
Intro to the Browser

Jaela Field

CSE 331

Summer 2025

June 27 Administrivia

• HW1 out!

– HW is mostly about debugging, not just coding

– This assignment got a refresh this quarter! We

welcome feedback.

• advice:

– Don’t forget about Gradescope!

– read spec carefully

– It’s expected that you’ll have questions about

JS, node, NPM, and express. Ask them!

– start early! & take advantage of office hours!

2

The 123 Programming Model

3

Run code from front-to-back, once.*

.java

file

output

(usually System.out)

(optionally)

user input

(optionally)

loop until a condition is met

The 331 Server Programming Model

Server Code runs forever!

4

.js

file

infinite loop!

for each

incoming request…

GET: /hi

server calls the route function,

and sends a response

response: {

 msg: "see saylaufey.com”

}

The 331 Programming Model, Zooming Out

5

request

response

(e.g., HTML)
client server

Client-Server programming has two programs

HW1HW2

HW3

The Browser, HTML, and CSS

Recall: Browser Operation

• Browser reads the URL to find what HTML to load

server name path

• Contacts the given server and asks for the given path

request

response

(e.g., HTML)
client server

7

Browsers: JavaScript and HTML

• Browser natively knows how to display HTML

• Page can also include JavaScript to execute

– but it is not required

– if present, the JavaScript can change the HTML displayed

8

request

response

(e.g., HTML)
client server

HTML

• HTML = Hyper Text Markup Language

– text format for describing a document / UI

– HTML describes the structure of the content,

and (partially) what you want drawn in the browser

• HTML text consists primarily of “tags” and text

9

HTML Tags

Tag Name Content

Closing Tag

Element

<p> Some Text </p>

<p id="firstParagraph"> Some Text </p>

Tag Name

Attribute Name

Attribute Value Content

Closing Tag

Element

10

HTML as a Tree

• Elements can have children (text or elements)

– text is always a leaf in the tree

<div>

 <p id="firstParagraph"> Some Text </p>

 <div>

 <p>Hello</p>

 </div>

</div>

div

p br div

p

11

Parsing HTML

• HTML is a text format that describes a tree

– nodes are elements or text

<div>

 <p>Some text</p>

 <p>More text</p>

</div>

div

p p

HTML text
HTML tree

parse

– HTML text is parsed into a tree (“DOM”)

– JS can access the tree in the variable “document”

our code lives in the world on the right side
12

Displaying HTML

• Browser window displays an HTML document

– tree is turned into drawing in the page

 Some text

 More text

div

p p

HTML display

draw

HTML tree

– browser displays the HTML in the window

browsers parse and draw very quickly

– JS has limited access to display information
13

Developer Tools show the HTML

• Click on any HTML element and choose "Inspect"

– can see exact size in pixels, colors, etc.

14

Styling

• The “style” attribute controls appearance details

– margins, padding, width, fonts, etc.

– see an HTML reference for details (when necessary)

• Attribute value can include many properties

– each is “name: value”

– separate multiple using “;”

<p>Hi,

 Bob!

</p>

– we will generally not worry much about looks in this class…

15

https://developer.mozilla.org/en-US/docs/Web/HTML/Reference

Cascading Style Sheets (CSS)

• Commonly used styles can be named

– association of names to styles goes in a .css file

// foo.css

span.fancy { color: red; margin-left: 15px }

// foo.html

… <p>Hi, Bob</p> …

• Useful to avoid repetition of styling

– makes it easier to change

16

Old School Web UI

Including JavaScript in HTML

• Server usually sends back HTML to the browser

• Include code to execute inside of script tag:

<script>

 console.log("Hi, browser");

</script>

• Can also put the script into another file:

<script src="mycode.js"></script>

18

Events in the Browser

• Client applications are event-driven

– register "handlers" for various events

• Can do so like this in HTML (but don't!)

<button onClick="handleClick(event)">Click Me</button>

<script>

 const handleClick = (evt) => {

 console.log("ouch");

 };

</script>

19

Changing the HTML

• Change the HTML displayed like this (but don't!)

<p>Add 2 to <input type="text" id="num"></input></p>

<p><button onClick="doAdd(event)">Submit</button></p>

<div id="answer"></div>

<script>

 const doAdd = (evt) => {

 const numElem = document.getElementById("num");

 const num = Number(numElem.value);

 const ansElem = document.getElementById("answer");

 ansElem.innerHTML = `The answer is ${num+2}`;

 };

</script>

20

Updating the DOM: Adding Nodes

ul

li li li

LectureWash DogLaundry

21

<h3>To-Do List</h3>

<ul id="items">

 Laundry

 Wash Dog

Updating the DOM: Removing Nodes

ul

li li li

LectureWash DogLaundry

22

<h3>To-Do List</h3>

<ul id="items">

 Laundry

 Wash Dog

 Lecture

Updating the DOM: Editing Nodes

ul

li li

LectureLaundry input

23

Problems with Old School UI

• Write code for every way the UI could change

– many, many cases

– particularly tricky when working in teams/groups

• Not specific to HTML

– same issue exists in Windows, on the iPhone, Xbox, etc.

– if you write code to put things on screen,

then you write code to change where they are on screen

24

New School UI

• New approach: what should it look like now?

– write function that maps current state to desired HTML

– compare desired HTML to what is on the screen now

– make any changes needed to turn former into latter

• Huge improvement in productivity

– introduced in Meta's "React" library

– library performs the "compare" and "change" parts

• Faster to write HTML UI than anything else

– many similar libraries exist for the web

– same approach also used in mobile apps, games, …

25

React

• we will use React in this class
– goal is not to make you React experts

– teach you just enough React to understand “New School UI” ideas

– these ideas will apply everywhere

• similar to JS & Express, only using small subset of

the library

• practical note: React is a library installed with npm

26

React Components

HTML Literals in JSX

• JSX: extension of JS that allows HTML expressions

– file extension must be .jsx

const x = <p>Hi there!</p>;

28

Substitution in JSX

• Supports substitution like `..` string literals,

– but uses {..} not ${..}

const name = "Fred";

return <p>Hi {name}</p>;

• Can also substitute the value of an attribute:

const rows = 3;

return <textarea rows={rows} cols="25">

 initial text here

 </textarea>;

29

JSX Gotchas

• Must have a single root tag (i.e., must be a tree)

– e.g., cannot do this

return <p>one</p><p>two</p>;

– instead, wrap in a <div> or just <>..</> (“fragment”)

• Replacements for attributes matching keywords

– use “className=” instead of “class=”

– use “htmlFor=” instead of “for=”

30

CSS in JSX

• CSS styling can be used in JSX

// foo.css

span.fancy { color: red; margin-left: 15px }

// foo.jsx

import './foo.css'; // another weird import

…

return <p>Hi, Bob!</p>;

• Nice to get this out of the source code

31

Anatomy of a React Component

• split up large web pages into individual components

• React components are classes

– class “extends” React’s Component class

– has a constructor that takes in one argument

(more on this in a moment)

– has a field called state (that holds the app’s … data/state)

• components should have a render method

– goal: convert app’s state to JSX (which it returns)

– method should have be “pure” and have no “side effects”;

in other words, it should not change state

– we never call the render method – React does for us

32

Simplest React Component

• Component that prints a Hello message:

class HiElem extends Component {

 constructor(props) {

 super(props);

 this.state = {lang: "en"};

 }

 render = () => {

 if (this.state.lang === "es") {

 return <p>Hola, Ali!</p>;

 } else {

 return <p>Hi, Ali!</p>;

 }

 };

}

How do we change "lang"?

33

Simplest React Component (rendered)

34

Hello Ali!

Hola Ali!

Changing State in our Component

35

render = () => {

 if (this.state.lang === "es") {

 return <p>Hola, Ali!

 <button onClick={this.doEngClick}>Eng</button>

 </p>;

 } else {

 return <p>Hi, Ali!

 <button onClick={this.doEspClick}>Esp</button>

 </p>;

 }

};

doEspClick = (evt) => {

 this.setState({lang: "es"};

};

React and Component State Changes

• Must call setState to change the state

– directly modifying this.state is a (painful) bug

• React will automatically re-render when state changes

– but this does not happen instantly

36

<button onClick={this.doEspClick}>Esp</button>

doEspClick = (evt) => {

 this.setState({lang: "es"};

};

React Responds to setState calls

 HTML on screen = render(this.state)

t = 10

Component React

this.state = s1 doc = HTML1 = render(s1)

this.setState(s2)

doc HTML2 = render(s2)

t = 20

t = 30 this.state = s2

React updates this.state to s2 and doc to HTML2 simultaneously

37

React Component with an Event Handler

• Pass method to be called as argument (a “callback”):

 <button onClick={this.doEspClick}>Esp</button>

• Be careful not to do this:

 <button onClick={this.doEspClick()}>Esp</button>

• Including parentheses here is a bug!

– that would call the method inside render

passing its return value as the value of the onClick attribute

– we want to pass the method to the button, and

have it called when the click occurs

38

Putting the UI in the Page

• Initial page has a placeholder in the HTML:

<div id="main"></div> (empty DIV in index.html)

• Put HTML into it from code like this:

const elem = document.getElementById("main");

const root = createRoot(elem);

root.render(<HiElem />);

– createRoot is a function provided by the React library

tells React that it should keep the HTML in the page matching what render returns

39

Putting the UI in the Page: Props

• Initial page has a placeholder in the HTML:

<div id="main"></div> (empty DIV in index.html)

• Put HTML into it from code like this:

const elem = document.getElementById("main");

const root = createRoot(elem);

root.render(<HiElem name={”Jaela"} size={3}/>);

– in HiElem, this.props will be {name: ”Jaela", size: 3}

– each component is a custom tag with its own attributes ("properties")

40

Props and State, Together

render = () => {

 if (this.state.lang === "es") {

 return <p>Hola, {this.props.name}!

 <button onClick={this.doEngClick}>Eng</button>

 </p>;

 …

 }

};

• render can use both this.props and this.state

– difference 1: caller give us props, but we set our state

– difference 2: we can change our state

41

CSE 331

Summer 2025

React

Jaela Field

ft.

The next few slides were “drawn” live in lecture.

Unfortunately, the audio didn’t work for this

portion, so these slides include text that repeats

what was said!

This is a recap of what we went over last time,

comparing the “Old school UI” and the “New

school UI,” React approach.

hello

This is our user, they

are looking at our

app in a browser

This is our user’s

finger/mouse

for clicking!

This is our example app, it has a text

box (with “hello” typed in) and an “OK”

button. (It’s not the best app ever)

In the “old school” JS version of this app, this image

essentially captures the entirety of the app.

hello

• In old school JS, All of the app’s state is displayed directly

in the browser, “stored” within the HTML elements the

user sees.

– If we want to access the value displayed in the text area, we track
down that html element and ask “what value do you hold!!”

– If we want to change the value displayed, we reach into the HTML
on the screen and replace the contents with something new

hello

• In new school JS (React), there is an additional layer that

sits “behind” the browser, holding the actual program

state.

– This adds an extra layer of complexity, but the payoff is worth it,
especially as apps grow

React state

msg = “hello”

hello

• Key idea: render function

– Computes the HTML the user sees, given the stored state

• render takes the state msg and creates an input

element containing it

– <input value={this.state.msg}></input>

React state

msg = “hello”

render()

hello

• In React, the source of truth for what the browser should

displayed is contained in the state

– VS. in “old school” JS the source of truth is exactly the html on

the screen

React state

msg = “hello”

render()

hello

React state

msg = “hello”

render()

This is our user’s

finger clicking

the button ☺

• What happens when a user clicks ?

– In “old school” JS, an event handler will run each on click

(resulting in editing HTML on screen, adding HTML, etc.)

hello

React state

msg = “hello”

done = truerender()

• What happens when a user clicks ?

– In React, we translate the click action into a state update

– We do not change the html! It is render()’s job to reflect

change in browser

event handler

 → state update

Reminder: React in Practice

• Writing User Interface with React:

– write a class that extends Component

– implement the render method

• Each component becomes a new HTML tag:

root.render(<HiElem name={”Jaela"}/>);

– in HiElem, this.props will be {name: ”Jaela"}

• Can use props and state (and only those!) in render:

render = () => {

 if (this.state.lang === "en") {

 return <p>Hi, {this.props.name}!

 <button onClick={this.doEspClick}>Esp</button>

 </p>;

 … 51

Second React Component: More User Input

• Put name in state and let the user change it:

class HiElem extends Component {

 constructor(props) {

 super(props);

 this.state = {name: ”Jaela"};

 }

 render = () => {

 return <p>Hi, {this.state.name}</p>;

 };

}

How do we change the name?

Ask the user for their name.

52

Second React Component: The View

Hello Jaela!

53

Second React Component: adding <input>

constructor(props) {

 super(props);

 this.state = {showGreeting: false};

}

render = () => {

 if (this.state.showGreeting) {

 return <p>Hi, {this.state.name}!</p>;

 } else {

 return <p>What is your name?

 <input type="text"></input>

 <button …>Done</button>

 </p>

 }

};

54

Second React Component: Updating State?

<input type="text"></input>

 <button onClick={this.doDoneClick}>Done</button>

doDoneClick = (evt) => {

 this.setState({showGreeting: true});

 // what about "name"?

};

How do we get the name text?

Do not reach into document!

(Always a bug. Often a heisenbug.)

55

Text Value of Input Elememts

• These two are different:

<input type="text"></input>

<input type="text" value="abc"></input>

– missing value means value=""

• The render method says what HTML should be now

– bug if calling render would inadvertently change things

particularly if it would delete user data!

– if we want the second picture, we need to set value in render

56

Second React Component: Input Events

<input type="text" value={this.state.name}

 onChange={this.doNameChange}></input>

 <button onClick={this.doDoneClick}>Done</button>

doNameChange = (evt) => {

 this.setState({name: evt.target.value});

};

– evt.target is the input element

– evt.target.value is the current text in the input element

57

Second React Component: Input Event Handler

<input type="text" value={this.state.name}

 onChange={this.doNameChange}></input>

 <button onClick={this.doDoneClick}>Done</button>

doNameChange = (evt) => {

 this.setState({name: evt.target.value});

};

doDoneClick = (evt) => {

 this.setState({showGreeting: true});

};

• Never reach into the document to get state!

– React can re-render at any time

– will be a heisenbug when you forget (usually, it still works!)

58

Second React Component: Mirrored State

<input type="text" value={this.state.name}

 onChange={this.doNameChange}></input>

 <button onClick={this.doDoneClick}>Done</button>

doNameChange = (evt) => {

 this.setState({name: evt.target.value});

};

doDoneClick = (evt) => {

 this.setState({showGreeting: true});

};

• Any state you need should be mirrored in your state

– set value and handle onChange

59

Event Handler Conventions

• We will use this convention for event handlers

doMyCompMyEvent

– e.g., doDoneClick, doNewNameChange

• Reduces the need to explain these methods

– method name is enough to understand what it is for

– method name is the only thing you know they read

• Components should be just rendering & event handlers

component

name

event

name

60

Example: To-Do List

React Payoff

• No need to write code to
– add a new item to the HTML

– remove an item from the HTML

– update an item in the HTML

all of this is code is tricky (especially if state is not mirrored properly)

• Instead, we only write:

1. state: what does our app care about?

2. render method: tell React what it should look like right now

3. event handlers: tell React how to update state when buttons are clicked

• React figures out what to add, remove, and update

62

React Requirements for Lists

• To do this, React needs more from

– needs to distinguish change from add/remove

wash dog wash dog

laundry write lecture

 laundry

– did I insert a new item or change one and add another?

impossible to really know without more information

• React requires each list item to have a key=".."

property that uniquely identifies it

63

React Requirements for Lists: Keys

• To do this, React needs more from

– needs to distinguish change from add/remove

<li key="1">wash dog <li key="1">wash dog

<li key="2">laundry <li key="3">write lecture

 <li key="2">laundry

– can now see that "2" was not changed

– only difference is that "3" was inserted

• React will give you a warning (console) if you forget

– will try its best to figure out what happened

– always fix these to be safe

64

	Slide 1: Intro to the Browser
	Slide 2: June 27 Administrivia
	Slide 3: The 123 Programming Model
	Slide 4: The 331 Server Programming Model
	Slide 5: The 331 Programming Model, Zooming Out
	Slide 6: The Browser, HTML, and CSS
	Slide 7: Recall: Browser Operation
	Slide 8: Browsers: JavaScript and HTML
	Slide 9: HTML
	Slide 10: HTML Tags
	Slide 11: HTML as a Tree
	Slide 12: Parsing HTML
	Slide 13: Displaying HTML
	Slide 14: Developer Tools show the HTML
	Slide 15: Styling
	Slide 16: Cascading Style Sheets (CSS)
	Slide 17: Old School Web UI
	Slide 18: Including JavaScript in HTML
	Slide 19: Events in the Browser
	Slide 20: Changing the HTML
	Slide 21: Updating the DOM: Adding Nodes
	Slide 22: Updating the DOM: Removing Nodes
	Slide 23: Updating the DOM: Editing Nodes
	Slide 24: Problems with Old School UI
	Slide 25: New School UI
	Slide 26: React
	Slide 27: React Components
	Slide 28: HTML Literals in JSX
	Slide 29: Substitution in JSX
	Slide 30: JSX Gotchas
	Slide 31: CSS in JSX
	Slide 32: Anatomy of a React Component
	Slide 33: Simplest React Component
	Slide 34: Simplest React Component (rendered)
	Slide 35: Changing State in our Component
	Slide 36: React and Component State Changes
	Slide 37: React Responds to setState calls
	Slide 38: React Component with an Event Handler
	Slide 39: Putting the UI in the Page
	Slide 40: Putting the UI in the Page: Props
	Slide 41: Props and State, Together
	Slide 42: CSE 331 Summer 2025
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: Reminder: React in Practice
	Slide 52: Second React Component: More User Input
	Slide 53: Second React Component: The View
	Slide 54: Second React Component: adding <input>
	Slide 55: Second React Component: Updating State?
	Slide 56: Text Value of Input Elememts
	Slide 57: Second React Component: Input Events
	Slide 58: Second React Component: Input Event Handler
	Slide 59: Second React Component: Mirrored State
	Slide 60: Event Handler Conventions
	Slide 61: Example: To-Do List
	Slide 62: React Payoff
	Slide 63: React Requirements for Lists
	Slide 64: React Requirements for Lists: Keys

