output

 Correctness (satisfying the spec):
for every input satisfying the precondition,

the output will satisfy the postcondition
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Recall: Finding Facts at a Return Statement

• Consider this code

// Returns a non-negative integer.

const f = (a: bigint, b: bigint): bigint => {

  const L: List = cons(a, cons(b, nil));

  if (a >= 0n && b >= 0n)

    return sum(L);

  …

• Known facts include “a ≥ 0”, “b ≥ 0”, and “L = cons(…)”

• Remains to prove that “sum(L) ≥ 0”

find facts by reading along path 

from top to return statement

facts are math statements about the code
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Implications

• We can use the facts we know to prove more facts

– if we can prove R using facts P and Q,

we say that R “follows from” or “is implied by” P and Q

– proving this fact is proving an “implication”

• Checking correctness requires proving implications

– need to prove facts about the return values

– return values must satisfy the facts of the postcondition
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Collecting Facts

• Saw how to collect facts in code consisting of

– "const" variable declarations

– "if" statements

– collect facts by reading along path from top to return

• Those elements cover all code without mutation

– covers everything describable by our math notation 

– we can calculate interesting values with recursion

• Will need more tools to handle code with mutation…
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Mutation Makes Reasoning Harder

Description Testing Tools Reasoning

no mutation full coverage type checker calculation
induction

local variable mutation “” “” Floyd logic

array mutation “” “” for-any facts

heap state mutation “” “” rep invariants

HW5

HW6
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Correctness with No Mutation

• Proving implications is the core step of reasoning

– other techniques output implications for us to prove

• Facts are written in our math notation

– we will use math tools to prove implications

• Core technique is "proof by calculation"

• Other techniques we will need:

– proof by cases (Today)

– structural induction (Wednesday)
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Proof by Calculation



Proof by Calculation

• Proves an implication

– fact to be shown is an equation or inequality

• Uses known facts and definitions

– latter includes, e.g., the fact that  len(nil) = 0
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Example Proof by Calculation

• Given x = y and z ≤ 10, prove that x + z ≤ y + 10
– show the third fact follows from the first two

• Start from the left side of the inequality to be proved

x + z

  

since x = y

=   y + z ≤  y + 10

since z ≤ 10

All together, this tells us that  x + z  ≤  y + 10
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Example Proof by Calculation (across lines)

• Given x = y and z ≤ 10, prove that x + z ≤ y + 10
– show the third fact follows from the first two

• Start from the left side of the inequality to be proved

x + z = y + z    since x = y

  ≤ y + 10    since z ≤ 10  

– easier to read when split across lines

– “calculation block”, includes explanations in right column

proof by calculation means using a calculation block

– “=” or “≤” relates that line to the previous line
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Calculation Blocks: Equalities

• Chain of “=” shows first = last

a = b

 = c      

 = d

– proves that a = d

– all 4 of these are the same number
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Calculation Blocks: Inequalities

• Chain of “=” and “≤” shows first ≤ last

x + z = y + z    since x = y

  ≤ y + 10    since z ≤ 10

  = y + 3 + 7

  ≤ w + 7    since y + 3 ≤ w 

– each number is equal or strictly larger that previous

last number is strictly larger than the first number

– analogous for “≥”
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Calculation Blocks: Mixing Inequalities Gotcha

• Consider:

1 + 1 = 2    

  ≥ 2 ∗ 1 

  = 1 * 2    

  ≤ 1 * 3 

  ≥ 3     

– cannot derive meaningful conclusion from “proof”

each step is still true, but cannot make final conclusion

– rule of thumb: inequalities should only go in one direction
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Proving Code by Calculation: Example 1 (1/2)

// Inputs x and y are positive integers

// Returns a positive integer.

const f = (x: bigint, y, bigint): bigint => {

  return x + y;

};

• Known facts “x ≥ 1” and “y ≥ 1”

• Correct if the return value is a positive integer

x + y
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Proving Code by Calculation: Example 1 (2/2)

// Inputs x and y are positive integers

// Returns a positive integer.

const f = (x: bigint, y, bigint): bigint => {

  return x + y;

};

• Known facts “x ≥ 1” and “y ≥ 1”

• Correct if the return value is a positive integer

x + y ≥ x + 1    since y ≥ 1

  ≥ 1 + 1    since x ≥ 1

  = 2

  ≥ 1     

– calculation shows that x + y ≥ 1
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Proving Code by Calculation: Example 2 (1/2)

// Inputs x and y are integers with x > 8 and y > -9

// Returns a positive integer.

const f = (x: bigint, y, bigint): bigint => {

  return x + y;

};

• Known facts “x ≥ 9” and “y ≥ –8”

• Correct if the return value is a positive integer

x + y 
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Proving Code by Calculation: Example 2 (2/2)

// Inputs x and y are integers with x > 8 and y > -9

// Returns a positive integer.

const f = (x: bigint, y, bigint): bigint => {

  return x + y;

};

• Known facts “x ≥ 9” and “y ≥ –8”

• Correct if the return value is a positive integer

x + y ≥ x + -8    since y ≥ -8

  ≥ 9 – 8    since x ≥ 9

  = 1
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Proving Code by Calculation: Example 3 (1/2)

// Inputs x and y are integers with x > 8 and y > -9

// Returns a positive integer.

const f = (x: bigint, y, bigint): bigint => {

  return x + y;

};

• Known facts “x > 8” and “y > –9”

• Correct if the return value is a positive integer

x + y
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Proving Code by Calculation: Example 3 (2/2)

// Inputs x and y are integers with x > 8 and y > -9

// Returns a positive integer.

const f = (x: bigint, y, bigint): bigint => {

  return x + y;

};

• Known facts “x > 8” and “y > –9”

• Correct if the return value is a positive integer

x + y > x + -9    since y > -9

  > 8 - 9    since x > 8

  = -1

warning: avoid using “>” (or “<“) multiple times in a calculation block 35



Proving Code by Calculation: Example 4 (1/2)

// Inputs x and y are integers with x > 3 and y > 4

// Returns an integer that is 10 or larger.

const f = (x: bigint, y, bigint): bigint => {

  return x + y;

};

• Known facts “x ≥ 4” and “y ≥ 5”

• Correct if the return value is 10 or larger

x + y 
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Proving Code by Calculation: Example 4 (2/2)

// Inputs x and y are integers with x > 3 and y > 4

// Returns an integer that is 10 or larger.

const f = (x: bigint, y, bigint): bigint => {

  return x + y;

};

• Known facts “x ≥ 4” and “y ≥ 5”

• Correct if the return value is 10 or larger

x + y ≥ x + 5    since y ≥ 5

  ≥ 4 + 5    since x ≥ 4

  = 9

proof doesn’t work because the code is wrong!
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Practice #1!

// Inputs x and y are integers with x > 0 and y < 0

 // Returns a positive integer.

 const f = (x: bigint, y: bigint): bigint => {

  return x – y + 1;

 };

• Prove that the post condition is correct

– What is the fact to prove?

– What are the known facts?

– Proof:

38

x – y + 1 ≥ 1

x ≥ 1 and y ≤ -1

x – y + 1 ≥ 1 – y + 1  since x ≥ 1
          ≥ 1 + 1 + 1  since y ≤ -1
  ≥ 1



Using Definitions in Calculations

• Most useful with function calls

– cite the definition of the function to get the return value

• For example:

   sum(nil)  :=  0

   sum(x :: L) :=  x + sum(L)

• Can cite facts such as

– sum(nil) = 0

– sum(a :: b :: nil) = a + sum(b :: nil)

second case of definition with x = a and L = b :: nil
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Recall: Finding Facts at a Return Statement

• Consider this code

// Inputs a and b must be integers.

// Returns a non-negative integer.

const f = (a: bigint, b: bigint): bigint => {

  const L: List = cons(a, cons(b, nil));

  if (a >= 0n && b >= 0n)

    return sum(L);

  …

• Known facts include “a ≥ 0”, “b ≥ 0”, and “L = cons(…)”

• Must prove that sum(L) ≥ 0

find facts by reading along path 

from top to return statement
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Using Definitions in Calculations (1/2)

   sum(nil)  :=  0

   sum(x :: L) :=  x + sum(L)

• Know “a ≥ 0”, “b ≥ 0”, and “L = a :: b :: nil”

• Prove the “sum(L)” is non-negative

sum(L)
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Using Definitions in Calculations (2/2)

   sum(nil)  :=  0

   sum(x :: L) :=  x + sum(L)

• Know “a ≥ 0”, “b ≥ 0”, and “L = a :: b :: nil”

• Prove the “sum(L)” is non-negative

sum(L) = sum(a :: b :: nil)   since L = a :: b :: nil

  = a + sum(b :: nil)   def of sum

  = a + b + sum(nil)  def of sum

  = a + b     def of sum

  ≥ 0 + b     since a ≥ 0

  ≥ 0      since b ≥ 0
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Practice #2!

// Returns a non-empty List.

 const f = (x: bigint): List<bigint> => {

  const L: List = cons(x, cons(-x, nil);

  return L;

 };

• Recall:   len(nil)  :=  0

   len(x :: L) :=  1 + len(L)

• Prove that the post condition is correct

– What is the fact to prove?

– What are the known facts?

– Proof:
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len(L) > 0

L = x :: -x :: nil

len(L) = len(x :: -x :: nil)  since L = x :: -x :: nil
     = 1 + len(-x :: nil)  def of len
     = 1 + 1 + len(nil)  def of len
     = 1 + 1 + 0    def of len
     > 0



Proving Correctness with Conditionals (Top)

// Inputs x and y are integers.

// Returns a number less than x.

const f = (x: bigint, y, bigint): bigint => {

  if (y < 0n) {

    return x + y;

  } else {

    return x – 1n;

  }

};

• Known fact in “then” (top) branch: “y ≤ -1”

x + y ≤ x + -1    since y ≤ -1

  < x + 0    since -1 < 0

  = x
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Proving Correctness with Conditionals (Bottom)

// Inputs x and y are integers.

// Returns a number less than x.

const f = (x: bigint, y, bigint): bigint => {

  if (y < 0n) {

    return x + y;

  } else {

    return x – 1n;

  }

};

• Known fact in else (bottom) branch: “y ≥ 0”

x – 1  < x + 0    since –1 < 0

  = x
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Proving Correctness with Multiple Claims

• Need to check the claim from the spec at each return

• If spec claims multiple facts, then

we must prove that each of them holds

// Inputs x and y are integers with x < y - 1

// Returns a number less than y and greater than x.

const f = (x: bigint, y, bigint): bigint => { .. };

– multiple known facts: x : ℤ, y : ℤ, and x < y – 1

– multiple claims to prove: x < r and r < y
where “r” is the return value

– requires two calculation blocks

46



Example Correctness with Conditionals

// Returns r with (r=a or r=b) and r >= a and r >= b

const max = (a: bigint, b, bigint): bigint => {

  if (a >= b) {

    return a;

  } else {

    return b;

  }

};

• Three different facts to prove at each return

• Two known facts in each branch (return value is “r”):

– then branch:  a ≥ b  and  r = a

– else branch:  a < b  and  r = b

declarative spec of max
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Proof by Cases



Proof By Cases

• Sometimes necessary split a proof into cases

– fact may be hard to prove for all values at once

• Example: can't prove it for all x at once,

but can prove it for x ≥ 0 and x < 0
– will see an example next

• If we can prove it in those two cases, it holds for all x
– follows since the cases are exhaustive

(don’t need to be exclusive in this case)
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Example Proof By Cases

f : ℤ → ℤ 

 f(m) := 2m + 1   if m ≥ 0

 f(m) := 0     if m < 0

• Want to prove that f(m) > m

• Doesn't seem possible as is

– can't even apply the definition of f

– need to know if m < 0 or m ≥ 0

• Split our analysis into these two separate cases…
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Proof By Cases (1/3)

f(m) := 2m + 1   if m ≥ 0

 f(m) := 0     if m < 0

• Prove that f(m) > m

Case m ≥ 0:

 f(m)  =

  

  

    

  > m
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Proof By Cases (2/3)

f(m) := 2m + 1   if m ≥ 0

 f(m) := 0     if m < 0

• Prove that f(m) > m

Case m ≥ 0:

 f(m)  = 2m + 1   def of f (since m ≥ 0)

   ≥ m + 1    since m ≥ 0

   > m    since 1 > 0
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Proof By Cases (3/3)

f(m) := 2m + 1   if m ≥ 0

 f(m) := 0     if m < 0

• Prove that f(m) > m

Case m ≥ 0:

  f(m) = … > m

Case m < 0:

 f(m)  = 0     def of f (since m < 0)

   > m    since m < 0

Since these two cases are exhaustive, f(m) > m holds in general.
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Recall: Pattern Matching

• Define a function by an exhaustive set of patterns

  type Steps   :=  {n : ℕ, fwd : 𝔹}

  change({n: n, fwd: T}) := n

  change({n: n, fwd: F}) := –n 

– Steps describes movement on the number line

– change(s : Steps) says how the position changes

– one of these two rules always applies

xx – 12

{n: 12, fwd: F}
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Proof by Cases, with Records (Case T)

 change({n: n, fwd: T}) :=  n

  change({n: n, fwd: F}) :=  -n

• Prove that |change(s)| = n for any s = {n: n, fwd: f}

– we need to know if f = T or f = F to apply the definition!

Case f = T:

 |change({n: n, fwd: f})|

   = |change({n: n, fwd: T})|   since f = T

   = |n|       def of change

   = n        since n ≥ 0
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Proof by Cases, with Records (Case F)

 change({n: n, fwd: T}) :=  n

  change({n: n, fwd: F}) :=  -n

• Prove that |change(s)| = n for any s = {n: n, fwd: f}

Case f = T:  |change({n: n, fwd: f})| = …  = n

Case f = F:

 |change({n: n, fwd: f})|

   = |change({n: n, fwd: F})|   since f = F

   = |-n|       def of change

   = n        since n ≥ 0

Since these two cases are exhaustive, the claim holds in general.
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Proofs in Class & HW versus the “Real World”

• Lecture (mostly) focuses on toy examples

– Goal is to explain syntax & intuition (and build skill)

– Thus, pick simple problems (that may feel “obvious”)

Because I prep, I don’t get “stuck”

• Section & HW (mostly) focuses on proving that 

correct code is correct

– Seems mean to give you incorrect code :’)

Already had our mean era in HW 1-3

– But, problems will be new and more challenging

• In real world, even harder problems and 

will not know correctness ahead of time
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Common Proof by Calculation Mistakes

• Assuming claim is true
          2x + 1 = -(2x + 1)  BAD 

      (2x + 1)2 = (-1)2(2x + 1)2 square both sides

4x2 + 2x + 1 = 1(4x2+2x+1) foil

    0 = 0 

• Manipulating both sides of the equation
Example: prove x2 + 1 > z, given x2 = y and y > z

        x2 = y   since x2 = y

x2 + 1 = y + 1  add 1 to both sides 

x2 + 1 > z   since y > z

59



Common Proof by Calculation Mistakes

• Mixing > and <
– cannot conclude anything! 

2 < 4

    > 3 therefore 2 > 3… 

• Applying multiple facts/defs in the same step

– In the “real world” sometimes proof steps skip, here we want 

to see that you understand what applying each looks like

• Forgetting citations

– It’s okay to skip algebraic steps
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Structural Induction



Proof by Calculation on Lists

• Our proofs so far have used fixed-length lists

– e.g., sum(a :: b :: nil) ≥ 0

• Would like to prove facts about any length list L

• For example…
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Example: Echo Function

• Consider the following function:

 echo(nil)  := nil

 echo(x :: L) := x :: x :: echo(L)

• Produces a list where every element is repeated twice

echo(1 :: 2 :: nil)

  = 1 :: 1 :: echo(2 ::  nil)    def of echo

  = 1 :: 1 :: 2 :: 2 :: echo(nil)    def of echo

  = 1 :: 1 :: 2 :: 2 :: nil     def of echo
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Example: Proving Len & Echo Correct

echo(nil)  := nil

 echo(x :: L) := x :: x :: echo(L)

• Suppose we have the following code:

const m = len(S);  // S is some List

const R = echo(S);

…

return 2*m;  // = len(echo(S))

– spec says to return len(echo(S)) but code returns 2 len(S)

• Need to prove that len(echo(S)) = 2 len(S)
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Trying Proof by Cases on Len & Echo (1/2)

len(echo(S)) = 2 len(S)

Case S = nil:

  len(echo(S))  = len(nil)  def of echo (since S = nil)

     = 0    def of len

     = 2 len(nil)  def of len

     = 2 len(S)

65



Trying Proof by Cases on Len & Echo (2/2)

len(echo(S)) = 2 len(S)

Case S = x :: L :

  len(echo(x :: L))  = len(x :: x :: echo(L))  def of echo 

     = 1 + len(x :: echo(L))  def of len

     = 2 +  len(echo(L))  def of len

     

Now need to prove: len(echo(L)) = 2 len(L)

Case L = nil: see previous slide

Case L = x :: M :

 len(echo(x :: M))  = len(x :: x :: echo(M))  def of echo 

     = 1 + len(x :: echo(M))  def of len

     = 2 +  len(echo(M))  def of len

Now need to prove: len(echo(M)) = 2 len(M)
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Proof by Cases Breaks on Inductive Data

• Our proofs so far have used fixed-length lists

– e.g., sum(a :: b :: nil) ≥ 0

• Would like to prove facts about any length list L

• Need more tools for this…

– structural recursion calculates on inductive types

– structural induction reasons about structural recursion

or more generally, to prove facts containing variables of an inductive type

– both tools are specific to inductive types
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Structural Induction is Two Implications

Let P(S) be the claim “len(echo(S)) = 2 len(S)”

To prove P(S) holds for any list S, prove two implications

 Base Case:  prove P(nil)

– use any known facts and definitions

 

 Inductive Step: prove P(x :: L)

– x and L are variables

– use any known facts and definitions plus one more fact…

– make use of the fact that L is also a List
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Structural Induction: Inductive Hypothesis

To prove P(S) holds for any list S, prove two implications

 Base Case:  prove P(nil)

– use any known facts and definitions

 Inductive Hypothesis: assume P(L) is true

– use this in the inductive step, but not anywhere else

 Inductive Step: prove P(x :: L)

– use known facts and definitions and Inductive Hypothesis
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Why Structural Induction Works

With Structural Induction, we prove two facts

 P(nil)    len(echo(nil)) = 2 len(nil)

 P(x :: L)   len(echo(x :: L)) = 2 len(x :: L)

       (second assuming len(echo(L)) = 2 len(L))

Why is this enough to prove P(S) for any S : List?
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Inductive Data is “Built Up” in Steps

Build up an object using constructors:

 nil         first constructor (nil)

 2 :: nil        second constructor (cons)

 1 :: 2 :: nil       second constructor (cons)

1 2 nil

nil already exists when building 2 :: nil

2 :: nil already exists when building 1 :: 2 :: nil
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Inductive Proofs are “Built Up” in Steps

Build up a proof the same way we built up the object

 P(nil)    len(echo(nil)) = 2 len(nil)

 P(x :: L)   len(echo(x :: L)) = 2 len(x :: L)

       (second assuming len(echo(L)) = 2 len(L))

1 2 nil

P(nil) already proven when proving P(2 :: nil)

P(2 :: nil) already proven when proving P(1 ::  2 :: nil)

P(nil)
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Example: Echo & Len Base Case (1/2)

echo(nil)  := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that len(echo(S)) = 2 len(S) for any S : List

Base Case (nil):

 Need to prove that len(echo(nil)) = 2 len(nil)

 len(echo(nil)) =

len(nil)  :=  0

len(x :: L) :=  1 + len(L)
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Example: Echo & Len Base Case (2/2)

echo(nil)  := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that len(echo(S)) = 2 len(S) for any S : List

Base Case (nil):

 len(echo(nil)) = len(nil)   def of echo

= 0     def of len

= 2 · 0   
      def of len  = 2 len(nil)   
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Example: Echo & Len Inductive Step (1/3)

echo(nil)  := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that len(echo(S)) = 2 len(S) for any S : List

Inductive Step (x :: L):

 Need to prove that len(echo(x :: L)) = 2 len(x :: L)

 Get to assume claim holds for L, i.e., that len(echo(L)) = 2 len(L)
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Example: Echo & Len Inductive Step (2/3)

echo(nil)  := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that len(echo(S)) = 2 len(S) for any S : List

Inductive Hypothesis: assume that len(echo(L)) = 2 len(L)

Inductive Step (x :: L):

 len(echo(x :: L)) 

       = 2 len(x :: L)
len(nil)  :=  0

len(x :: L) :=  1 + len(L)
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Example: Echo & Len Inductive Step (3/3)

echo(nil)  := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that len(echo(S)) = 2 len(S) for any S : List

Inductive Hypothesis: assume that len(echo(L)) = 2 len(L)

Inductive Step (x :: L):

 len(echo(x :: L)) = len(x :: x :: echo(L))   def of echo  

     = 2 len(x :: L)     

= 1 + len(x :: echo(L))   def of len

= 2 + len(echo(L))   def of len

= 2 + 2 len(L)    Ind. Hyp.

= 2(1 + len(L)) 

def of len
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Example 2: Echo & Sum

echo(nil)  := nil

 echo(x :: L) := x :: x :: echo(L)

• Suppose we have the following code:

const y = sum(S);  // S is some List

const R = echo(S);

…

return 2*y;  // = sum(echo(S))

– spec says to return sum(echo(S)) but code returns 2 sum(S)

• Need to prove that sum(echo(S)) = 2 sum(S)
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Example 2: Echo & Sum Base Case (1/2)

echo(nil)  := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that sum(echo(S)) = 2 sum(S) for any S : List

Base Case (nil):

 sum(echo(nil)) =

     

     

     = 2 sum(nil)

sum(nil)  :=  0

sum(x :: L) :=  x + sum(L)
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Example 2: Echo & Sum Base Case (2/2)

echo(nil)  := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that sum(echo(S)) = 2 sum(S) for any S : List

Base Case (nil):

 sum(echo(nil)) = sum(nil)   def of echo

     

 

     = 2 sum(nil)   

Inductive Step (x :: L):

 Need to prove that sum(echo(x :: L)) = 2 sum(x :: L)

 Get to assume claim holds for L, i.e., that sum(echo(L)) = 2 sum(L)

= 0     def of sum

= 2 · 0   

def of sum
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Example 2: Echo & Sum Inductive Step (1/2)

echo(nil)  := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that sum(echo(S)) = 2 sum(S) for any S : List

Inductive Hypothesis: assume that sum(echo(L)) = 2 sum(L)

Inductive Step (x :: L):

 sum(echo(x :: L)) =

      

      

      

           

      = 2 sum(x :: L)

sum(nil)  :=  0

sum(x :: L) :=  x + sum(L)
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Example 2: Echo & Sum Inductive Step (2/2)

echo(nil)  := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that sum(echo(S)) = 2 sum(S) for any S : List

Inductive Hypothesis: assume that sum(echo(L)) = 2 sum(L)

Inductive Step (x :: L):

 sum(echo(x :: L)) = sum(x :: x :: echo(L))   def of echo

     = x + sum(x :: echo(L))  def of sum

     = 2x + sum(echo(L))   def of sum

     = 2x + 2 sum(L)    Ind. Hyp.

     = 2(x + sum(L))     

     = 2 sum(x :: L)    def of sum
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Recall: Concatenating Two Lists

• Mathematical definition of concat(S, R)

  concat(nil, R)  :=  R

  concat(x :: L, R) :=  x :: concat(L, R)

• Puts all the elements of L before those of R

concat(1 :: 2 :: nil, 3 :: 4 :: nil)

  = 1 :: concat(2 :: nil, 3 :: 4 :: nil)   def of concat

  = 1 :: 2 :: concat(nil, 3 :: 4 :: nil)   def of concat

  = 1 :: 2 :: 3 :: 4 :: nil     def of concat

important operation

abbreviated as "⧺"
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Example 3: Length of Concatenated Lists

concat(nil, R)  :=  R

 concat(x :: L, R) :=  x :: concat(L, R))

• Suppose we have the following code:

const m = len(S);  // S is some List

const n = len(R);  // R is some List

…

return m + n;  // = len(concat(S, R))

– spec returns len(concat(S, R)) but code returns len(S) + len(R)

• Need to prove that len(concat(S, R)) = len(S) + len(R)

important operation

abbreviated as "⧺"
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Example 3: Len & Concat Base Case (1/2)

concat(nil, R)  :=  R

 concat(x :: L, R) :=  x :: concat(L, R))

• Prove that len(concat(S, R)) = len(S) + len(R)
– prove by induction on S

– prove the claim for any choice of R (i.e., R is a variable)

Base Case (nil):

 len(concat(nil, R)) =

     

     = len(nil) + len(R)
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Example 3: Len & Concat Base Case (2/2)

concat(nil, R)  :=  R

 concat(x :: L, R) :=  x :: concat(L, R))

• Prove that len(concat(S, R)) = len(S) + len(R)
– prove by induction on S

– prove the claim for any choice of R (i.e., R is a variable)

Base Case (nil):

 len(concat(nil, R)) = len(R)    def of concat

     = 0 + len(R)   

     = len(nil) + len(R) def of len
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Example 3: Len & Concat Inductive Step (1/3)

concat(nil, R)  :=  R

 concat(x :: L, R) :=  x :: concat(L, R))

• Prove that len(concat(S, R)) = len(S) + len(R)

Inductive Step (x :: L):

 Need to prove that

  len(concat(x :: L, R)) = len(x :: L) + len(R)

 Get to assume claim holds for L, i.e., that

  len(concat(L, R)) = len(L) + len(R)
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Example 3: Len & Concat Inductive Step (2/3)

concat(nil, R)  :=  R

 concat(x :: L, R) :=  x :: concat(L, R))

• Prove that len(concat(S, R)) = len(S) + len(R)

Inductive Hypothesis: assume that len(concat(L, R)) = len(L) + len(R)

Inductive Step (x :: L):

 len(concat(x :: L, R)) = 

       = len(x :: L) + len(R)
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Example 3: Len & Concat Inductive Step (3/3)

concat(nil, R)  :=  R

 concat(x :: L, R) :=  x :: concat(L, R))

• Prove that len(concat(S, R)) = len(S) + len(R)

Inductive Hypothesis: assume that len(concat(L, R)) = len(L) + len(R)

Inductive Step (x :: L):

 len(concat(x :: L, R)) = len(x :: concat(L, R))  def of concat

      = 1 + len(concat(L, R)) def of len

      = 1 + len(L) + len(R)  Ind. Hyp.

      = len(x :: L) + len(R)  def of len
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Comparing Reasoning vs Testing

const concat = (S: List, R: List): List => {

  if (S.kind === "nil") {

    return R;

  } else {

    return cons(S.hd, concat(S.tl, R));

  }

};

• Testing: 3 cases

– loop coverage requires 0, 1, and many recursive calls

• Reasoning: 2 calculations
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Structural Induction … Gone Wrong? (1/3)

allEqual(nil)   := true

 allEqual(x :: nil)  := true

 allEqual(x :: y :: L)  := x = y and allEqual(y :: L)

• Claim: this function satisfies the above spec

const allEqual(S: List): boolean => { 

  return true;

};  

• Need to prove that allEqual(S) = true
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Structural Induction … Gone Wrong? (2/3)

allEqual(nil)   := true

 allEqual(x :: nil)  := true

 allEqual(x :: y :: L)  := x = y and allEqual(y :: L)

Base Case (nil):  allEqual(nil) = true  def of allEqual

Now, what if we got a bit sloppy?

Inductive Hypothesis: assume that allEqual(S) = true for lists S

Inductive Step (x :: S): 

 Case (S  = nil):  allEqual(x:: nil) = true  def of allEqual

 Case (S = y :: L):

 y :: L is a list – so, allEqual(y :: L) = true   inductive hypothesis

 x :: y :: nil is a list – so allEqual(x :: y :: nil) = true inductive hypothesis

  thus, x = y        definition of allEqual

 allEqual(x :: y :: L) = true      definition of allEqual
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Structural Induction … Gone Wrong? (3/3)

allEqual(nil)   := true

 allEqual(x :: nil)  := true

 allEqual(x :: y :: L)  := x = y and allEqual(y :: L)

Base Case (nil):  allEqual(nil) = true  def of allEqual

Now, what if we got a bit sloppy?

Inductive Hypothesis: assume that allEqual(S) = true for lists S
             can’t assume claim!

Inductive Step (x :: S): 

 Case (S  = nil):  allEqual(x:: nil) = true  def of allEqual

 Case (S = y :: L):

 y :: L is a list – so, allEqual(y :: L) = true   not true!

 x :: y :: nil is a list – so allEqual(x :: y :: nil) = true not true!

  thus, x = y        not true!

 allEqual(x :: y :: L) = true      not true!
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Proof Strategy Advice

• Stuck on a proof and…

– the data type is not inductive? Try splitting into cases!

– the data type is inductive? Try structural induction!

• When using structural induction, consider

– where can the inductive hypothesis be used?

the power of structural induction!

– which variable should be inducted on?

– definitions can be applied in both directions
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Example 4: Faster Sum

sum-acc(nil, r)  := r

 sum-acc(x :: L, r) := sum-acc(L, x + r)

• Suppose we have the following code:

const s = sum_acc(S, 0);  // S is some List

…

return s;  // = sum(S)

– spec says to return sum(S) but code returns sum-acc(S, 0)

• Need to prove that sum-acc(S, 0) = sum(S)

– will prove, more generally, that sum-acc(S, r) = sum(S) + r

linear time
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Example 4: Faster Sum Base Case (1/2)

sum-acc(nil, r)  := r

 sum-acc(x :: L, r) := sum-acc(L, x + r)

• Prove that sum-acc(S, r) = sum(S) + r
– prove by induction on S

– prove the claim for any choice of r (i.e., r is a variable)

Base Case (nil):

 sum-acc(nil, r) =

     

     = sum(nil) + r
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Example 4: Faster Sum Base Case (2/2)

sum-acc(nil, r)  := r

 sum-acc(x :: L, r) := sum-acc(L, x + r)

• Prove that sum-acc(S, r) = sum(S) + r
– prove by induction on S

– prove the claim for any choice of r (i.e., r is a variable)

Base Case (nil):

 sum-acc(nil, r) = r     def of sum-acc

     = 0 + r

     = sum(nil) + r  def of sum
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Example 4: Faster Sum Inductive Step (1/3)

sum-acc(nil, r)  := r

 sum-acc(x :: L, r) := sum-acc(L, x + r)

• Prove that sum-acc(S, r) = sum(S) + r

Inductive Step (x :: L):

 Need to prove that

  sum-acc(x :: L, r) = sum(x :: L) + r

 Get to assume claim holds for L, i.e., that

  sum-acc(L, r) = sum(L) + r  holds for any r
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Example 4: Faster Sum Inductive Step (2/3)

sum-acc(nil, r)  := r

 sum-acc(x :: L, r) := sum-acc(L, x + r)

• Prove that sum-acc(S, r) = sum(S) + r

Inductive Hypothesis: assume that sum-acc(L, r) = sum(L) + r

Inductive Step (x :: L):

 sum-acc(x :: L, r) = 

     = sum(x :: L) +r
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Example 4: Faster Sum Inductive Step (3/3)

sum-acc(nil, r)  := r

 sum-acc(x :: L, r) := sum-acc(L, x + r)

• Prove that sum-acc(S, r) = sum(S) + r

Inductive Hypothesis: assume that sum-acc(L, r) = sum(L) + r

Inductive Step (x :: L):

 sum-acc(x :: L, r) = sum-acc(L, x + r) def of sum-acc

     = sum(L) + x + r  Ind. Hyp.

     = x + sum(L) + r

     = sum(x :: L) +r  def of sum
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Structural Induction in General

• General case: assume P holds for constructor arguments

type T  :=  A  |  B(x : ℤ)  |  C(y : ℤ , t : T)  | D(z : ℤ , u : T, v : T)

• To prove P(t) for any t, we need to prove:

– P(A)

– P(B(x)) for any x : ℤ

– P(C(y, t)) for any y : ℤ and t : T   assuming P(t) is true

– P(D(z, u, v)) for any z : ℤ and u, v : T assuming P(u) and P(v)

• These four facts are enough to prove P(t) for any t

– for each constructor, have proof that it produces an object 

satisfying P

– generally, each inductive type has its own form of induction
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Defining Cases

• Case in inductive data type = case in structural 

inductive proof

– “Smallest” form of data type = Base case in proof

– Recursive case in data type = Inductive step in proof

• To prove P(t) for any t of type T:

– We have 2 base cases

type T  :=  A  |  B(x : ℤ)  |  C(y : ℤ , t : T)  |  D(z : ℤ , u : T, v : T)

– and 2 recursive cases

type T  :=  A  |  B(x : ℤ)  |  C(y : ℤ , t : T)  |  D(z : ℤ , u : T, v : T)

– Inductive proof will cover base cases in base case and 

recursive cases cases in inductive step
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Induction Wrap up: Defining Cases

• If math def defines a case for recursive form of 

with a fixed size, that is still part of inductive step!

– Example, from last lecture:

 allEqual(nil)   := true

 allEqual(x :: nil)  := true

 allEqual(x :: y :: L)  := x = y and allEqual(y :: L)

x :: nil uses recursive constructor of a List, so it should be part of the 
inductive step:

  Base Case (nil):  allEqual(nil) = true  def of allEqual

  Inductive Step (x :: S): 

   Case (S  = nil): allEqual(x:: nil) = true  def of allEqual

   Case (S = y :: L): …
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every case. That’s okay!



The following examples were 

not covered in lecture, but are 

useful practice, if needed!



Definition of List Reversal

• Reversal of a List: “same values but in reverse order”

• Look at some examples…

L      rev(L)

nil      nil

[3]      [3]      3 :: nil

[2, 3]     [3, 2]     3 :: 2 :: nil

[1, 2, 3]     [3, 2, 1]     3 :: 2 :: 1 :: nil

…      …
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Structural Recursion in List Reversal

• Look at some examples…

L       rev(L)

nil       nil

3 :: nil      3 :: nil

2 :: 3 :: nil     3 :: 2 :: nil

1 :: 2 :: 3 :: nil     3 :: 2 :: 1 :: nil

• Where does rev([2, 3]) show up in rev([1, 2, 3])?

– at the beginning, with 1 :: nil after it

• Where does rev([3]) show up in rev([2, 3])?

– at the beginning, with 2 :: nil after it
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Recall: Reversing a List

• Mathematical definition of rev(S)

  rev(nil)  :=  nil     

  rev(x :: L) :=  rev(L) ⧺ [x]

– note that rev uses concat (⧺) as a helper function

1 2 3

move 1 to end

reverse this too
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Definition of List Reversal: Checking Examples

1 :: 2 :: 3 :: nil     3 :: 2 :: 1 :: nil

• Mathematical definition of rev : List → List

rev(nil) := nil

rev(x :: L) := rev(L) ⧺ [x]

• Check that this matches examples…

rev(1 :: 2 :: 3 :: nil)

  = rev(2 :: 3 :: nil) ⧺ [1]    def of rev

  = rev(3 :: nil) ⧺ [2] ⧺ [1]    def of rev

  = rev(nil) ⧺ [3] ⧺ [2] ⧺ [1]   def of rev

  = [] ⧺ [3] ⧺ [2] ⧺ [1]     def of rev

  = … = [3, 2, 1]      def of concat (many times)
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Example 5: Length of Reversed List: Setup

rev(nil)  := nil

 rev(x :: L) := rev(L) ⧺ [x]

• Suppose we have the following code:

const m = len(S);  // S is some List

const R = rev(S);

…

return m;  // = len(rev(S))

– spec returns len(rev(S)) but code returns len(S)

• Need to prove that len(rev(S)) = len(S) for any S : List
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Example 5: Length of Reversed List (1/3)

rev(nil)  := nil

 rev(x :: L) := rev(L) ⧺ [x]

• Prove that len(rev(S)) = len(S) for any S : List

Base Case (nil):

 len(rev(nil)) = len(nil)    def of rev

Inductive Step (cons(x, L)):

 Need to prove that len(rev(x :: L)) = len(x :: L)

 Get to assume that len(rev(L)) = len(L)
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Example 5: Length of Reversed List (2/3)

rev(nil)  := nil

 rev(x :: L) := rev(L) ⧺ [x]

• Prove that len(rev(S)) = len(S) for any S : List

Inductive Hypothesis: assume that len(rev(L)) = len(L)

Inductive Step (x :: L):

 len(rev(x :: L))

  = 

  = len(x :: L)

111



Example 5: Length of Reversed List (3/3)

rev(nil)  := nil

 rev(x :: L) := rev(L) ⧺ [x]

• Prove that len(rev(S)) = len(S) for any S : List

Inductive Hypothesis: assume that len(rev(L)) = len(L)

Inductive Step (x :: L):

 len(rev(x :: L)

  = len(rev(L) ⧺ [x])    def of rev

  = len(rev(L)) + len([x])   by Example 3

  = len(L) + len([x])    Ind. Hyp.

  = len(L) + 1 + len(nil)    def of len

  = len(L) + 1      def of len

  = len(x :: L)      def of len
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Finer Points of Structural Induction

• Structural Induction is how we reason about recursion

• Reasoning also follows structure of code

– code uses structural recursion, so

reasoning uses structural induction

• Note that rev is defined in terms of concat

– reasoning about len(rev(…)) used fact about len(concat(…))

– this is common
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Example 6: Reversing a List Performance

rev(nil)  := nil

 rev(x :: L) := rev(L) ⧺ [x]

• This correctly reverses a list but is slow

– concat takes ϴ(n) time, where n is length of L

– n calls to concat takes ϴ(n2) time

• Can we do this faster?

– yes, but we need a helper function
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Example 6: Reversing a List, Linear Time (1/3)

• Helper function rev-acc(S, R) for any S, R : List

 rev-acc(nil, R) :=  R

 rev-acc(x :: L, R) :=  rev-acc(L, x :: R) 

     

3 4 nil 2 1 nil( ),rev-acc
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Example 6: Reversing a List, Linear Time (2/3)

• Helper function rev-acc(S, R) for any S, R : List

 rev-acc(nil, R) :=  R

 rev-acc(x :: L, R) :=  rev-acc(L, x :: R) 

     

34 nil 2 1 nil( ),= rev-acc
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Example 6: Reversing a List

• Helper function rev-acc(S, R) for any S, R : List

 rev-acc(nil, R) :=  R

 rev-acc(x :: L, R) :=  rev-acc(L, x :: R) 

     

34nil 2 1 nil( ),= rev-acc
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Proving that rev-acc works, in pieces

rev-acc(nil, R) :=  R

 rev-acc(x :: L, R) :=  rev-acc(L, x :: R)

• Can prove that rev-acc(S, R) = concat(rev(S), R) (Lemma 1)

• Can prove that concat(L, nil) = L     (Lemma 2)

– structural induction like prior examples

• Prove that rev(S) = rev-acc(S, nil)

 rev-acc(S, nil)  = concat(rev(S), nil)   Lemma 1

     = rev(S)      Lemma 2
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Proving Lemma 2: Setup

rev-acc(nil, R) :=  R

 rev-acc(x :: L, R) :=  rev-acc(L, x :: R)

• Prove that concat(S, nil) = S

Base Case (nil):

 concat(nil, nil) = nil      def of concat

Inductive Hypothesis: assume that concat(L, nil) = nil

Inductive Step (cons(x, L)): prove that concat(cons(x, L), nil) = cons(x, L)
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Proving Lemma 2: Inductive Step (1/2)

rev-acc(nil, R) :=  R

 rev-acc(x :: L, R) :=  rev-acc(L, x :: R)

• Prove that concat(S, nil) = S

Inductive Hypothesis: assume that concat(L, nil) = L

Inductive Step (x :: L):

 concat(x :: L, nil) =

     = x :: L   

120



Proving Lemma 2: Inductive Step (2/2)

rev-acc(nil, R) :=  R

 rev-acc(x :: L, R) :=  rev-acc(L, x :: R)

• Prove that concat(S, nil) = S

Inductive Hypothesis: assume that concat(L, nil) = L

Inductive Step (x :: L):

 concat(x :: L, nil) = x :: concat(L, nil) def of concat

     = x :: L    Ind. Hyp.
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Proving Lemma 1: Setup

rev-acc(nil, R) :=  R

 rev-acc(x :: L, R) :=  rev-acc(L, x :: R)

• Prove that rev-acc(S, R) = concat(rev(S), R)
– prove by structural induction

• Need the following property of concat (⧺)

 A ⧺ (B ⧺ C) = (A ⧺ B) ⧺ C

– with strings, we know that “A + (B + C) = (A + B) + C”

– this says the same thing for lists with "⧺"
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Proving Lemma 1: Base Case (1/2)

rev-acc(nil, R) :=  R

 rev-acc(x :: L, R) :=  rev-acc(L, x :: R)

• Prove that rev-acc(S, R) = concat(rev(S), R)
– prove by induction on S (so R is a variable)

Base Case (nil):

 rev-acc(nil, R) =

     

     = concat(rev(nil), R)   

concat(nil, R) :=  R
       concat(x :: L, R) :=  x :: concat(L, R)

            rev(nil) :=  nil
         rev(x :: L) := rev(L) ⧺ [x]
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Proving Lemma 1: Base Case (2/2)

rev-acc(nil, R) :=  R

 rev-acc(x :: L, R) :=  rev-acc(L, x :: R)

• Prove that rev-acc(S, R) = concat(rev(S), R)
– prove by induction on S (so R is a variable)

Base Case (nil):

 rev-acc(nil, R) = R       def of rev-acc

     = concat(nil, R)    def of concat

     = concat(rev(nil), R)   def of rev

concat(nil, R) :=  R
       concat(x :: L, R) :=  x :: concat(L, R)

            rev(nil) :=  nil
         rev(x :: L) := rev(L) ⧺ [x]
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Proving Lemma 1: Inductive Step (1/4)

rev-acc(nil, R) :=  R

 rev-acc(x :: L, R) :=  rev-acc(L, x :: R)

• Prove that rev-acc(S, R) = concat(rev(S), R)

Inductive Hypothesis: assume that rev-acc(L, R) = concat(rev(L), R) for any R

Inductive Step (x :: L):

rev-acc(x :: L, R) =

     

     

     

     

     = concat(rev(x :: L), R)   

func  concat(nil, R)  :=  R
 concat(cons(x, L), R) := cons(x, concat(L, R))

func rev(nil)  :=  nil
 rev(cons(x, L)) := concat(rev(L), cons(x, nil))
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Proving Lemma 1: Inductive Step (2/4)

rev-acc(nil, R) :=  R

 rev-acc(x :: L, R) :=  rev-acc(L, x :: R)

• Prove that rev-acc(S, R) = concat(rev(S), R)

Inductive Hypothesis: assume that rev-acc(L, R) = concat(rev(L), R) for any R

Inductive Step (x :: L):

rev-acc(x :: L, R)  = rev-acc(L, x :: R)    def of rev-acc

     = concat(rev(L), x :: R)   Ind. Hyp.

     

     

     = (rev(L) ⧺ [x]) ⧺ R   ??

     = concat(rev(L) ⧺ [x], R)

     = concat(rev(x :: L), R)   def of rev

concat(nil, R) :=  R
       concat(x :: L, R) :=  x :: concat(L, R)

            rev(nil) :=  nil
         rev(x :: L) := rev(L) ⧺ [x]
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Proving Lemma 1: Inductive Step (3/4)

rev-acc(nil, R) :=  R

 rev-acc(x :: L, R) :=  rev-acc(L, x :: R)

• Prove that rev-acc(S, R) = concat(rev(S), R)

Inductive Hypothesis: assume that rev-acc(L, R) = concat(rev(L), R) for any R

Inductive Step (x :: L):

rev-acc(x :: L, R)  = rev-acc(L, x :: R)    def of rev-acc

     = concat(rev(L), x :: R)   Ind. Hyp.

     

     = rev(L) ⧺ ([x] ⧺ R)

     = (rev(L) ⧺ [x]) ⧺ R   assoc. of ⧺

     = concat(rev(L) ⧺ [x], R)

     = concat(rev(x :: L), R)   def of rev

concat(nil, R) :=  R
       concat(x :: L, R) :=  x :: concat(L, R)

            rev(nil) :=  nil
         rev(x :: L) := rev(L) ⧺ [x]
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Proving Lemma 1: Inductive Step (4/4)

rev-acc(nil, R) :=  R

 rev-acc(x :: L, R) :=  rev-acc(L, x :: R)

• Prove that rev-acc(S, R) = concat(rev(S), R)

Inductive Hypothesis: assume that rev-acc(L, R) = concat(rev(L), R) for any R

Inductive Step (x :: L):

rev-acc(x :: L, R)  = rev-acc(L, x :: R)    def of rev-acc

     = concat(rev(L), x :: R)   Ind. Hyp.

     = rev(L) ⧺ (x :: R)

     = rev(L) ⧺ ([x] ⧺ R)   def of concat

     = (rev(L) ⧺ [x]) ⧺ R   assoc. of ⧺

     = concat(rev(L) ⧺ [x], R)

     = concat(rev(x :: L), R)   def of rev

concat(nil, R) :=  R
       concat(x :: L, R) :=  x :: concat(L, R)

            rev(nil) :=  nil
         rev(x :: L) := rev(L) ⧺ [x]
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