CSE 331 Summer 2025

Client-Server Interaction |

Jaela Field

HW1 Feedback request!

 Any thoughts {O
— how long did it take you?
— opinions on submitting answers on Gradescope
— was it good JS & server code practice?
— any unclear directions?
— any gripes?
* Anonymous Feedback

i @ index cards

https://feedback.cs.washington.edu/
https://feedback.cs.washington.edu/

Reminders

c HW 2
— Must identify defect causing specific failure

include only that line of code, or label clearly
(ed post)
— No Ed after 11pm Thursday!

https://edstem.org/us/courses/80024/discussion/6805525?comment=15791118

Client-Server Interaction

Steps to Writing a Full Stack App

* Data stored only in the client is generally ephemeral
— closing the window means you lose it forever
— to store it permanently, we need a server

* We recommend writing in the following order:

1. Wirite the client Ul with local data

— no client/server interaction at the start

2. Write the server
— official store of the data (client state is ephemeral)

3. Connect the client to the server
— use fetch to update data on the server before doing same to client

Steps to Writing a Full Stack App: Server

* We recommend writing in the following order:

2. Write the server
— official store of the data (client state is ephemeral)

Designing the Server

* Decide what state you want to be permanent
— e.g., items on the To-Do list

* Decide what operations the client needs

— e.g., add/remove from the list, mark an item completed
look at the client code to see how the list changes
each way of changing the list becomes an operation

— also need a way to get the list initially

— only provide those operations
can always add more operations later

Example: To-Do List Server

Server Documentation

e Client cannot use the server unless it knows how!
— What are the required inputs?
— What are the expected outputs? (including error responses)

addItem = (req: SafeRequest, res: SafeResponse)

« We'll talk more about JSDocs later on!

Steps to Writing a Full Stack App: Connect

* We recommend writing in the following order:

3. Connect the client to the server
— use fetch to update data on the server before doing same to client

10

Recall: Client-Server Interaction

* Clients need to talk to server & update Ul in response

GET /api/list

current to-do list

our server

Client will make requests to the server to
— get the list
— add, remove, and complete items

11

Development Setup

* Two servers: ours and webpack-dev-server

Only one server can
run on each port

(Attempting to start
a second will see a
EADDRINUSE error)

GET /api/list

8080

A

v

8088

our server

response

webpack-dev-server

webpack-dev-server
will forward all requests
to /api/.. to our server

12

Client-Server Interaction: Making Requests?

* Clients need to talk to server & update Ul in response

GET /api/list

current to-do list

our server

Components give us the ability to update the Ul
when we get new data from the server (an event)

How does the client make requests to the server?

13

Fetch Requests Are Complicated

Four different methods involved in each fetch:

kW DR

method that makes the fetch
handler for fetch Response

handler for fetched JSON

handler for errors

fetch

connect

» status code

doListResp

200

400

response data

doListJson

error message

doListError

14

Making HTTP Requests: Using Fetch

e Send & receive data from the server with “fetch”

fetch ("/api/list")
.then (this.dolListResp)
.catch(() => this.dolListError("failed to connect"))

* Fetch returns a “promise” object
— has .then & .catch methods
— both methods return the object again
— above is equivalent to:

const p = fetch("/api/list");
p.then (this.doListResp);
p.catch(() => this.dolListError("failed to connect"));

15

Making HTTP Requests: After Fetch

e Send & receive data from the server with “fetch”

fetch ("/api/list")
.then (this.dolListResp)
.catch(() => this.dolListError("failed to connect"))

— then handler is called if the request can be made

— catch handler is called if it cannot be
only if it could not connect to the server at all
status 400 still calls then handler

— catch is also called if then handler throws an exception

16

Making HTTP Requests: Query Parameters

e Send & receive data from the server with “fetch”

const url = "/api/list? " +
"category=" + encodeURIComponent (category) ;

fetch (url)
.then (this.dolListResp)
.catch(() => this.dolListError("failed to connect"))

* All query parameter values are strings

 Some characters are not allowed in URLs
— the encodeURIComponent function converts to legal chars
— server will automatically decode these (in reqg. query)

in example above, req.query.name will be “laundry”

17

Making HTTP Requests: Status Codes

e Still need to check for a 200 status code

doListResp = (res: Response): void => {
if (res.status === 200) {
console.log ("1t worked!");

} else {

this.dolListError(bad status $S{res.status});

}
}s

doListError = (msg: string) => {

console.log (fetch of /list failed: ${msg} °);

}s

— (often need to tell users about errors with some ULl...)

18

Handling HTTP Responses

 Response has methods to ask for response data
— our doListResp called once browser has status code
— may be a while before it has all response data (could be GBSs)

* With our conventions, status code indicates data type:
— with 200 status code, use res.json () to get record

we always send records for normal responses

— with 400 status code, use res.text () to get error message

we always send strings for error responses

 These methods return a promise of response data
— use .then(..) to add a handler that is called with the data

— handler .catch (..) called if it fails to parse
19

Making HTTP Requests: Error Handling

doListResp = (res: Response): void => {
i1f (res.status === 200) {
res.json () .then(this.doListJson) ;
.catch(() => this.dolListError ("not JSON");

Y

 Second promise can also fail
— e.g., fails to parse as valid JSON, fails to download

* Important to catch every error and makae it visible
— painful debugging if an error occurs and you don’t see it!

Making HTTP Requests: More Error Handling

doListResp = (res: Response): void => {
i1f (res.status === 200) {
res.json () .then(this.doListJson) ;
.catch(() => this.dolListError ("not JSON"));
} else if (res.status === 400) {
res.text () .then(this.dolListError);
.catch(() => this.dolListError("not text"));
} else {

this.dolistError (bad status: S{res.status});
}
s

* We know 400 response comes with an error message
— could also be large, so res.text () also returns a promise

21

Recall: Function Literals

* Function literals for error handlers

componentDidMount = (): wvoid => {
const p = fetch("/api/list");
p.then (this.doListResp);
p.catch(() => this.dolListError ("connect failed"));

b

* Our coding convention:

— onhe-line functions (no {..}) can be written in place
most often used to fill in or add extra arguments in function calls

— longer functions need to be declared normally

22

Recall: HTTP GET vs POST

* When you type in a URL, browser makes “GET” request
— request to read something from the server

 (Clients often want to write to the server also
— this is typically done with a “POST” request

ensure writes don’t happen just by normal browsing

 POST requests also send data to the server in body

— GET only sends data via query parameters
— limited to a few kilobytes of data
— POST requests can send arbitrary amounts of data

25

Making HTTP POST Requests

 Extra parameter to fetch for additional options:

fetch (”/add”, {method: "POST"})

* Arguments then passed in body as JSON

const args = {name: "laundry"};
fetch ("/add", {method: "POST",
body: JSON.stringify (args),

headers: {"Content-Type”: "application/json"}})
.then (this.doAddResp)
.catch(() => this.doAddError ("failed to connect"))

— add as many fields as you want in args

— Content-Type tells the server we sent data in JSON format
26

Lifecycle Methods

* React also includes events about its “life cycle”
— componentDidMount: Ul is how on the screen
— componentDidUpdate: Ul was just changed to match render
— componentWillUnmount: Ul is about to go away

 Often use “mount” to get initial data from the server
— constructor shouldn’t do that sort of thing

componentDidMount = (): wvoid => {
fetch ("/api/list")
.then (this.doListResp)
.catch(() => this.dolListError ("connect failed");

}s

27

Lifecycle Events Gotcha: Unmounting

 Warning: React doesn’t unmount when props change
— instead, it calls componentDidUpdate and re-renders
— you can detect a props change there

componentDidUpdate =
(prevProps: HiProps, prevState: HiState): void => {
if (this.props.name !== prevProps.name) {

// our props were changed!

This is used in HW2:
 changes to markers cause an
update to name and color state

28

CSE 331 WHAT DOES THE RED LINE

THROUGH HTTPS MEAN?

Summer 2025 o i et 105 0% 1
AND SINCE IT'S BEEN AROUND THAT
Client-Server LONG IT MEANS IT'5 PROBABLY LEGH.

)
Interaction Il

Jaela Field xked #1537 (and Matt, ty)

Feedback from last time

 Lectures: too fast!
— Please ask me to chill out

Jaela switching between screens

) HW1 in lecture (not good)

— Wide range of amount of time to complete
come visit us in OH! Ask questions on Ed!

— Unclear expectations for Gradescope questions and
Scope of debugging
Will add examples again for HW3! + see HW1 feedback

30

Recall: Fetch Requests Are Complicated

Four different methods involved in each fetch:

kW DR

fetch

connect

method that makes the fetch
handler for fetch Response

handler for fetched JSON
handler for errors

componentDidMount

» status code

doListResp

200

400

response data

doListJson

error message

doListError

31

Recall: Another JavaScript Feature: for .. of

for (const item of wval)

* “for .. of” iterates through array elements in order
— ... or the entries of a Map or the values of a set

entries of a Map are (key, value) pairs

— canuse .entries () function on array, to iterate over
[index, value] tuples for each entry

— like Java's "for (.. : .)"
— fine to use these

32

To-Do List: wrap up requests

One More Change

* Don’t have the items initially...

type TodoState = {

items: Item[] | undefined; // items or undefined if loading
newName: string; // mirrors text in name-to-add field
b7
renderItems = (): JSX.Element => {
if (this.state.items === undefined) {

return <p>Loading To-Do list...</p>;
} else {
const items = [];
// .. old code to fill in array with one DIV per item ..

return <div>{items}</div>;

};

34

New TodoApp — Requests

To-Do List To-Do List

. Daundey Do
N DWEShdﬂg . DWﬂShdﬂg

. . . . Check the item to mark it completed. Click delete to remove it.
Check the item to mark it completed. Click delete to remove it. P

) New item: | | Add Item |
New item: | | Add Item |
I MName Status

Name Status =] localhost 200
=l localhost 200] main.92bBbcaceee3d3ace7... 200

J main.22bB8bcacZese3dd3acey... 200 o we 101
2 ws 101 % list 200
Y list 200 Y add 200
{:y add 200 v add 200
{:y add 200 {:} toggle 200
{i} toggle 200 {7} remove 200

35

Dynamic Type Checking

New TodoApp - Add Json and Types

doAddJson = (data: unknown): wvoid => {

.. // how do we use data®?

Y

— type of returned data is unknown

— to be safe, we should write code to check that it looks right
check that the expected fields are present
check that the field values have the right types
Type Narrowing

— only turn off type checking if you love painful debugging!

otherwise, check types at runtime

37

Checking Types of Requests & Response (1/2)

* All our 200 responses are records, so start here

if (!isRecord(data))

throw new Error (not a record: ${typeof data});

— the isRecord function is provided for you
— like built-in Array.isArray function

still need to check the type of each array element!

* Would be reasonable to log an error instead
— using console.error is probably easier for debugging

38

Checking Types of Requests & Response (2/2)

* Fields of the record can have any types

if (typeof data.name !== "string") {
throw new Error (

"name is not a string: S$S{typeof data.name});

if (typeof data.amount !== "number") ({
throw new Error (

"amount i1s not a number: ${typeof data.amount});

39

TodoApp: processing /api/list JSON

// Called with the JSON response from /api/list
doListJson = (data: unknown): wvoid => {
const items = parselListResponse (data) ;

this.setState({items: items});

b

— often useful to move this type checking to helper functions
we will may provide these for you in future assignments

— not part of the Ul logic, so doesn’t belong it that file

40

TodoApp: parselistResponse

// Retrieve the items sent back by /api/list
const parseListResponse = (data: unknown): Item[] => {
if (!'isRecord(data))

throw new Error (not a record: ${typeof data}l’);

return parseltems (data.items);

b

— can only write "data.items" after we know it's a record

type checker will object otherwise
retrieving a field on undefined or null would crash

41

TodoApp: parseItems - Type Checking the Array

const parseltems = (data: unknown): Item[] => {
if (!Array.isArray(data))

throw new Error (not an array: ${typeof data}’);

const items: Item[] = [];
for (const item of data) {

items.push (parseltem(item)) ;

}

return items;

Y

42

TodoApp: parseItems - Type Checking Items

const parseltem = (data: unknown): Item[] => {
if (!isRecord(data))

throw new Error (not an record: ${typeof data}’);

if (typeof data.name !== "string")

throw new Error (name is not a string: ${typeof data.name});

if (typeof data.completed !== "boolean")

throw new Error (' not a boolean: ${typeof data.completed});

return {name: data.name, completed: data.completed};

b

43

Use Type Checking to Avoid Debugging (1/2)

* Resist the temptation to skip checking types in JSON
— “easy is the path that leads to debugging”

* Query parameters also require checking:

const url = "/list? " +

"category=" + encodeURIComponent (category):;

— converting from a string back to JS data is also parsing
— cah be a bug in encoding or parsing

44

Use Type Checking to Avoid Debugging (2/2)

* Be careful of turning off type checking:

resp.json () .then (this.doAddJson)

doAddJson = (data: Todoltem): void => {
this.setState(

{items: this.state.items.concat ([data]) });

}s

— promises use “any” instead of “unknown”, so
TypeScript let you do this

imagine this debugging
when you make a mistake

45

Debugging Client-Server

Writing the Server

* Full-stack apps introduce new ways of failing
— can fail in the client due to a bug in the server
— can fail in the server due to a bug in the client

 Debugging a full-stack app is much harder

— requires understanding client, server, & interactions
— will take more time...

47

“Engineers are paid to think and understand.”

— Class slogan #1

Client-Server Communication Complexity

client New item: |laundry Add server
dOA?dCIACK | express
— fetch /api/add _ find route
doAddJson addltem
— check response — check parameters
— update state) — send {
name: "laundry”,
added: true
To-Do List }

(Jlaundry

49

Client-Server Debugging

* Client-server communication can fail in many ways
— almost always requires debugging

* Include all required . catch handlers
— at least log an error message

* Here are steps you can use when
— the client should have made a request
— but you don’t see the expected result afterward
— (will practice this in section tomorrow!)

50

Client-Server Debugging Tips (1/2)

1. Do you see the request in the Network tab?
— the client didn’t make the request

2. Does the request show a 404 status code?

— the URL is wrong (doesn’t match any app.get / app.post) or
the query parameters were not encoded properly

3. Does the request show a 400 status code?

— your server rejected the request as invalid

— look at the body of the response for the error message or
add console. log’s in the server to see what happened

— therequest itself is shown in the Network tab

51

Client-Server Debugging Tips (2/2)

4. Does the request show a 500 status code?
— the server crashed!

— look in the terminal where you started the server for a stack trace

5. Does the request say “pending” forever?
— your server forgot to call res . send to deliver a response

6. Look for an error message in browser Console

— if 1-5 don’t apply, then the client got back a response
— client should print an error message if it doesn’t like the response
— client crashing will show a stack trace

52

	Default Section
	Slide 1: Client-Server Interaction I
	Slide 2: HW1 Feedback request!
	Slide 3: Reminders
	Slide 4: Client-Server Interaction
	Slide 5: Steps to Writing a Full Stack App
	Slide 6: Steps to Writing a Full Stack App: Server
	Slide 7: Designing the Server
	Slide 8: Example: To-Do List Server
	Slide 9: Server Documentation
	Slide 10: Steps to Writing a Full Stack App: Connect
	Slide 11: Recall: Client-Server Interaction
	Slide 12: Development Setup
	Slide 13: Client-Server Interaction: Making Requests?
	Slide 14: Fetch Requests Are Complicated
	Slide 15: Making HTTP Requests: Using Fetch
	Slide 16: Making HTTP Requests: After Fetch
	Slide 17: Making HTTP Requests: Query Parameters
	Slide 18: Making HTTP Requests: Status Codes
	Slide 19: Handling HTTP Responses
	Slide 20: Making HTTP Requests: Error Handling
	Slide 21: Making HTTP Requests: More Error Handling
	Slide 22: Recall: Function Literals
	Slide 25: Recall: HTTP GET vs POST
	Slide 26: Making HTTP POST Requests
	Slide 27: Lifecycle Methods
	Slide 28: Lifecycle Events Gotcha: Unmounting
	Slide 29: Client-Server Interaction II
	Slide 30: Feedback from last time
	Slide 31: Recall: Fetch Requests Are Complicated
	Slide 32: Recall: Another JavaScript Feature: for … of
	Slide 33: To-Do List: wrap up requests
	Slide 34: One More Change
	Slide 35: New TodoApp — Requests
	Slide 36: Dynamic Type Checking
	Slide 37: New TodoApp – Add Json and Types
	Slide 38: Checking Types of Requests & Response (1/2)
	Slide 39: Checking Types of Requests & Response (2/2)
	Slide 40: TodoApp: processing /api/list JSON
	Slide 41: TodoApp: parseListResponse
	Slide 42: TodoApp: parseItems – Type Checking the Array
	Slide 43: TodoApp: parseItems – Type Checking Items
	Slide 44: Use Type Checking to Avoid Debugging (1/2)
	Slide 45: Use Type Checking to Avoid Debugging (2/2)
	Slide 46: Debugging Client-Server
	Slide 47: Writing the Server
	Slide 48: “Engineers are paid to think and understand.”
	Slide 49: Client-Server Communication Complexity
	Slide 50: Client-Server Debugging
	Slide 51: Client-Server Debugging Tips (1/2)
	Slide 52: Client-Server Debugging Tips (2/2)

