Practice Exam
CSE 331 2025 Summer

See the last page for some math definitions you may need.

Question 1

Which line of the following function would not type check in TypeScript? Fill in the blank with the
line number or “n/a” if all lines would type check.

1 const f = (a: bigint, b: boolean): string | bigint => {
2 if (b) {
3 return a ** aj;
4 } else {
5 return a *x 2n;
6 }
7 }
8 const g: bigint = f(2n, true);
Answer
Question 2

Determine the most appropriate type of request method for the described route functionality.
Answer “G” for GET and “P” for POST.

Route description Answer G/P

A route that resets a user’s password.

A route to retrieve a list of all buildings on the UW campus.

A route that accepts a longitude and latitude in the query parameters
and sends back a list of the 5 closest pizzerias to that location.

A route that sets a user’s status to “Going” for an event on Comfier (the
hot new networking app) and sends back a list of all guests who have
RSVP'd.

Question 3

Suppose a developer is debugging their client-server application, but they forgot to start their
server. If they check the Network tab in the Chrome Developer Console, which status code (a/
b /c/d/e)would they expect to see for their attempted requests?

a. 200 b. 400 c. 404 d. 500 e. 504

Answer

Question 4

Consider these functions that exist within a React component. Note: these functions are
intentionally out of the usual order and do not follow 331 naming conventions. Assume the route
“/api/add” is a defined POST request which accepts the record {key: string, value:
string} in the body of the request, and sends back a record of type {saved: boolean}.

A = (data: unknown): void => {
if (!isRecord(data) || data.saved === undefined) {
throw new Error();

}
Blank 1

B = (key: string, value: string): void => {
fetch(“/api/add”, {
method: “POST”,
body: JSON.stringify({key: key, value: value});
headers: {“Content-Type”: “application/json”}
1)
.then(__Blank 2)
.catch((e) => console.error(e));

C = (res: Response): void => {
if (res.status === Blank 3)
res.__Blank 4
.then(_Blank 5)
.catch((e) => console.error(e));

else
res._ Blank 6

.catch((e) => console.error(e));

.then((e) => console.error(bad status ${res.status}: ${e});

Fill in the answer box for each blank with the correct option to complete the sequence of
operations related to making a fetch request. You will not need every option.

Blank Answer (one of a - h) a. A

b. B

Blank 1 c C

Blank 2 d. alert(“success!”)
e. 200

Blank 3 £ 400
g. text()

Blank 4 h. json()

Blank 5 i. console.error(...)
j- JSON.stringify()

Blank 6

Question 5

Below are methods of a React component with a single text box where users can enter their
name. In React, when we give users an input area, we need to make sure there is a
corresponding state that mirrors what they see. Answer below with the line of code needed to
fill in the blank and successfully complete state mirroring.

constructor (props) {
super (props);
this.state = {text: “”}
}

render = () => {
return <input type="text” Blank 1
onChange={ Blank 2 }></input>;

}
onChange = (evt: ChangeEvent<HTMLInputElement>) => {
Blank 3
}
Blank 1
Blank 2

Blank 3

Question 6
Consider this math definition:

f:N,§*>S*uZ

£(0,s) = S
f(1,s) = 1
f(n+2,5s) = n+2+f(n+1,5s)

In the Answer box below, select the TypeScript function (a/b/c/d)thatis a
straight-from-the-spec implementation of this math definition.

a.

const f = (x: bigint, s: string) : string | bigint => {

if (x === on) {
return s;
} else if (x === 1n) {
return Xx;
} else {
return x + 2n + f(x + 1n, s);
}
}
b.
const f = (x: bigint, s: string) : string | bigint => {
if (x === on) {
return s;
} else if (x === 1n) {
return X;
} else {
return x + f(x - 1n, s);
}
}
C.

const f = (x: bigint, s: string) : string | bigint => {

if (x === on) {
return s;
} else {

return x * (x + 1n) / 2n;

d.

const f = (x: bigint, s: string) : [string, bigint] => {

if (x === on) {
return s;
} else if (x === 1n) {
return Xx;
} else {
return x + 1n + f(x - 1n, s);
}
¥
Answer
Question 7

The following proof attempts to prove the claim at(get-positives(a :: L), 0) = at(a :: L, 0). See the
last page for these math definitions.

1 |at(a::L,0)=a def of at

2 = at(a :: get-positives(L), 0) def of at

3 = at(get-positives(a :: L), 0) def of get-positives
4 < at(get-positives(a :: L), 0) implication

What is the first line of this proof that has a mistake? If every line is correct, answer n/a.

Answer (line number)

Which option best describes the mistake that was made on that line?
a. Incorrect citation

Incorrect application of definition/rule

Combining steps

Assuming the conclusion

Notation error

None of the above

~0oo0CT

Answer

Question 8

Consider the following TypeScript function:

const g = (x: number, y: number): number => {

if (x === y)

throw new Error(“x and y must be unique”);
if (x > y)

return (x - y) * (x + y);
else

return (y - x) * (x + y);

Does the function g satisfy each of the following specifications? Answer Yes (Y) or No (N).

Specification: Answer Y/N
/x*

* @param x, must be >= 0

* @param y, must be >= 0

* @returns z >= 0

*/

Jx*

* @param x, must be >= 0

* @param y, must be >= 0

>*

@throws error if x = vy
* @returns z > 0

*/

[/ *x*
@param x some number
@param y some number

@returns (a - b) *x (a + b)

*

*

* @requires x and y are not equal

*

* where a = max(x, y) and b = min(x, y)

*/

Question 9

Consider each of the following functions and answer the corresponding question about testing
that function according to the required 331 testing heuristics:

/** @requires x > 0 %/
const zip = (x: bigint): boolean => {

if (x === 0n)
return false;
else if (x === 1n)
return true;
else
return !zip(x - 1n);
}
const zap = (letter: ‘a’ | ‘b’ | ‘c’, count: 1n | 2n): string => {
if (count === 1n)
return letter;
else
return letter + letter;
}
const zop = (letter: ‘a’ | ‘b’ | ‘c’, x: bigint): string => {
return zap(letter, (x % 2n) + 1);
}

Which of the following are a sufficient minimum set of inputs to test zip?

a. -1,0,1,2
b. 0,1,2,3
c. 1,2,3
d. 0,1,2
e. 1,2
Answer

What is the minimum number of tests necessary to test zap?

Answer (number of tests)

What is the minimum number of tests necessary to test zop?

Answer (number of tests)

Question 10

Below is the TypeScript implementation of the function get-positives with incomplete assertions
included on some lines. If labeled with “P#” the assertion was produced with forward reasoning
and if labeled with “Q#” the assertion was produced with backward reasoning. “Pre” and “Post”
are facts we determine given the function spec.

/** @returns get-positives(L) x/
const getPositives = (L: list<bigint>): List<bigint> => {
{{ Pre: B
let R = nil;
{{ Inv: get-positives(L,) = R # get-positives(L) }}
while (L.kind !== nil) {
if (L.hd > on) {
R = concat(R, cons(L.hd, nil));
{{P1: B

}
{{Qu:
L = L.tl;

B

}

{{P2:
{{ Post:
return R;

B
B

}

For each of the completed assertions below, answer True (T) or False (F) if they are the correct
product of forward or backward reasoning to that point in the code.

Assertion: Answer T/F

{{ Pre: }}

{{ P1: get-positives(Ly) = R # (hd :: nil) # get-positives(L)
and L = hd :: tland L.hd > On }}

{{ Q1: get-positives(L,.tl) = L.hd :: R # get-positives(L.tl) }}

{{ P2: get-positives(L,) = R # get-positives(L) and L = nil }}

{{ Post: R = get-positives(L,) }}

Question 11

Below is a TypeScript function that takes an array of integers and mutates the array so each
element is the absolute value of the original value at that index.

const arrAbs = (A: Array<bigint>): void => {
let i = -1;
// Inv:
while (i != A.length - 1) {
1=+ 1;
if (A[i] < 6n) {
ALi] = -A[i]1;

}
}

Which of the following invariants does this loop maintain?

a. A[Kk] = |A[K]| for any 0 < k < A.length
b. A[k] =|A[k]|forany 0 <k <i
c. A[Kk] =|A[K]| for any 0 < k < A.length
d. A[k] =|A[K]|forany 0 <k <i
Answer
Question 12

The following function takes two arrays of numbers and creates a new array where each index
is the product of the values at the same index from the input arrays. The loop already has an
invariant, but there are some blanks that need to be filled in to complete the function.

[/ *x*
* @requires len(A) = len(B)
* @returns R such that R[j] = A[j] * B[j] for 6 = j < n
*/
const prod = (A: Array<number>, B: Array<number>): Array<number> => {
let 1 Blank 1
let R = [];
// {{ Inv: R[3]1 = A[j] * B[j] for @ < j < i }}
while (i != Blank 2) {
R.push(A[_Blank 3 1 * B[_Blank 3 1);
i = Blank 4 ;

}

return R;

}

Select the option for each blank such that the function maintains the loop invariant and

guarantees the post condition:

Blank Options

Answer (of a - e)

let i = Blank 1

-1

0

1

A.length - 1
A.length

® o0 oo

while (i != Blank 2)

a. 0
b. A.ength -1

c. Alength

d. A.ength + B.length - 2
e. A.ength + B.length

R.push(A[_Blank 3 1 * B[_Blank 3 1);
a. i-1
b. i
c. i+1
d. Alength-i
e. Alength-i-1
i = Blank 4 ;
a. j-1
b. j
c. i-1
d. i
e. i+1

Question 13

For each of the functions below, indicate whether it is tail recursive. Answer “Y” for Yes or “N”
for No.

Function: Answer Y/N

const a = (L: List<bigint>): List<bigint> => {

if (L.kind === “nil”) {
return true;
} else if (L.tl.kind === “nil”) {
return false;
} else {
return a(L.tl.tl);
}
}
const b = (x: bigint, S: List<bigint>): => {
if (x === 0n) {
return S;
} else {
return cons(x, b(x - 1n, S));
}
}
Question 14
In JavaScript, @ == "0",0 == "" and©® == " " all returntrue, but"" === " " returns
false. This is evidence of issues with JavaScript’s notion of equality. Specifically, which equality
property is broken by the fact that these all result to true besides """ === " "?

a. Transitive
b. Reflexive
c. Symmetric

Answer

Question 15

const foo (y: bigint): bigint => { ... }
const bar (x: unknown): bigint => {
if (typeof x === “bigint”) {
const a = foo(x);

return a;

Which of the following best describes what is happening in the snippet of the function bar?
a. Type error
b. Defensive programming
c. Type narrowing
d. Representation Exposure

Answer

Question 16

Refer to the following type and function definitions for the below questions:

type XY = {x: number, y: number}
type XYZ = {x: number, y: number, z: number}

const f
const g

(n: XY): XYz => { .. }
(n: XYZ): number => { .. }

Determine if the TypeScript type checker would allow (A) or disallow (D) each of the following
variable assignments.

Variable assignment: Answer A/D

const al: XY = f({x: 1.2, y: 2.1});

const a2: XYZ = f({x: 1.2, y: 2.1, z: 0});

const a3: number = g({x: 1.2, y: 2.1});

const a4: unknown = g({x: 1.2, y: 2.1, z: 0});

Question 17

This question asks about the TodoL1ist ADT which represents an unordered list of string todo
items. There is a class that implements this interface called “TwoListTodoList.”

interface TodoList {
Jx*
* Adds the given item to the list
* @param +item to add to the list
* @modifes obj
* @effects adds item to the top of obj
*/

addItem: (item: string) => void;

[x*

* Marks the given +item as completed if it exists in the list
* @param ‘item to mark complete

* @modifies obj

* @effects entry in obj with name “item” set to complete

*/

completeItem: (item: string) => void;

[*x*
* @returns list of items that haven’t been marked complete
*/

getIncomplete: () => List<string>;

/** @returns an empty Todo List */
const initTodoList (): TodolList => {
return new TwolistTodoList();

Label each of the following methods of TodoL1i st with the design pattern from the bank below
that best describes it. You may need to use certain patterns more than once or not at all.

mutator producer observer factory function singleton
Function Design Pattern Function Design Pattern
addItem getIncomplete

completeltem initTodolList

Question 18

The TwolListTodolL1ist class implements the TodoL1ist interface from the last question.

O 0o N O U WN K

W WINNNNNMNNNNNNRBRRBRRRBRHR R R (B
R ® WO ~NO0OU0uMWNMNROOOONOOOOWMMAWNIRO

class TwolListTodoList implements TodoList {
// AF: obj = this.incomplete ++ this.complete
complete: List<string>;
incomplete: List<string>;

constructor () {
this.complete = nil;
this.incomplete = nil;

addItem = (item: string): void => {
this.incomplete = cons(item, this.incomplete);

completeItem = (item: string): void => {
// iterate over list of all items, cons together result
let newIncomplete = nil;
while (this.incomplete.kind !== “nil”) {
if (this.incomplete.hd !== +ditem) {
newIncomplete = cons(temp.hd, newIncomplete);
}
this.incomplete = this.incomplete.tl;
}
this.incomplete = newIncomplete;
this.complete = cons(item, this.complete);

getIncompleteltems = (): List<string> => {
return this.incomplete;

Determine if each statement is true (T) or false (F) regarding the TodoList ADT and
TwolListTodoL1ist representation.

Statement: Answer T/F

TodoL1ist is an immutable ADT.

TwolListTodoL1ist properly implements TodoList.

If TodoL1ist specified that it maintains the items in their original
ordering, TwoListTodoList would properly implement TodoList

Question 19

Does TwolListTodoList have representation exposure? If yes, answer with the line number where
the rep is exposed, otherwise, answer n/a.

Answer

Question 20
The spec for the constructor of the TwoListTodoL1ist says:
// make obj = nil

Prove by calculation that the constructor of TwoListTodoL1ist is correct.

List Functions

Below is a list of mathematical definitions and properties you may need to reference during the
exam.

concat: (List (A), List(A)) — List(A)
concat(nil, R) :=R
concat(x :: L, R) := x :: concat(L, R)

Identity of concat: L++nil=L=nil++ L for any list L.
Associativity of concat: (L ++R) ++S=L++ (R++S) for anylists L, R, S.

at: (List(A), N) - A
at(nil, n) :=undefined
at(x:: L, 0) =X
at(x:: L,n+1) :=at(L, n)

get-positives: List(A) — List(A)
get-positives(L) := nil if L = nil
get-positives(L) := hd :: get-positives(tl) ifL#nil,soL=hd::tl,andhd >0
get-positives(L) := get-positives(tl) ifL#nil,soL=hd::tl,andhd <0

	Practice Exam
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6
	Question 7
	Question 8
	
	Question 9
	Question 10
	
	Question 11
	Question 12
	Question 13
	Question 14
	
	Question 15
	Question 16
	Question 17
	Question 18
	Question 19
	Question 20
	List Functions

