
Mutation

Jaela Field

CSE 331 Summer 2025

Administrivia

• HW3 released last night

– Example responses (based on Th section) will be posted

on Ed later today

Gradescope will be updated with links

– Last question asks for feedback!

Feel free to mention HW2 notes there also

4

Mutation

HW2 – mutation?

• In HW2, we asked you about “mutation bugs”

– code mutated something that it wasn’t supposed to

i.e. didn’t “own” the variable, directly reassigning instead of using
proper functions

• Historically,

– students report ~10% of bugs are mutation related

– such bugs took significantly longer to debug!

– the bugs that students have but don’t find on this

assignment are generally mutation related

6

HW2 – mutation?

• not-as-common as type related errors, but much

nastier to debug

• our goal: help you build ability to recognize

indicators of potential problems without

running code (or seeing all of it)

7

Time

of

Bugs

Recall: Binary Search Trees

• Consider the following tree

– searching for "4" proceeds as follows:

• Suppose someone changed "3" into "5"…

6

3

1 4

9

8

8

Binary Search Trees & Mutation

• Suppose someone changed "3" into "5"…

– now this happens when we search for "4":

– It can no longer be found!

Doesn't crash. It's just not found.

– Problem doesn't occur on the line with the change

6

5

1 4

9

8

9

HW2 Debugging via User Report

• User reports the following bug:
”Uh, sometimes, I can't click on one of the markers.

 Usually, it it works fine. But occasionally, you can't click on it.”

• How do you debug this?

– Reproducing it is challenging enough!

key reason why event-driven debugging is harder

– No error message, or exception to go off of

No line number to start with

– have to learn how App.tsx works, then how

marker_tree.ts works

10

Scary Bugs

• Do not fear crashes

– often no debugging at all

get a stack trace that tells you exactly where it went wrong

• Do fear unexpected mutation

– failure will give you no clue what went wrong

will take a long time to realize the BST invariant was violated by mutation

– bug could be almost anywhere in the code

– could take weeks to track it down

11

Think Pair Share: M-you-tation

12

Consider these functions – which

could break this feature? How?

1. mystery(todos)

2. mystery(incompleteTodos)

3. mystery(todos[0])

4. mystery(incompleteTodos[0])

const todos: Array<TodoItem> = /* ... */;
const incompleteTodos: Array<TodoItem> =
 findAllIncompleteTodos(todos);

incompleteTodos.shuffle();
// suspicious mystery FUNCTION HERE :))

console.log(`Why not try: ${incompleteTodos[0]}`);

sli.do #cse331

Aliasing

Heap State

• “Heap state” = still used after the call stack finishes

– after current function and those calling it all return

– state could be arrays or records

• Extra references to the objects are called "aliases"

• No different from before when immutable

– we don’t care who reads the data

• Vastly more complex when mutable…

– common with event-driven applications

– creates the potential for failures far from bugs

14

Coupling

• High-quality code needs to be "modular"

– split into pieces that can be understood individually

• When not possible, pieces are "coupled"

– must understand both parts to understand each one

• Mutable heap state creates coupling

– all pieces must know who else has aliases

– all pieces must know who is allowed to mutate

• Coupling creates potential for painful debugging

– bugs in one piece can cause failures in another

15

Mutable Heap State

• “With great power, comes great responsibility”

– from Uncle Ben (1972, 2002-*)

• With aliases to mutable heap state:

– gain efficiency in some cases

– must keep track of every alias that could mutate that state

any alias, anywhere in the entire program could cause a bug

16

“Programmers overestimate the importance of efficiency

 and underestimate the difficulty of correctness.”

— Class slogan #2

Easy Ways to Stay Safe

1. Do not mutate heap state

– don’t need to think about aliasing at all

– any number of aliases is fine

2. Do not allow aliases…

– create the state in your constructor and don’t share it

class MyClass {

 vals: Array<string>;

 constructor() {

 this.vals = new Array(0); // only alias

 }

 …

18

Easy Ways to Stay Safe: Copy-on-Write

2. Do not allow aliases

 (a) do not hand out aliases yourself

– return copies instead

class MyClass {

 // RI: vals is sorted

 vals: Array<string>;

 …

 values: (): Array<string> => {

 return this.vals; // unsafe!

 return this.vals.slice(0); // make a copy

 };

 …

19

Easy Ways to Stay Safe: Copy-on-Read

2. Do not allow aliases

 (b) make a copy of anything you want to keep

– does not matter if the caller mutates the original

class MyClass {

 // RI: vals is sorted

 vals: Array<string>;

 …

 // @requires A is sorted

 constructor(A: Array<string>) {

 this.vals = A; // unsafe!

 this.vals = A.slice(0); // make a copy

 };

 …

20

Staying Safe in 331

1. Do not use mutable state

– don’t need to think about aliasing at all

– any number of aliases is fine

2. Do not allow aliases to mutable state

a) do not hand out aliases yourself

b) make a copy of anything you want to keep

• For 331, mutable aliasing across files is a bug!

– gives other parts the ability to break your code

– we will stick to these simple strategies for avoiding it

ensures only one reference to the object (no aliases)

21

An Advanced (Two-Stage) Approach

• Mutable object has only one reference (owner)

– one reference that is allowed to use & mutate it

• Object is eventually “frozen”, making it immutable

– no longer necessary to track ownership

• Example: Java’s StringBuilder vs String

– StringBuilder is mutable (be careful!)

– StringBuilder.toString returns the value as a String

– String is immutable

22

Rules of Thumb: Mutation XOR Aliasing

Client Side

1. Data is small

– anything on screen is O(1)

2. Aliasing is common

– UI design forces modules

– data is widely shared

Rule: avoid mutation

– create new values instead

– performance will be fine

– (local-only mutation can be OK)

Server Side

1. Data is large

– efficiency matters

2. Aliasing is avoidable

– you decide on modules

– data is not widely shared

Rule: avoid aliases

– do not allow aliases to your data

– hand out copies not aliases

– (good enough for us in 331)
23

Language Features & Aliasing

• Most recent languages have some answer to this…

• Java chose to make String immutable

– most keys in maps are strings

– hugely controversial at the time, but great decision

• Python chose to only allow immutable keys in maps

– only numbers, strings, and tuples allowed

– surprisingly, not that inconvenient

• Rust has built-in support for “mutation XOR aliasing”

– ownership of value can be “borrowed” and returned

– type system ensures there is only one usable alias
24

Readonly in TypeScript (1/2)

• TypeScript can ensure values aren’t modified

– extremely useful!

– but, only a compile-time check (not a runtime guarantee)

• Readonly tuples:

type IntPair = readonly [bigint, bigint];

• Readonly fields of records:

type IntPoint = {readonly x: bigint,

 readonly y: bigint};

25

Readonly in TypeScript (2/2)

• Readonly fields of records:

type IntPoint = {readonly x: bigint,

 readonly y: bigint};

• Readonly records:

type IntPoint = Readonly<{x: bigint, y: bigint}>;

– this.props is Readonly<MyPropsType>

• More readonly…

ReadonlyArray<bigint>

ReadonlyMap<string, bigint>

ReadonlySet<string>

26

comfy-tslint

comfy-tslint

• we’ve written a TS linter for this class that

enforces some of our conventions, e.g.

– requiring type annotations for functions

– disallowing the any type

– naming & structure conventions for React methods

• available…

– as a VSCode extension

– as an npm module (run with npm run lint)

• please:

– See the comfy-tslint resource for enforced rules

– take a careful look at the HW3 spec + autograder

28

https://courses.cs.washington.edu/courses/cse331/25su/resources/comfy-tslint.html
https://courses.cs.washington.edu/courses/cse331/25su/resources/comfy-tslint.html
https://courses.cs.washington.edu/courses/cse331/25su/resources/comfy-tslint.html
https://courses.cs.washington.edu/courses/cse331/25su/resources/comfy-tslint.html

	Slide 1: Mutation
	Slide 4: Administrivia
	Slide 5: Mutation
	Slide 6: HW2 – mutation?
	Slide 7: HW2 – mutation?
	Slide 8: Recall: Binary Search Trees
	Slide 9: Binary Search Trees & Mutation
	Slide 10: HW2 Debugging via User Report
	Slide 11: Scary Bugs
	Slide 12: Think Pair Share: M-you-tation
	Slide 13: Aliasing
	Slide 14: Heap State
	Slide 15: Coupling
	Slide 16: Mutable Heap State
	Slide 17: “Programmers overestimate the importance of efficiency and underestimate the difficulty of correctness.”
	Slide 18: Easy Ways to Stay Safe
	Slide 19: Easy Ways to Stay Safe: Copy-on-Write
	Slide 20: Easy Ways to Stay Safe: Copy-on-Read
	Slide 21: Staying Safe in 331
	Slide 22: An Advanced (Two-Stage) Approach
	Slide 23: Rules of Thumb: Mutation XOR Aliasing
	Slide 24: Language Features & Aliasing
	Slide 25: Readonly in TypeScript (1/2)
	Slide 26: Readonly in TypeScript (2/2)
	Slide 27: comfy-tslint
	Slide 28: comfy-tslint

