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Where We Are in the Course

Eight assignments split into these groups:

HW1

HW2

HW3

HW4

HW5

HW6

HW7

HW8

learn to write more complex apps

practice debugging

learn how to be 100% sure the code is correct

(most of the work done on paper)
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Correctness and Specifications

• Correctness requires a definition of the correct answer

• Description must be precise

– can’t have disagreement about what is correct

• Informal descriptions (English) are usually imprecise

– necessary to “formalize” the English

turn the English into a precise mathematical definition

– professionals are very good at this

usually just give English definitions

important skill to practice

– we will start out completely formal to make it easier
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Kinds of Specifications

•  Imperative specification says how to calculate the answer

– lays out the exact steps to perform to get the answer

•  Declarative specification says what the answer looks like

– does not say how to calculate it

– up to us to ensure that our code satisfies the spec

• Can implement a different imperative specification

– again, up to us to ensure that our code satisfies the spec
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Example: Imperative Specification (abs) 

• Absolute value: |x| = x if x ≥ 0 and –x otherwise

– definition is an “if” statement

 const abs = (x: bigint): bigint => {

   if (x >= 0n) {

     return x;

   } else {

     return –x;

   }

 }
just translating math to TypeScript

5



Example: Declarative Specification (sub) 

• Subtraction (a – b): return x such that b + x = a

– can see that b + (a – b) = b + a – b = a

 const sub = (a : bigint, b: bigint): bigint => {

   

      ??

 }

we are left to figure out how to do this…

and convince ourselves it satisfies the spec
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Example: Declarative Specification (sqrt)

• Square root of x is number y such that y2 = x

– not all positive integers have integer square roots,

so… let’s round up

– (y – 1)2 ≤ x ≤ y2

smallest integer y such that x ≤ y2

 const sqrt = (x: bigint): bigint => {

   

      ??

 } we are left to figure out how to do this…

and convince ourselves it satisfies the spec
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Example: Declarative Specification (abs)

• Absolute value |x| is an integer y such that

– y ≥ x 

– y ≥ –x

– y = x or y = –x

 const abs = (x: bigint): bigint => {

   if (x >= 0) {

     return x;

   } else {

     return –x;

   }

 }

requires some thinking to make sure this code

returns a number with the properties above
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"Straight From the Spec"

• If imperative, just translate math into code

– TypeScript here, but could also be Java

– we often call this "straight from the spec"

• if declarative (or implementing different imperative spec), 

then we will need new tools for checking its correctness
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Examples from Java: Map .replace()

java.util.Map  —  set of (key, value) pairs

Imperative
10
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Examples from Java: Map .putAll()

java.util.Map  —  set of (key, value) pairs

Imperative
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Examples from Java: Map .containsKey()

java.util.Map  —  set of (key, value) pairs

Declarative (probably)
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Examples from Java: Object .hashCode()

java.util.Object

Declarative 13



This Topic’s Goal: Imperative Specifications

• Toolkit for writing imperative specifications

– define math for data and code

write specifications that are language independent

(don't want a toolkit that only works for TypeScript)

– describe how to translate imperative specs into TypeScript

try to make the translations as straightforward as possible (fewer mistakes)

– mention new TypeScript features when related

critical to understand what bugs the type system catches and which it does not

• Will look at declarative specifications later
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Math Notation



Basic Data Types in Math

• In math, the basic data types are “sets”

– sets are collections of objects called elements

– write x ∈ S to say that “x” is an element of set “S”,

and x ∉ S to say that it is not.

• Examples:

  x ∈ ℤ    x is an integer

  x ∈ ℕ    x is a non-negative integer (natural)

  x ∈ ℝ    x is a real number

  x ∈ 𝔹    x is T or F (boolean)

  x ∈ 𝕊    x is a character

  x ∈ 𝕊*    x is a string

non-standard names
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Basic Data Types in TypeScript

English Math TypeScript Up to Us

integer x ∈ ℤ bigint

natural x ∈ ℕ bigint non-negative

real x ∈ ℝ number

boolean x ∈ 𝔹 boolean

character x ∈ 𝕊 string length 1

string x ∈ 𝕊* string

we will often write

x : ℤ  instead of  x ∈ ℤ

– only subtraction on non-negative can produce negative
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Summary of Last Time: Specifications

• Specification is necessary to even discuss correctness

• Goals: develop a toolkit for

– writing (imperative) specs that are fully precise

– writing specs in a language-independent manner

• Solution: rely on standard mathematical notation
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Creating New Types in Math (Unions)

• Union Types  𝕊*  ∪  ℕ

– contains every object in either (or both) of those sets

– e.g., all strings and natural numbers

• If x ∈ ℕ ∪ 𝕊*, then x could be a natural or string

• Two sets can contain common elements

– ℕ and 𝕊* do not contain common elements, they are 

“disjoint”
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Creating New Types in TypeScript (Unions)

• Union Types  string | bigint

– can be either one of these

• How do we work with this code?

const x: string | bigint = …;

// can I call isPrime(x)?

• We can check the type of x using “typeof”

– TypeScript understands these expressions

– will “narrow” the type of x to reflect that information
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Recall: Type Narrowing

const x: string | bigint = …;

if (typeof x === "bigint") {

  console.log(isPrime(x))   // okay! x is a bigint

} else {

  …                         // x is a string

}

• TypeScript knows x is a bigint inside the “if” 

(narrowing)

– This does not require a type cast

– No type casts in 331!

Unlike Java, TypeScript takes your word for it (no runtime checks) 

 = painful debugging
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Type Narrowing Gotcha

const f = (x: bigint): string | bigint => …;

if (typeof f(x) === "bigint") {

  console.log(isPrime(f(x)))   // why not allowed?

}

• TypeScript will (properly) reject this

– no guarantee that f(x) returns the same value both times!
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Type Narrowing of Function Calls

const f = (x: bigint): string | bigint => …;

const y = f(x);

if (typeof y === "bigint") {

  console.log(isPrime(y))      // this works now

}

• TypeScript can see that the two values are the same

• Functions that return different values for the same 

inputs are confusing!

– maybe better to avoid that
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Record Types in Math

• Record Types  {x : ℕ,  y : ℕ}

– record with fields “x” and “y” each containing a number

e.g., {x: 3, y: 5}

– To get field values, use “.” notation

e.g., r := {x: 3, y: 5}, r.x would get 3

• Note that {x: 3, y: 5} = {y: 5, x: 3} in math

– field names matter, not order

– note that these are not "===" in JavaScript

in math, “=“ means same values

in JavaScript, "===" is reference equality
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Record Types in TypeScript

• Record Types  {x: bigint, y: bigint}

– anything with at least fields “x” and “y”

• Retrieve a part by name:

const t: {x: bigint, y: bigint} = … ;

console.log(t.x);
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Tuple Types in Math

• Record Types  {x : ℕ,  y : ℕ}

– record with fields “x” and “y” each containing a number

e.g., {x: 3, y: 5}

• Tuple Types   ℕ  ⨉  ℕ

– pair of two natural numbers, e.g., (5, 7)

– can do tuples of 3, 4, or more elements also

• Mostly equivalent alternatives

– both let us put parts together into a larger object

– record distinguishes parts by name

– tuple distinguishes parts by order
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Retrieving Part of a Tuple

• To refer to tuple parts, we must give them names

• Tuple Types   ℕ  ⨉  ℕ

Let (a, b) := t.    Suppose we know that t = (5, 7)

       Then, we have a = 5 and b = 7

• Tuple Types  [bigint, bigint]

const t: [bigint, bigint] = …;

const [a, b] = t;

console.log(a);  // first part of t

“:=” means a definition
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Simple Functions in Math

• Simplest function definitions are single expressions

• Will write them in math like this:

 double : ℕ → ℕ

 double(n) := 2n

– first line declares the type of double function

takes a natural number input to a natural number output

– second line shows the calculation

know that "n" is a natural number from the first line

– will often put the type in the text before the definition, e.g.,

The function double : ℕ → ℕ is defined by…

 double(n) := 2n
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Functions in TypeScript

• There are functions in TypeScript too! 

 // Implements double : N -> N

 const double = (x: bigint): bigint => {

  return 2n * x;

 }

• Recall, the type of double in TS is 

 (x: bigint): bigint
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Simple Functions in Math (and shorthands)

• Another example:

 dist : {x: ℝ, y: ℝ} → ℝ

 dist(p) := (p.x2 + p.y2)1/2

– first line tells us that "p" is a record and "p.x" is a real number

• Can define short-hand for types in math also

 type Point := {x: ℝ, y: ℝ}

 dist : Point → ℝ

 dist(p) := (p.x2 + p.y2)1/2
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Complex Functions in Math

• Most interesting functions are not simple expressions

– need to use different expressions in different cases

• Can use side-conditions to split into cases

         abs : ℝ → ℝ

  abs(x) := x   if x ≥ 0

  abs(x) := –x   if x < 0

– conditions must be exclusive and exhaustive

we do not want to require on order to determine which applies

– there is a better way to do this in many cases…
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Pattern Matching

• Can also define functions by “pattern matching”

  double : ℕ → ℕ

  double(0) := 0

  double(n+1) := double(n) + 2

– first case matches only 0

– second case matches numbers 1 more than some n : ℕ …
double(6) = double(5+1) so it matches with n = 5

since n ≥ 0, we have n+1 ≥ 1, so it matches 1, 2, 3, …

– pattern “n+2” would match 2, 3, 4, …

• Simplifies the math in multiple ways…
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Pattern Matching on Natural Numbers

• Pattern matching definition

       double(0) := 0

  double(n+1) := double(n) + 2

 is simpler than using side conditions

  double(n) := 0     if n = 0

  double(n) := double(n-1) + 2 if n > 0

– e.g., need to explain why double(n-1) is legal

easy in this case, but it gets harder

• We will prefer pattern matching whenever possible
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Pattern Matching on Booleans

• Booleans have only two legal values: T and F

• Can pattern match just by listing the values:

– the function not : 𝔹 → 𝔹 is defined as follows:

  not(T) := F

  not(F) := T

– negates a boolean value

– no simpler way to define this function!
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Pattern Matching on Records

• Can pattern match on individual fields of a record

       type Steps := {n : ℕ, fwd : 𝔹}

 change : Steps → ℤ

 change({n: m, fwd: T}) := m

 change({n: m, fwd: F}) := –m

– clear that the rules are exclusive and exhaustive

• Can match on multiple parameters

– e.g., change({n: m+5, fwd: T}) := 2m

– just make sure the rules are exclusive and exhaustive

39



Pattern Matching in TypeScript

• TypeScript does not provide pattern matching

– some other languages do! (see 341)

• We must translate into “if”s on our own

type Steps = {n: number, fwd: boolean};

const change = (s: Steps) => {

  if (s.fwd) {

    return s.n;

  } else {

    return –s.n;

  }

};

still straight from the spec

but easy to make mistakes
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Pattern Matching in TypeScript: Gotcha

 double(0) := 0

  double(n+1) := double(n) + 2

• Also need to be careful with natural numbers

// m is non-negative

const double = (m: bigint) => {

  if (m === 0n) {

    return 0n;

  } else {

    return double(m – 1n) + 2n;

  }

};

– pattern matching uses “n+1” but the code uses “m” (or “n”)

sadly, TypeScript will not let “n+1” be the argument value

spec says double(n)

but code says double(m – 1)
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Code Without Mutation

• Saw all types of code without mutation:

– straight-line code

– conditionals

– recursion

• This is all that there is!

– can write anything computable with just these

• Saw TypeScript syntax for these already…
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Code Without Mutation Example

Example function with all three types

    // m must be a non-negative integer

    const f = (m: bigint): bigint => {

      if (m === 0n) {

        return 1n;

      } else {

        const n = m – 1n;

        return 2n * f(n);

      }

    };

What does this compute?

f(m) = 2m

f : ℕ → ℕ

f(0)  := 1
f(n+1) := 2 · f(n)
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Concept Check – Partner Practice

How do we declare the type of this function in math?    

 // m must contain non-negative integer

   const sometimesSquare = 

  (m: [bigint, boolean]): bigint => {

How does the body of the function translate into math?    

  const [n, b] = m;

  if (!b) {

        return n;

      } else {

    return n ** 2n;

  }

 }
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Concept Check - Solutions

// m must contain non-negative integer

const sometimesSquare = 

  (m: [bigint, boolean]): bigint => {

 const [n, b] = m;

 if (!b) {

      return n;

   } else {

  return n ** 2n;

 }

}

sometimesSquare: ℕ ⨉ 𝔹 → ℕ

sometimesSquare( (n, F) ) := n
sometimesSquare( (n, T) ) := n2
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JSDocs with math definitions

/**

 * Finds square of int sometimes

 * @param m, tuple containing non-negative int and a bool

 *  to indicate if int should be squared

 * @returns sometimesSquare(m)

 */

const sometimesSquare = 

  (m: [bigint, boolean]): bigint => {

 const [n, b] = m;

 if (!b) {

      return n;

   } else {

  return n ** 2n;

 }

}
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Inductive Data Types



Inductive Data Types: Recursion in Data

• Previous saw records, tuples, and unions

– very useful but limited

can only create types that are “small” in some sense

– missing one more way of defining types

arguably the most important

• One critical element is missing:  recursion
Java classes can have fields of same type, but (math) records cannot

• Inductive data types are defined recursively

– combine union with recursion
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Inductive Data Types: Constructors

• Describe a set by ways of creating its elements

– each is a “constructor”

type T :=  C(x : ℤ)  |  D(x : ℤ,  y : T)

– second constructor is recursive

– can have any number of arguments (even none)

will leave off the parentheses when there are none

• Examples of elements

C(1)

D(2, C(1))

D(3, D(2, C(1)))

in math, these are not function calls
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Inductive Data Types: Equality

• Each element is a description of how it was made

C(1)

D(2, C(1))

D(3, D(2, C(1)))

• Equal when they were made exactly the same way

– C(1) ≠ C(2)

– D(2, C(1)) ≠ D(3, C(1))

– D(2, C(1)) ≠ D(2, C(2))

– D(1, D(2, C(3))) = D(1, D(2, C(3)))
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Natural Numbers

   type ℕ  :=  zero  |  succ(n : ℕ)

• Inductive definition of the natural numbers

zero        0

succ(zero)      1

succ(succ(zero))     2

succ(succ(succ(zero)))    3

The most basic set we have is defined inductively!

(interested? see “Peano axioms”)
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Even Natural Numbers

   type 𝔼 :=  zero  |  two-more(n : 𝔼)

• Inductive definition of the even natural numbers

zero          0

two-more(zero)       2

two-more(two-more(zero))     4

two-more(two-more(two-more(zero)))  6

much better notation
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   type List  :=  nil  |  cons(x : ℤ,  L : List)

• Inductive definition of lists of integers

nil        

cons(3, nil)      

cons(2, cons(3, nil))    

cons(1, cons(2, cons(3, nil)))  

Lists

1 2 3

Our most important data type!
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   type List  :=  nil  |  cons(x : ℤ,  L : List)

• We will use:

– "x :: L"  to mean "cons(x, L)"

– "[1, 2, 3]" to mean "1 :: 2 :: 3 :: nil"

• Examples:

nil        nil     []

cons(3, nil)      3 :: nil    [3]

cons(2, cons(3, nil))    2 :: 3 :: nil   [2, 3]

cons(1, cons(2, cons(3, nil)))  1 :: 2 :: 3 :: nil   [1, 2, 3]

Shorthand Notation for Lists
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Practice:

Create a list with a 9 at the beginning of the list, a 3 in 

the middle, and a 7 at the end.

 cons(9, cons(3, cons(7, nil)))   9::3::7::nil

To create this , how many times do we utilize the list 

constructor?

     type List  :=  nil  |  cons(x : ℤ,  L : List)

 4
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Inductive Data Types in TypeScript

• TypeScript does not natively support inductive types

– some “functional” languages do (e.g., OCaml and Haskell)

• We must think of a way to cobble them together…

– our answer is a design pattern…
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Design Patterns

• Popularized in 1994 book of that name

– written by the “Gang of Four”

Gamma, Helm, Johnson, Vlissides

– worked in C++ and SmallTalk

(SmallTalk hugely influenced OOP in Java, etc.)

• Found that they independently developed

many of the same solutions to recurring problems

– wrote a book about them

• Many are problems with OO languages

– authors worked in C++ and SmallTalk

– some things are not easy to do in those languages
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Type Narrowing with Records

• Use a literal field to distinguish records types

– require the field to have one specific value

– called a “tag” field

cleanest way to make unions of records

type T1 = {kind: "T1", a: number};

type T2 = {kind: "T2", a: string, b: bigint};

const x: T1 | T2 = …;

if (x.kind === "T1") {   // legal for either type

  console.log(x.a);  // must be T1… x.a is a number

} else {

  console.log(x.a);  // must be T2… x.a is a string

  console.log(x.b);  //        x.b is defined

}
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Inductive Data Type Design Pattern (1/2)

type T  :=  C(x : ℤ)  | D(x : 𝕊* , t : T)

• Implement in TypeScript as

type T = {kind: "C", x: bigint}

       | {kind: "D", x: string, t: T};
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Inductive Data Type Design Pattern (2/2)

type T  :=  A  |  B  |  C(x : ℤ)  | D(x : 𝕊*, t : T)

• Implement in TypeScript as

type T = {kind: "A"}

       | {kind: "B"}

       | {kind: "C", x: bigint}

       | {kind: "D", x: string, t: T};
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Inductive Lists in TypeScript

type List  :=  nil  |  cons(x : ℤ,  L : List)

• Implemented in TypeScript as

type List = {kind: "nil"}

          | {kind: "cons", hd: bigint, tl: List};
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Inductive Lists in TypeScript: empty?

type List = {kind: "nil"}

          | {kind: "cons", hd: bigint, tl: List};

• How do I check if my list is empty?

if (mylist.kind === "nil") {

  …

}

• Importantly, not:
if (mylist === null) {

  …

}

• (very different from Java!)
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Defining Inductive Lists

type List = {kind: "nil"}

          | {kind: "cons", hd: bigint, tl: List};

63

const list: List = {

  kind: "cons",

  hd: 1n,

  tl: {

    kind: "cons",

    hd: 2n,

    tl: {

      kind: "cons",

      hd: 3n,

      tl: { kind: "nil" }

    }

  }

}

1 2 3

Correct but clunky.

Like math: can we define easier notation?



Inductive List Helpers (1/2)

• Make this look more like math notation…
type List = {kind: "nil"}

          | {kind: "cons", hd: bigint, tl: List};

const nil: Readonly<List> = {kind: "nil"};

const cons = (hd: bigint, tl: List): List => {

  return {kind: "cons", hd: hd, tl: tl};

}

– use only these two functions to create Lists

do not create the records directly

– note that we only have one instance of nil

this is called a “singleton” (there is a design pattern for ensuring this)
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Inductive List Helpers (2/2)

• Make this look more like math notation…

const nil: Readonly<List> = {kind: "nil"};

const cons = (hd: bigint, tl: List): List => { .. };

• Can now write code like this:

const list: List = cons(1, cons(2, nil));
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Inductive List Helpers: Equality Gotcha

• Make this look more like math notation…

const nil: Readonly<List> = {kind: "nil"};

const cons = (hd: bigint, tl: List): List => { .. };

• Still not perfect:

– JS “===” (references to same object) does not match “=”

cons(1, cons(2, nil)) === cons(1, cons(2, nil))  // false!

– need to define an equal function for this

will see this later…
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Recall: Inductive Lists

• Defined in math as

type List  :=  nil  |  cons(x : ℤ,  L : List)

• Implemented in TypeScript as

type List = {kind: "nil"}

          | {kind: "cons", hd: bigint, tl: List};

– For convenience and to look more like our math, we define 

nil “singleton” and cons function

const list: List = cons(1, cons(2, cons(3, nil)))
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Functions Defined on Inductive Data Types

• We need recursion to define interesting functions

• Inductive types fit esp. well with pattern matching

–  every object is created using some constructor

–  match based on which constructor was used
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Length of a List (in Math)

 type List :=  nil  |  cons(hd: ℤ, tl: List)

• Mathematical definition of list length:

len : List → ℕ 

len(nil) :=  0

len(x :: L) :=  1 + len(L) 

– any list is either nil or x :: L for some x and L

– thus, cases are exclusive and exhaustive
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Length of a List (translated to TypeScript)

• Mathematical definition of length

   len(nil)  :=  0

   len(x :: L) :=  1 + len(L)

         

• Translation to TypeScript

const len = (S: List): bigint => {

  if (S.kind === "nil") {

    return 0n;

  } else {

    return 1n + len(S.tl);

  }

}; TypeScript will see that this is valid

since S.kind != "nil"
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Swapping Elements in a List (in Math)

 type List :=  nil  |  cons(hd: ℤ, tl: List)

• Function that swaps adjacent elements in a list:

swap : List → List 

swap(nil)  :=  nil

swap(x :: nil) :=  x :: nil

swap(x :: y :: L) :=  y :: x :: swap(L)

– any list is either nil or x :: nil or x :: y :: L for some x, y, and L

– thus, cases are exclusive and exhaustive
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Swapping Elements in a List (in TypeScript)

swap(nil)  :=  nil

swap(x :: nil) :=  x :: nil

swap(x :: y :: L) :=  y :: x :: swap(L)

         

• Translation to TypeScript

const swap = (S: List): List => {

  if (S.kind === "nil") {

    return nil;

  } else if (S.tl.kind === "nil") {

    return cons(S.hd, nil);

  } else {

    return cons(S.tl.hd, cons(S.hd, swap(S.tl.tl)));

  }

};

= S

TypeScript will see that these are valid since

S.kind != "nil" and S.tl.kind != "nil"
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Structural Recursion

• Examples only recurse on parts of the input

 len(x :: L)  :=  1 + len(L)

– call on x :: L recurses on L

 swap(x :: y :: L)  :=  y :: x :: swap(L)

– call on x :: y :: L recurses on L

– such cases are called "structural recursion"

• Guarantees no infinite recursion!

– one argument gets strictly smaller on each call

– restrict ourselves to structural recursion in math and TS
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Formalizing Specifications



Formalizing a Specification

• Sometimes the instructions are written in English

– English is often imprecise or ambiguous

• First step then is to “formalize” the specification:

– translate it into math with a precise meaning

• Best to start by looking at some examples

– try to spot a pattern

– recursive data usually involves recursive functions

each base case usually corresponds to a pattern-match

can have one or more base cases
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Formalizing Sum of a List

• Sum of a List: “add up all the values in the list”

• Look at some examples…

L       sum(L)

nil       0

3 :: nil      3

2 :: 3 :: nil     2+3

1 :: 2 :: 3 :: nil     1+2+3

…       …
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Formalizing Sum of a List: the Math

• Look at some examples…

L       sum(L)

nil       0

3 :: nil      3

2 :: 3 :: nil     2+3

1 :: 2 :: 3 :: nil     1+2+3

…       …

• Mathematical definition of sum: 

sum: List → ℕ 

sum(nil)  :=  

sum(x :: L) :=  
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Formalizing Sum of a List: Trying Examples

L       sum(L)

1 :: 2 :: 3 :: nil     1+2+3

• Mathematical definition of sum: List → ℕ : 

sum(nil)  :=  0

sum(x :: L) :=  x + sum(L)

• Check that this works on the examples…

sum(1 :: 2 :: 3 :: nil)

  = 1 + sum(2 :: 3 :: nil)     def of sum (2nd line)

  = 1 + 2 + sum(3 :: nil)    def of sum (2nd line)

  = 1 + 2 + 3 + sum(nil)    def of sum (2nd line)

  = 1 + 2 + 3       def of sum (1st line)
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Converting Sum of a List to TypeScript

• Mathematical definition of sum

 sum(nil)  :=  0

 sum(x :: L) :=  x + sum(L)

 

• Translation to TypeScript

const sum = (S: List): bigint => {

  if (S.kind === "nil") {

    return 0n;

  } else {

    return S.hd + sum(S.tl);

  }

};
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Formalizing List Equality

• Equal lists: “built with same steps”

• Look at some examples…

L    R   equal(L, R)

nil    nil   

nil    1 :: nil  

1 :: nil   nil   

1 :: nil   1 :: nil  

2 :: nil   3 :: nil  

1 :: 2 :: nil  1 :: 3 :: nil 
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Formalizing List Equality: the Math

L    R   equal(L, R)

nil    nil   T

nil    1 :: nil  F

1 :: nil   nil   F

1 :: nil   1 :: nil  T

2 :: nil   3 :: nil  F

1 :: 2 :: nil  1 :: 3 :: nil F

• Mathematical definition of equal : (List, List) → 𝔹

equal(nil, nil)  := T

equal(nil, y :: R) := F

equal(x :: L, nil)  := F

equal(x :: L, y :: R) := (x = y) and equal(L, R)
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Formalizing List Equality: Trying Examples

L    R   equal(L, R)

1 :: 2 :: nil  1 :: 3 :: nil F

• Mathematical definition of equal : (List, List) → 𝔹

equal(nil, nil)  := T

equal(nil, y :: R) := F

equal(x :: L, nil)  := F

equal(x :: L, y :: R) := (x = y) and equal(L, R)

• Check that this works on the examples…

equal(1 :: 2 :: nil, 1 :: 3 :: nil)

  = (1 = 2) and equal(2 :: nil, 3 :: nil)   def of equal (4th line)

  = (1 = 2) and (2 = 3) and equal(nil, nil)  def of equal (4th line)

  = T and F and T       def of equal (1st line)
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Converting List Equality to TypeScript

type List = {kind: "nil"}

          | {kind: "cons", hd: bigint, tl: List};

const equal = (L: List, R: List): boolean => {

  if (L.kind === "nil" && R.kind === "nil") {

    return true;

  } else if (L.kind === "nil"){

    return false;

  } else if (R.kind === "nil") {

      return false;

  } else {

      return L.hd === R.hd && equal(L.tl, R.tl);

  }

}; note: can combine some cases! 

    but this is easier to read
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Formalizing List Concatenation

• Concatenate L and R: “a single list containing

  the elements of L followed by the elements of R”

• Look at some examples…

L    R   concat(L, R)

nil    nil   nil

nil    3 :: 4 :: nil 3 :: 4 :: nil

2 :: nil   3 :: 4 :: nil 2 :: 3 :: 4 :: nil

1 :: 2 :: nil  3 :: 4 :: nil 1 :: 2 :: 3 :: 4 :: nil

…
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Formalizing List Concatenation: the Math

L    R   concat(L, R)

nil    nil   nil

nil    3 :: 4 :: nil 3 :: 4 :: nil

2 :: nil   3 :: 4 :: nil 2 :: 3 :: 4 :: nil

1 :: 2 :: nil  3 :: 4 :: nil 1 :: 2 :: 3 :: 4 :: nil

• Mathematical definition of concat : (List, List) → List

concat(nil, R)  := 

concat(x :: L, R)  :=
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Formalizing List Concatenation: Examples

1 :: 2 :: nil  3 :: 4 :: nil 1 :: 2 :: 3 :: 4 :: nil

• Mathematical definition of concat : (List, List) → List

concat(nil, R)  := R

concat(x :: L, R)  := x :: concat(L, R)

• Check that this matches examples…

concat(1 :: 2 :: nil, 3 :: 4 :: nil)

  = 1 :: concat(2 :: nil, 3 :: 4 :: nil)    def of concat (2nd line)

  = 1 :: 2 :: concat(nil, 3 :: 4 :: nil)    def of concat (2nd line)

  = 1 :: 2 :: 3 :: 4 :: nil      def of concat (1st line)
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Converting List Concatenation to TypeScript

• Mathematical definition of concat : (List, List) → List

concat(nil, R)  := R

concat(x :: L, R)  := x :: concat(L, R)

• Translation to TypeScript

const concat = (S: List, R: List): List => {

  if (S.kind === "nil") {

    return R;

  } else {

    return cons(S.hd, concat(S.tl, R));

  }

};
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Generic List

• “generic” list type takes a “type parameter”

type List<A> = {kind: “nil”}

             | {kind: ”cons”, hd: A, tl: List<A>};

• We can pick any type for A

– TypeScript replaces all the “A”s by the type we give

– e.g., List<bigint> is this type:

type List<bigint> = 

  | {kind: “nil”}

  | {kind: ”cons”, hd: bigint, tl: List<bigint>};



Generic Functions

We also need to update the cons helper function

type List<A> = {kind: “nil”}

             | {kind: ”cons”, hd: A, tl: List<A>};

const cons = <A,>(x: A, L: List<A>): List<A> => {

  return {kind: “cons”, hd: x, tl: L};

};

• This is now a “generic function”

– it has its own type parameter <A,>

– extra comma is weird but required

 compiler thinks <A> is an HTML tag



Formalizing a Specification

• We “formalize” English instructions into precise 

specifications to define intended behavior

• How do we tell if the specification is wrong?

– specifications can contain bugs!

Is it obvious that equal & concat are correct? Maybe not.

• We tested our definition on a few examples

– what can we do to increase the odds we spot bugs?
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Testing



Unit, Integration, and End-to-End Tests (1/2)

• A unit test checks one function

– ideally, without testing anything else (not always possible)

• An integration test makes sure units work together

– many (most?) bugs in practice are here

• An end-to-end test exercises almost all the code

• How are we testing in HW3?

– we are doing end-to-end testing

– this makes debugging harder! (more to search)

95



Unit, Integration, and End-to-End Tests (2/2)

• A unit test checks one function

• An integration test makes sure units work together

• An end-to-end test exercises almost all the code

• You will be expected to write unit tests in industry

• There will also be integration and end-to-end tests

– someone will write them, but maybe not you

– (requires understanding the whole system)

• We will focus on unit testing
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Unit Testing: Dijkstra’s

• Even individual functions might be too big…

a lot of code here…

more in here…
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Unit Testing via Small Functions

• Even individual functions might be too big…

– split out pieces into their own functions

• Our coding conventions help enforce this

<input type=“text” onChange={(evt) => {

 … multi-line calculation …

}}></input>

– make this its own function

makes the code more understandable and testable

• Purposefully design the code to be testable

– important part of programming in practice
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“Manual” vs Programmatic Tests

• Usually possible to run the code by hand (“manually”)

– open it in node and execute it

– open it in the browser and look at it (UI)

• What if the code changes?

– then, you need to do the tests again

• Programmatic tests are code that tests other code

– easy to run them again whenever the code changes

– these are generally preferred

• What did we do in HW1 -- HW3?
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“Manual” vs Programmatic Tests in UI

• For UI, manual testing is still common

– written tests are hard to write and imperfect

need to see it in the browser to be sure that it looks right

– we will test UI manually

– non-UI functions and all server code tested programmatically
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“Engineers are paid to think and understand.”

— Class slogan #1



Writing a Programmatic Test

1. Choose an input / configuration

– description of the inputs / configuration is the “test case”

2.  Think through what the expected answer is

– look at the specification for the correct answer

– if you run the code to get the answer, you are not testing

3. Write code that

a) calls the function that input

b) compares the actual answer to the expected one

c) throws an error if they do not match

– useful libraries for doing this…
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Writing a Programmatic Test: Example Code

// number.ts

/** Determines whether m is a prime number. */

export const isPrime = (m: bigint): boolean => {

  …

};

/** Returns the mth Fibonacci number. */

export const fib = (m: bigint): bigint => {

  …

};
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Writing a Programmatic Test with Mocha

// number_test.ts

import * as assert from "assert";

import { isPrime, fib } from "./number";

describe("number", function() {

  it("isPrime", function() {

    assert.strictEqual(isPrime(2n), true);

    assert.strictEqual(isPrime(3n), true);

    assert.strictEqual(isPrime(4n), false);

  });

  it("fib", function() {

    assert.strictEqual(fib(1n), 1n);

    assert.strictEqual(fib(3n), 2n);

    assert.strictEqual(fib(9n), 34n);

  });

});

Don't worry too much

about the details here….
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Mocha Asserts & Equality

// number_test.ts

import * as assert from "assert";

import { isPrime, fib } from "./number";

describe("number", function() {

  it("isPrime", function() {

    assert.strictEqual(isPrime(2n), true);

    assert.strictEqual(isPrime(3n), true);

    assert.strictEqual(isPrime(4n), false);

  });

– use assert.strictEqual to compare primitive values

– use assert.deepStrictEqual to compare records & arrays
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Running Programmatic Tests with Mocha

$ npm run test

  number

    1) isPrime

    ✓ fib

  1 passing(5ms)

  1 failing

  1) number

       isPrime:

      AssertionError [ERR_ASSERTION]: Expected values to be strictly equal:

false !== true

      + expected - actual

      -false

      +true

      

      at Context.<anonymous> (src/number_test.ts:9:12)

      at processImmediate (node:internal/timers:511:21)
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Running Programmatic Tests with Mocha

$ npm run test

  number

    ✓ isPrime

    ✓ fib

  2 passing (2ms)
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Ground Rules for Testing (1/4)

1. Only need to test inputs allowed by the spec

– there is no correct answer for other inputs

/** Determines whether a positive integer is prime. */

export const isPrime = (n: bigint): boolean => {

  if (n <= 0n)

    throw new Error(`not a positive integer: ${n}`);

  …

};
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Ground Rules for Testing (2/4)

1. Only need to test inputs allowed by the spec

– there is no correct answer for other inputs

2. Choose tests for each function individually

– pick tests to do a good job of testing that one function

/** Determines whether a positive integer is prime. */

export const isPrime = (n: bigint): boolean => {

  if (n <= 0n)

    throw new Error(`not a positive integer: ${n}`);

  const m = intSqrt(n);  // integer square root of n

  …

}; intSqrt has its own tests!
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Ground Rules for Testing (3/4)

1. Only need to test inputs allowed by the spec

– there is no correct answer for other inputs

2. Test each function individually

– assume anything it calls is correct (its own tests will check)

3. Test code should be simple

– any loops in tests need their own tests!
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How Many Tests are Strictly Necessary?

• Consider the following function:

// Allows inputs 0 <= a, b, c <= 10,000 …

const f = (a: bigint, b: bigint, c: bigint) => {

 …

};

• How many tests needed guarantee correctness?

– 1 trillion!

– "just write a loop and …"

the code in that loop could also be wrong

– cannot think through even 1000 tests

most code we write cannot be exhaustively tested
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Ground Rules for Testing (4/4)

1. Only need to test inputs allowed by the spec

– there is no correct answer for other inputs

2. Test each function individually

– assume anything it calls is correct (its own tests will check)

3. Test code should be simple

– any loops in tests need their own tests!

4. If there are fewer than 10 allowed inputs,

then do test them all!

– take advantage of the easy case
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Choosing Test Cases

// Returns true iff n is a prime number

 const isPrime = (n: bigint): boolean => { … }

• How about if we test 2, 3, 4, 7, 12, 97, 99?

– seems okay?
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Choosing Test Cases (Gone Wrong!)

// Returns true iff n is a prime number

 const isPrime = (n: bigint): boolean => {

     if (n < 100n) {

       return PRIME_CACHE[n];  // precomputed answers

     } else {

       for (let k = 2n; k*k <= n; k++) {

         if (n % k === 0n)

           return false;

       }

       return true;

     }

   };

Cases 2 .. 100 are table lookups!

We didn't test the loop at all!

Impossible to know this without

looking at the actual code.
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Clear-Box Testing

• We need to look at the code to know what to test

– this is called "clear-box testing"

– it will be our primary heuristic

• In this class, we want a clear rule for how many tests

– you want homework and tests to have clear right answers

• Outside of class, these rules are also good

– most programmers will be familiar with these concepts

– but, not comprehensive (usually a “floor”)
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Statement Coverage by Example (isPrime)

• Simplest metric is "statement coverage"

– what percentage of the statements in the code are

executed by at least one test

– this should be nearly 100%

export const isPrime = (n: bigint): boolean => {

  if (n <= 0n)

    throw new Error(`not a positive integer: ${n}`);

  …  // code for positive integer inputs

};

• The "throw" is not executed by any allowed input

– we only test the allowed inputs
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Statement Coverage

• Simplest metric is "statement coverage"

– what percentage of the statements in the code are

executed by at least one test

• Must test 100% of code reachable on allowed inputs

– cannot send code to users that you didn't even try!

– we will refer to this as having "full statement coverage"

• Are we done?
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Statement Coverage and Conditionals

• Consider the following function:

/** Returns the smaller of a and b. */

const min = (a: bigint, b: bigint): bigint => {

  let m = a;

  if (a <= b)

    m = a;

  return m;

};

– testing on a=1 b=2 gives full statement coverage

– what is the bug?

gives the wrong answer whenever a > b

– we never tested the case where the "if" doesn't execute
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Conditionals

Conditionals are "if" statements

    if (n > 0) {

      x = 2*(n – 1);

    } else {

      x = 0;

    }

Every conditional has two branches (“then” and “else”)
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Conditionals and Implicit Else

Conditionals are "if" statements

    if (n > 0) {    =  if (n > 0) {

      x = 2*(n – 1);   =      x = 2*(n – 1);

    }                  =    } else {

                       =    }

Every conditional has two branches (“then” and “else”)

– missing "else" still has an empty else branch
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Branch Coverage: Back to min

• Consider the following function:

/** Returns the smaller of a and b. */

const min = (a: bigint, b: bigint): bigint => {

  let m = a;

  if (a <= b)

    m = a;

  return a;

};

– problem only arises when "if" falls through to code after

– if every branch ends with return / throw,

then statement coverage = branch coverage

always true for code without mutation of local variables
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Branch Coverage

• Next metric is "branch coverage"

– for what percentage of the conditionals, are both branches 

executed by some test

• Must test all branches reachable on allowed inputs

– can ignore branches that are unreachable

i.e., the ones that throw new Error on bad inputs

• Are we done?

122



Is Branch Coverage Enough?

• Consider the following function:

/** Returns quadrant containing (x, y). */

const quad = (x: number, y: number): 1|2|3|4 => {

  let answer;

  if (x >= 0) {

    answer = 1;

  } else {

    answer = 2;

  }

  if (y < 0)

    answer = 4;

  return answer;

};

– testing on (2, -2) and (-2, 2) gives full branch coverage

– this code is really wrong… it never returns 3!

2        1

3        4
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Path Coverage?

• More advanced metrics could fix this

– "path coverage" would require 4 tests

– #paths can grow exponentially in #branches

• For straight-line code and conditionals,

we will only require branch coverage

• What about loops / recursion?
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Test Coverage and Loops

• Consider the following function:

const bsearch = (x: bigint, arr: Array<bigint>): number => {

  let lo = 0;

  let hi = arr.length;

  while (lo < hi) {  // x could be in arr[lo .. hi-1]

    const m = Math.floor((lo + hi) / 2);

    if (x < arr[m]) {

      hi = m;

    } else if (x > arr[m]) {

      lo = m + 2;

    } else {

      return m;

    }

  }

  return hi;

};

Testing on x=1, 2, 3 arr=[2]
gives full statement coverage

But the code is wrong.

In general, values written inside the loop

are not read until the next time around,

so you need 2+ iterations to test them.
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Loop Coverage (and Recursion Coverage)

• Our last metric is "loop coverage" (non-standard terminology)

– what percent of loops are executed 0, 1, and many (2+) 

times by some test case

• Same idea applies to recursion

– some arguments passed to recursive calls may not be read 

until the second recursive call

– full loop coverage means every recursive call is executed 0, 

1, and many times by some test

• Are we done?

– no!
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What Can We Learn From Testing?

“Program testing can be used to show the presence of bugs, 

but never to show their absence!”

Edsger Dijkstra

Notes on Structured Programming, 1970

“Beware of bugs in the above code;

I have only proved it correct, not tried it.”

Donald Knuth, 1977
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Summary of testing requirements

• At least two tests for any function (non-UI)

• Must have full coverage of reachable

– statements: must be executed

– branches: must execute both branches

– loops / recursion: must run 0, 1, & many times
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Agenda

✓ Administrivia

✓ Finish Testing (finish topic 4)

– Practice exercises

• Reasoning (start topic 5)
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How Many Tests: Example 0

// x must be a non-negative integer

 const f = (x: bigint): number => {

    if (x === 0n) {

      return 0;

    } else {

      return Math.sin(Math.PI * (Number(x) + 0.5));

    }

  }

How many tests? Which ones?

– 0 (top branch) and 1 (bottom branch)

statement coverage = branch coverage since no "fall through"
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How Many Tests: Example 1

// x must be a non-negative integer

 const f = (x: bigint): bigint => {

    if (x < 3n) {

      return 0n;

    } else if (x < 10n) {

      return (x – 3n) / 10n;

    } else {

      return 1n;

    }

  }

How many tests? Which ones?

– 2 (top), 6 (middle), and 10 (bottom)
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How Many Tests: Example 2

// a and b must be a non-negative

 const f = (a: number, b: number): number => {

    if (a > b)

      a = b;

    return Math.abs(a);

  }

How many tests? Which ones?

– a=2, b=1 gives full statement coverage

– adding a=1, b=2 gives branch coverage
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How Many Tests: Example 3

// x must be a non-negative integer

 const f = (x: bigint): number => {

    if (x <= 1n) {

      return 0;

    } else {

      return 1 + f(x / 2n);

    }

  }

How many tests? Which ones?

– 1 (0 recursive calls)

– 2 (1 recursive call)

– 5 (2 recursive calls)
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How Many Tests: Example 4

// x must be an integer between 1 and 10

 const f = (x: bigint): bigint => {

    if (x === 1n) {

      return 0n;

    } else if (x % 2 === 1n) {

  return -1n * f(x - 1n);

  } else {

      return 4n + f(x – 2n);

    }

  }

How many tests? Which ones?

– only 10 inputs, so… all of them
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Other Heuristics

Not mandatory for 331 but useful in practice:

• Make sure every argument value is changed

• Look at special values

– null, undefined, NaN, empty array, etc. often have bugs

• Look at the specification for branches

– maybe the code doesn’t split inputs where it should!

– e.g., spec splits into “if x ≥ 0” but code is “if (x > 0)”
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How to Fix a Bug

• Start with an example that fails

– make sure you see it fail!

– can mistakenly write a test that worked already

• Understand why it fails

– understand where your reasoning was wrong

• Fix the bug

• Make sure the all the tests now pass

– new test and all previous tests

136



Notes Posted on the Website 

• Shorter version of everything we've discussed

• List notes additionally include

1. Defines a few more useful list functions

2. Describes important properties of concat:

– operator notation "⧺"

– associativity and identity

3. Mentions important applications of lists

– maps are lists of (key, value) pairs, sets can be defined 

as lists

– Lists are our most important data type!
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Administrivia

• Office hours

– Polled y’all, no long-term changes for now

– Jaela’s Friday OH cancelled (this week only)

 

• Tomorrow: section + HW3 due (on-time)! 
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