
Lists

James Wilcox and Kevin Zatloukal

August 2024

“Lists are the original data structure of functional programming, just as arrays are the original
data structure of imperative programming.” — Ravi Sethi

List Type

After the natural numbers, lists are the most important inductively defined type. They are defined as follows:

type List〈A〉 := nil | cons(hd : A, tl : List〈A〉)

Note that List is a generic type. The parameter “A” indicates what sort of data is stored in the list.
Since lists are so commonly used, we often provide operators as shorthand for functions and constructors.

In particular, we will use the binary operator “::” as shorthand for cons. For example,

1 :: 2 :: 3 :: nil = cons(1, cons(2, cons(3, nil)))

Both notations mean the same thing, but the former is shorter and easier to read.
We will also use the standard list notation [1, 2, 3] at time as shorthand for 1 :: 2 :: 3 :: nil.

List Functions

As an inductive data type, lists come with a built in “=” operator. However, all other functions must be
defined explicitly. Below, we will define some of the most important ones. For many, we will also define
operators that act as shorthands for the same function.

The function len : List〈A〉 → N returns the length of a list. It is defined by

len(nil) := 0

len(x :: L) := len(L) + 1

The function concat : (List〈A〉, List〈A〉) → List〈A〉 takes two lists and returns a single list containing the
elements of the first followed by those of the second. It is defined by

concat(nil, R) := R

concat(x :: L,R) := x :: concat(L,R)

We will use the binary operator “++” as shorthand for concat.
Concatenation is arguably the most important operation on lists, which is why we have defined a special

operator for it. It is important to note that this operation has the following mathematical properties:

Identity L ++ nil = L = nil ++ L for any list L.

Associativity (L ++ R) ++ S = L ++ (R ++ S) for any lists L,R, S.

1



Going forward, we will use these facts without any explanation. In particular, due to associativity, we can
leave out (..) when concatenating multiple lists.

The function rev : List〈A〉 → List〈A〉 returns the same numbers but in reverse order. It is defined by

rev(nil) := nil

rev(x :: L) := rev(L) ++ (x :: nil)

This function runs in Θ(n2) time, but a tail-recursive equivalent exists that runs in linear time.
In a non-nil list, we have easy access to the first element (head) and the rest (tail). We can also define

functions to find the last element and the initial part before the last. The functions last : List〈A〉 → A and
init : List〈A〉 → List〈A〉 do so and are defined by

last(x :: nil) := x

last(x :: y :: L) := last(y :: L)

init(x :: nil) := nil

int(x :: y :: L) := x :: init(y :: L)

Note that both functions are undefined on nil.

We often want to know whether a list contains a particular element. The function contains : (List〈A〉, A) →
B does this. It is defined by

contains(nil, y) := false

contains(x :: L, y) := true if x = y

contains(x :: L, y) := contains(L, y) if x 6= y

A closely related function remove : (List〈A〉, A) → List〈A〉 returns a list with all instances of a given value
removed. It is defined by

remove(nil, y) := nil

remove(x :: L, y) := remove(L, y) if x = y

remove(x :: L, y) := x :: remove(L, y) if x 6= y

Association Lists

A list of pairs List〈K,V 〉 is called an association list. It is one way to mathematically define what is sometimes
called a “map”. The first part of each pair is a “key” and the second part is its associated “value”.

The function contains-key : (List〈K,V 〉,K) → B determines whether the given association list has a key
with the given value. It is defined by

contains-key(nil, y) := false

contains-key((x, v) :: L, y) := true if x = y

contains-key((x, v) :: L, y) := contains-key(L, y) if x 6= y

We will use the binary operator “in” as shorthand for contains-key.
The function get-value : (List〈K,V 〉,K) → V returns the value associated with a given key, which must

be in the association list. (Its value is undefined if not.) The function is defined by

get-value((x, v) :: L, y) := v if x = y

get-value((x, v) :: L, y) := get-value(L, y) if x 6= y

We will use the binary operator “[..]” as shorthand for get-value (e.g., L[y] = get-value(L, y)).

2


