NAME : NETID :

Please do not turn the page until 8:30am

Rules:
e The exam is closed-book, closed-laptop, etc.
o Except your own handwritten notes on a single 8.5x11in page.
e Please stop promptly at 10:20am.
e There are 288 points possible on the exam.

o Points are distributed unevenly among 12 multi-part questions.

60
40

20

o QUESTIONS VARY IN DIFFICULTY!
o GET EASY POINTS FIRST!
e The exam is long. Be strategic with your time.
e The exam is printed double-sided, with pages numbered up to 33.
Advice:
Read the questions carefully. Understand before you answer.

Write down thoughts and intermediate steps.

Clearly indicate your final answer.

o WARNING: sneaky shenanigans like _ will get negative points!
o (Jared already tried this and it didn’t work!!)

Questions are not in order of difficulty. Try answering everything.

If you have questions, ask.

Relax. You are here to learn.

NETID :

Question 1 : Type Checking (22 points)

Which of the following TypeScript statements type check successfully? You can assume

this code is inside the body of a function, not at the top level.

const x : T1

{a: “331”, b: 3n};

const y : T1 = {a: “final”, b: x.b * 2};

Type checks?

Code (T/F)
const x : bigint = 3n;
const y : bigint = x + 2n;
const x : string | boolean = "hi";
if (x) {

const y : string = x;
}
type T1 = {readonly a: string, readonly b: bigint | number};

type T1 = {readonly a: string, readonly b: bigint | number};

const x : T1 = {a: “hello”, b: 2};

if (typeof x.a === "string" || typeof x.b === “number”) {

const y : bigint = x.b;

const x: number

3;

const x: number = (3 * 6) + 24;

type T1 = {readonly a: string, readonly b: bigint | number};
const x : T1 = {a: “hello”, b: 2};
if (typeof x.b === "number") {

const y : string = x.a + “staff”;

Page 2

NETID :

(Question 1 continued)

Which of the following TypeScript statements type check successfully? You can assume
this code is inside the body of a function, not at the top level.

Type checks?

Code (T/F)

const x : string | number = “hello”;

const y : number = x + 1;

const x : number

1;

const y : bigint = BigInt(x) + 2n;

const x = {a: “see”, b: “you”, c: 2};
const y = {a: “later”, b: 3, c: “alligator”};

const z : string = x.a + y.c;

const X : number = 4.78

const y : number = x - 3.14

const x : [number, string]

[1.5, “hi”];

const [y, z] = x;

const a : [string, bigint] [y, BigInt(y)];

Page 3

NETID :

Question 2 : Equality (34 points)

For each of the expressions below indicate whether it evaluates to true (T) or false (F).

Code Eval (T/F)
null === undefined

ll5ll - 5

const a = {x: 1, y: 2}

const b = {x: 1, y: 2}

a === b

const a = {w: 2, x: 3}

const b = {y: 4, z: 3}

a.x === b.z

3n === 3

"hi" + "hello" === "hihello"
1 == true

const a = {x: "@"}

const b = {y: 0}

a.x === b.y

"" === undefined

{x: 1} === 1

Page 4

NETID :

(Question 2 continued)

For each of the expressions below indicate whether it evaluates to true (T) or false (F).

Code Eval (T/F)
const ¢ = {hi: "hello"}

const a = {x: 3, y: c}

const b = {x: 4, y: c}

a.y === b.y

4n == 4

"" == false

const a = {x: 5}

const b = 5

a.x === b

4.0 === 4

{} === {}

const a : number[] = [0, 1, 2]
const b : number[] = [0, 1, 2]
a === b

Page 5

NETID :

Question 3 : Encoding Inductive Datatypes (22 points total)

Part 1 (14 points) Here are eight mathematical definitions of inductive datatypes:

T1:=A|B|C(x:T1,y: T1)
T2:=A|B|C(x:Z,y: T2)
T3:=A|B(x: S* y: T3, z: §%)
T4:=A|B|C|D(x: S* y: T4)

T5:=A|B|C(x:Z) | D(x: T5)
T6 := A(x: bool) | B(x: bool)
T7:=A|B|C(x:N)

T8 := A(x: T8) | B(x: T8, y: T8)

Match each of the TypeScript type definitions below to its corresponding math version (T1 - T8).

TypeScript Type Declaration

Corresponding Math Type
(one of T1-T8)

type =

| {kind: "A"}

| {kind: "B”, x: string, y: , z: string };
type =

| {kind: “A”, x: boolean}

| {kind: “B”, x: boolean}
type =

| {kind: "A"}

| {kind: "B"}

| {kind: "C”, x: , Y };
type =

| {kind: “A”}

| {kind: “B”}

| {kind: "C", x: bigint, y: };
type =

| {kind: “A”}

| {kind: “B”},

| {kind: “C”, x: bigint}
type =

| {kind: “A”, x: ___ }

| {kind: “B”, x: , Y }
type _ = =

| {kind: "A"}

| {kind: “B”}

| {kind: “C”, x: bigint}

| {kind: "D”, x: };

Page 6

NETID :

Question 3, Part 2 (8 points)

Consider the following math definitions of inductive datatypes:
T9 = A | B(z:7Z)
T10:= C | D(t: T9)

Which of the following best describes the values that T10 represents?

Description of T10 Answer (one of A - G)

A) Binary trees with integer nodes
B) Lists of integers

C) Non-empty lists of integers

D) Lists of lists of integers

E) Non-empty lists of integers

F) Lists of binary trees of integers

G) None of the above

Consider the following inductive datatype:
T11 := X(b:boolean,n:N) | Y(b:boolean,n:N,t:T11)

Which of the following best describes the values that T11 represents?

Description of T11 Answer (one of A - 3J)

A) Lists of natural numbers

B) Lists of booleans

C) Lists of (boolean, natural number) tuples

D) Non-empty lists of natural numbers

E) Non-empty lists of booleans

F) Non-empty lists of (boolean, natural number) tuples
G) Binary trees of natural numbers

H) Binary trees of booleans

I) Binary trees of (boolean, natural number) tuples

J) None of the above

Page 7

NETID :

Question 4 : Counting Inductive Datatypes (21 points)

For each of the following inductive datatypes encoded in TypScript, how many values
are there of that type?

Type Distinct values
(e.g., 0, 1,2, ..., “infinity”)
type A =
| { kind: "P" }
| { kind: "Q" };
| { kind: "R" };
type B =
| { kind: "S", value: B };
type C =
| { kind: "CA", value: bool }
| { kind: "CB", value: B };
type D =
| { kind: "DA", value: bool }
| { kind: "DC", value: C };
type E =
| { kind: "X" }
| { kind: "Y", value: Z };
type F =
| { kind: "FA" }
| { kind: "FB", v1: F, v2: F, v3: F };
type G =
| { kind: "GA", vi1: [G, A] };
| { kind: "GC", vi1: [G, C] };

Page 8

NETID :

Question 5: Pattern Matching (6 points)
Consider the this TypeScript function:

const u = (t: {a: [boolean, string], b: string}) : string|undefined => {
const [m, n] = t.a;

if (m) {
if (n == "") {
return n;
} else {
return t.b;
¥
¥

In the Answer box below, select the correct translation (A/ B/ C / D) of translation to a
mathematical definition using pattern matching. Recall that S is the type we use for
characters (length 1 strings).

A.

funcu ({a: x, b: y}) = y foranyx €S,y €S

funcu ({a: x, b: y}) = X foranyx €S,y €S

funcu ({a: (F x), b: y}) = undefined foranyx €S,y €S

B.

funcu ({a: (T, x), b: y}) = X for any x € Swherex!=“",y €S
funcu ({a: (T, “"), b: y}) = y foranyx €S,y €S

C.

funcu ({a: (T, x), b: y}) = y foranyx €S,y €S

funcu ({a: (F x), b: y}) = X foranyx €S,y €S

D.

func u ({a: (T, x), b: y}) = X for any x € Swherex =",y €S
funcu ({a: (T, “"), b: y}) = y foranyx €S,y €S

funcu ({a: (E x), b: y}) = undefined foranyx €S,y €S

Answer

Page 9

NETID :

Question 6 : Specification Strength (54 points)

Part 1 (12 points)

Consider a function foo(n) whose type is bigint -> bigint.
Here are some potential specifications for different implementations of this function.

@returns an

A |@requires n >= 0
@returns -1 * n

g |@requires n >= 0
@returns an integer

C @requires n >= 0

integer between @ and 10, inclusive

D |@requires n
@returns an

>= 0
integer between -5 and 5, inclusive

For each pair of specifications below, mark whether the first is stronger than (S), weaker
than (W), or incomparable to (I) the Answer columns.

Comparing Answer (S/W /1) Comparing Answer (S/W /1)
Ais__ B Bis_ C
Ais__C Bis_ D
Ais__ D Cis_ D

Page 10

NETID :

Question 6, Part 2 (12 points)

Consider a function bar(n) whose type is bigint -> bigint.
Here are some potential specifications for different implementations of this function.

A @requires n >= 0
@returns a positive integer

g |@requires n > ©
@returns a positive integer

c |@requires n is even
@returns a positive integer

p |@requires n is an integer
@returns a positive integer

For each pair of specifications below, mark whether the first is stronger than (S), weaker
than (W), or incomparable to (I) the Answer columns.

Comparing Answer (S/ W/ I) Comparing Answer (S/W/I)
Ais B Bis_ C
Ais___ C Bis_ D
Ais_ D Cis__ D

Page 11

Question 6, Part 3 (30 points)

NETID :

Consider arr.index0f(x). It searches an array arr for a particular value x.

Here are some potential specifications for different implementations of this function.

A | @requires arr.length
@returns k such that arr[k]

>0 /\

arr[i] = x for some © < i < arr.length
x /\ @ £ k < arr.length

@requires arr.length
B | @throws Exception if arr[i]
@returns i such that arr[i]

> 0

#

x for all @ £ i < arr.length
x /\ @ £1i < arr.length

c |@returns i such that arr[i]
-1 if arr[i] # x for

x /\ @ £1i < arr.length \/
all @ = i < arr.length

arr[j] = x = k £ j for all @ < j

@requires arr[i] = x for some @ < i < arr.length
D | @returns k such that arr[k]

x /\ @ £ k < arr.length /\

< arr.length

g |@requires arr.length % 2 ===
@returns k such that arr[k]

@ /\ arr[i]

x /\ @ =k <

x for some @ < i < arr.length
arr.length

For each pair of specifications below, mark whether the first is stronger than (S), weaker

than (W), or incomparable to (I) the Answer columns.

Comparing Answer (S/ W/ I) Comparing Answer (S/ W/ I)
Ais___ B Bis_ D
Ais__C Bis_ E
Ais__ D Cis__ D
Ais___E Cis_ E
Bis C Dis E

Page 12

NETID :

Question 7 : Spec and Implement ADTs (20 points total)
The next page specifies an abstract datatype (ADT), representing 2D right triangles.

H
Bg

A

Useful Facts: for a right triangle with side lengths A and B and hypotenuse length H:
e Alllengths (A, B, and H) must be positive
e The triangle’s side lengths are related by A? + B? = H? (Pythagorean Theorem)
e The triangle’s areais (A*B)/2

e Trigonometry relates angles and the ratios of their adjacent/opposite side lengths

Angle Between Sides cosine sine
t Aand H cos(t) =A/H sin(t) =B / H
g B and H cos(g) =B/ H sin(g) = A/ H

e Inverse trig functions acos and asin “undo” sine and cosine for angles <z / 2
(like our angles t and g since we are only considering right triangles)
o x = acos(cos(x)) and X = asin(sin(x))
o Forangles <z /2, both acos and asin return values between @ and = / 2
e Assume angles are measured in radians (and that sin and cos work in radians)

e Assume angles are measured in radians (and that sin and cos work in radians)
Because the side lengths and angles of right triangles are strictly related, we have many
choices in how to represent them concretely. However, we should be able to specify

them abstractly in a way that lets clients reason about how their code uses our library
while reserving freedom for ourselves to change the implementation later if needed.

In this question, we first give a specification for a right triangle library. Then we will study
some different choices for how the library could be implemented.

Page 13

NETID :

Consider this specification for a 2D right triangle library:

/**

* We denote a right triangle as obj = (A, B, H).

*/

export interface RightTri {
/** @returns the length of side A */
getSideA : () => number;

/** @returns the length of side B */
getSideB : () => number;

/** @returns the length of hypotenuse H */
getHypot : () => number;

/** @returns the area of obj */
area : () => number;

/** @returns the angle between side A and hypotenuse H */
getAngleAH : () => number;

/** @returns the angle between side B and hypotenuse H */
getAngleBH : () => number;

// factory functions below (because constructors are goofy!)

/**
* Make a right triangle from its side lengths.
* @requires @ < sides.a and @ < sides.b
*/

/**
* Make a right triangle from side A and the hypotenuse lengths.
* @requires O < sideA and © < hyp
*/

const ofSides = (sides : {a: number, b: number}) : RightTri => { ...

const ofHypSideA = (hyp: number, sideA : number) : RightTri => { ...

* Represents a 2D right triangle with side A, side B, and hypotenuse H.

* We refer to the angle between side A and the hypotenuse H as angleAH.
* We refer to the angle between side B and the hypotenuse H as angleBH.

Page 14

NETID :

Question 7, Part 1 (10 points)

Here is one possible implementation of our right triangle library.

class SimpleRightTri implements RightTri {
readonly a: number;
readonly b: number;
readonly area : number;

constructor(a: number, b: number) {
this.a = a;

this.b = b;
this.area = (a * b) / 2;
}
getSideA = () : number => this.a;
getSideB = () : number => this.b;
getHypot = () : number => Math.sqrt(this.a * this.a + this.b * this.b);

area = () : number => this.area;

getAngleAH

() : number => Math.acos(this.a / this.getHypot());

getAngleBH
}

() : number => Math.acos(this.b / this.getHypot());

const ofSides = (sides: {a: number, b: number}) : RightTri => {
return new SimpleRightTri(sides.a, sides.b);

}s

const ofHypSideA = (hyp: number, sideA: number) : RightTri => {
const sideB = Math.sqrt(hyp * hyp - sideA * sideA);
return new SimpleRightTri(sideA, sideB);

}s

On the next page we will ask you some questions about abstraction functions (AF) and
representation invariants (RI) for this concrete implementation of our right triangle library
specification.

Page 15

NETID :

Which of the following is an appropriate abstraction function (AF) for SimpleRightTri ?

Possible AF for SimpleRightTri Answer

A) obj = (this.a, this.b)

B) obj = (this.getSideA(), this.getSideB())
C) obj = (this.a, this.b, sqrt(this.a? + this.b?))
D) obj = (this.a, this.b, this.h)

E) obj = this

F) obj = (Math.cos(this.t * this.h), this. h)

Which of the following would be the most appropriate representation invariant (RI) for
SimpleRightTri?

Possible RI for SimpleRightTri Answer

A) 0 <this.a and 0 < this.b

B) this.a!l=0 and this.b!=0

C) this.getHypot() < this.area()

D) this.b <0 or this.h >0

E) 0 < this.a and 0 < this.b and this.area = (this.a * this.b) / 2
F) this.area = (this.a * this.b) / 2

G) this.a < this.b

H) this.a + this.b < this.getHypot()

I) getAngle(this.a, this.b) === Math.P1/2

J) console.log('Jared loves right triangles! ${rep_inv_here}’);

K) No representation invariant needed

Page 16

NETID :

Question 7, Part 2 (10 points)

Here is another possible implementation of our right triangle library.

class OtherRightTri implements RightTri {
readonly h: number; // hypotenuse
readonly t: number; // angle between side A and hypotenuse

constructor(h: number, t: number) {

this.h = h;

this.t = t;
}
getSideA = () : number => this.h * Math.cos(t);
getSideB = () : number => this.h * Math.sin(t);
getHypot = () : number => this.h;

area = () : number => (this.getSideA() * this.getSideB()) / 2;

getAngleAH () : number => this.t;

getAngleBH

() : number => Math.PI/2 - this.t;

const ofSides = (sides: {a: number, b: number}) : RightTri => {
const h = Math.sqrt(sides.a * sides.a + sides.b * sides.b);
const t = Math.acos(sides.a / h);
return new OtherRightTri(h, t);

}s

const ofHypSideA = (hyp: number, sideA: number) : RightTri => {
const t = Math.acos(sideA / hyp);
return new OtherRightTri(hyp, t);

}s

On the next page we will ask you some questions about abstraction functions (AF) and
representation invariants (RI) for this concrete implementation of our right triangle library
specification.

Page 17

NETID :

Which of the following is a valid abstraction function (AF) for OtherRightTri ?

Possible AF for OtherRightTri Answer

A) obj = (this.a, this.b)

B) obj = (this.getSideA(), this.getSideB())

C) obj = (this.getSideA(), this.getSideB(), this.getHypot())
D) obj = (this.a, this.b, sqrt(this.a? + this.b?))

E) obj = (this.a, this.b, this.h)

F) obj = this

G) obj = (Math.cos(this.t * this.h), Math.acos(this.h))

Which of the following would be the most appropriate representation invariant (RI) for
SimpleRightTri?

Possible RI components for OtherRightTri Answer

A) 0 <this.a

B) this.h!=0 and this.t!=0

C) 0 < this.h and 0 < this.t < Math.P1/2

D) this.getHypot() > this.area()

E) 0 < this.h

F) this.a < this.b

G) this.t <90

H) this.getSideA() + this.getSideB() < this.getHypot()
[) this.t>0

J) No representation invariant needed

Page 18

NETID :

Question 8 : Hoare Triples (20 points)

Indicate which of the Hoare triples below are valid. Assume x and y are bigints.

Hoare Triple

valid (T/F)

{{x>0}}

y = 3n * x;
{y=3}}
{f{0>yandy=x}}

z =y * x;
{{z>0}}

{{x#0}}
if (x >= 0On) {
y = —-5n * x;

} else {

y = 5n * x;

}
{{y# 0andy = [5x| }}

{3

if (y <= 5n) {
z =y + 5n;
} else {

o©

z = X On;

}
{{z<10}}

/** @param n: an integer

* (@param t: an integer

* (@returns positive int if n > t, else negative int
*/

const bar = (n: bigint, t: bigint): bigint => { . }

{{x>0andy>0}}
if (x >= y) A

x = -1ln * y;

}
z = bar(x, vy);

{{z<0}}

Page 19

NETID :

Question 9 : Loop Invariants (25 points total)
Part 1 (9 points)

At which points in a function must the loop invariant be true? Please answer true (T) or
false (F) for each program point where the loop invariant must hold.

Loop Invariant

Program Point Must Hold?
(T/F)

Just before the first iteration of the loop

At the beginning of the function

Immediately after entering the loop

Immediately after exiting the loop

When the function returns

Before calling any functions from inside the loop

At the end of the loop body

Just before any conditionals in the loop body

Throughout the loop body

Page 20

NETID :

Question 9, Part 2 (8 points)
Below we have a sketch of a function that looks for the value 3 in an array of bigints.

The loop already has an invariant, but we will need to fill in the blanks to complete the
code so that it maintains the loop invariant and guarantees the function’s postcondition.

// @returns an index i such that A[i] = 3
// or -1 if no such index exists

const findThrees = (A: bigint[]): number => {

let 1 = _/* BLANK 1 */ ;

// {{ Inv: A[j] # 3 for any j where @ <= j <=1

// and _/* BLANK 1 */ <=1 }}
while (i !== _/* BLANK 2 */) {
if (A[_/* BLANK 3 */] === 3n) {

return _/* BLANK 4 */ ;

// {{ Post: A[]j] # 3 for any j where 0 <= j < A.length }}

return -1;

Page 21

(Question 9, Part 2 continued)

NETID :

Select the option for each blank such that the function maintains the loop invariant and

guarantees the post condition.

Options for Blank

Answer
(A/B/C/DI/E)

let i = _/* BLANK 1 */ ;
A) -2
B) -1
C) 0
D) 1
E) 2

while (i !'== _/* BLANK 2 */) {
A) Allength - 2
B) A.length - 1
C) A.length
D) A.length + 1
E) A.length + 2

if (A[_/* BLANK 3 */] === 3n) {
A) Ali - 2]
B) Afi - 1]
C) Alil
D) Afi + 1]
E) Ali + 2]

return _/* BLANK 4 */ ;
i-2
i-1

i+1

i+2

Page 22

NETID :

Question 9, Part 3 (8 points)

The following math function del-vowels takes an array of characters and returns it with
all vowels (a, e, i, 0, U, y) removed:

funcis-vowel(c) := c=Q || c=¢ || c=T || c=0 || c=U || c=Y
func del-vowels([]) =]
del-vowels(A ++ [c]) := del-vowels(A) where is-vowel(c) =T

del-vowels(A ++ [c]) :=del-vowels(A) ++ [c] where is-vowel(c) =F

Here is a TypeScript implementation of del-vowels that removes all vowels from an array
of characters (length-1 strings) in-place (i.e., it mutates the array). Assume the function
isVowel returns true if its length 1 string argument is a vowel character (a, €, i, 0, u, y).

/** Removes all vowels from a given array
* @param str array of characters (all length-1 strings)
* @modifes str
* @effects str = del-vowels(str)
*/

const deleteVowels = (str: string[]) => {
let j: number =
let i: number =
const n: number = str.length;

9;
9;

// Update str, shift non-vowel chars forward to replace vowels
// Invl:
while(j !== str.length) {
if (lisvowel(str[j])) {
str[i] = str[j];
i=1+1;

¥
J=3+1
}

// Adjust str length since non-vowels have shifted forward
// Inv2:
while (i !== str.length) {
str.pop(); // Removes unused indices from the end
}
}

On the next page, we will identify loop invariants for Invl and Inv2.

Page 23

NETID :

(Question 9, Part 3 continued)

Remember that nis str.length.

Select the invariant for Inv1 that the first loop maintains.

. Answer
Options for Invi (AIB/C /D)
A) stry[0..j-1] = del-vowels(str[0 ..i-1])

and str[i.. n-1] = stry[i.. n-1]

andi<j <n
B) str[0 ...i-1] = del-vowels(str,[0 .. j-1])

and str[j .. n-1] = stry[j .. n-1]

andi<j<n
C) str[0 ..i-1] = del-vowels(str,[0 ..j-1])

and stry[j .. n-1] = str[j .. n-1]

andi<j <n
D) str[0 .. n-1] = del-vowels(stry[0 .. n-1])

and str[0 ..i-1] = stry[0 .. j-1]

andi<j<n

Select the invariant for Inv2 that the second loop maintains.
Options for Inv2 Answer
(A/B/CI/D)

A)

stry[0 .. i-1] = del-vowels(str,)
and str[i..n-1] = stry[i.. n-1]

B) str[0 ...i-1] = del-vowels(str,)

andi<n

C) stry[0 ...i-1] = del-vowels(str)

and str[i..n-1] = stry[i.. n-1]
andi<n

D) str[0 ..i-1] = del-vowels(str,)

andi<n

Page 24

NETID :

Question 10 : Strength of Assertions (24 points)

Select the strongest assertion in each set. The first row is filled in as an example. Assume all
variables are of type bigint.

Assertions Strongest
A. {True}}

B. {{False}} B
C. {{z=42}}

A. {{x=25n}}

B. {{x>5n}}

A {{x=2n}}

B. {{x%2n=0}}

A. {x>0nAy=32n}}

B. {(x>0On/A\y=32n)V(z=12n)}}
A, {x!=21n}}

B. {{x=21n}}

C. {{x=221n}}

A. {{x=25n}}

B. {{x=20n}}

C. {{x=2-5n}}

A, {x#3n}}

B. {{x=10n}}

C. {{x>27n}}

A. {{x-2n+y=215n}}

B. {{|x-2n|+y=15n}}

A. {{16ns<x/\x<24n}}

B. {{15n<xAx<23n}}

C. {{18nsxAxs22n}}

Page 25

NETID :

Question 11 : Aliasing and Mutable ADTs (10 points)

Consider the following interface:

interface Stack {
push(x: bigint) : void
pop() : bigint

}

For the implementation below, determine whether there is a representation exposure. If there is,
answer with the line number where the rep is exposed. Otherwise, just answer “No”.

Stack Implementation Rep Exposure?
1 | class StackArray implements Stack {

2

3 stack: bigint[];

4

5 constructor(vals: bigint[]) {

6 this.stack = vals;

7 }

8

9 push(x: bigint): void {

10 this.stack.push(x);

11| }

12

13 pop(): bigint {

14 const last = this.stack.pop();
15 if (last === undefined) {

16 throw new Error("stack is empty");
17 }

18 return last;

19 }

20 | }

Page 26

NETID :

(Question 11 Continued)

Here is the same interface for Stack repeated:

interface Stack {
push(x: bigint) : void
pop() : bigint

}

For the implementation below, determine whether there is a representation exposure. If there is,
answer with the line number where the rep is exposed. Otherwise, just answer “No”.

Stack Implementation Rep Exposure?
1 | class StackList implements Stack {

2 stack: List<bigint>;

3 constructor() {

4 this.stack = nil;

5 }

6

7 push(x: bigint): void {

8 this.stack = cons(x, this.stack);

9 }

10

11 pop(): bigint {

12 if (this.stack.kind === "nil")

13 throw new Error("stack is empty");
14 return this.stack.hd;

15 }

16 | }

Page 27

NETID :

Question 12 : Subtypes (30 points)

Consider the following interface:

// a regular polygon is an n-sided convex shape where
// - all sides have equal length
// - all interior angles have equal measure
interface RegularPolygon {

getArea: () => number;

getPerimeter: () => number;

}

Are the following subclasses proper subtypes of RegularPolygon?

Subclass of RegularPolygon

Subtype?
(T/F)

class Triangle implements RegularPolygon {
sl: number; s2: number; s3: number;
constructor(sl: number, s2: number, s3: number) {
this.sl = si1; this.s2 = s2; this.s3 = s3;
}
getArea = () : number => {
const s = (this.sl + this.s2 + this.s3) / 2;
return Math.sqrt(s*(s - this.s1)*(s - this.s2)*(s - this.s3));
}
getPerimeter = () : number => {
return this.sl + this.s2 + this.s3;

}
}

class Square implements RegularPolygon {
s: number;
constructor(s: number) {
this.s = s;
}
getArea = (): number => {
return this.s * this.s;
}
getPerimeter = (): number => {
return this.s * 4;

}
}

Page 28

NETID :

Consider the following type

// a resizable polygon is an n-sided convex shape where
// - the side lengths can be changed to grow or shrink the polygon
interface ResizablePolygon {

getArea: () => number;

getPerimeter: () => number;

setSides: (sides: number[]) => void;

}

Are the following subclasses proper subtypes of ResizablePolygon?

. Subtype?
Subclass of ResizablePolygon (T/F)

class ResizableTriangle implements ResizablePolygon {
sl: number; s2: number; s3: number;
constructor(sl: number, s2: number, s3: number) {
this.s1l = s1; this.s2 = s2; this.s3 = s3;
}
getArea = (): number => {
const s = (this.sl + this.s2 + this.s3) / 2;
return Math.sqrt(s*(s - this.sl)*(s - this.s2)*(s - this.s3));

}
getPerimeter = (): number => this.sl + this.s2 + this.s3;
setSides = (sides: number[]): void => {
if (sides.length !== 3) {
throw new Error("invalid");
}
this.sl = sides[@]; this.s2 = sides[1]; this.s3 = sides[2];
}s
}

class ResizableSquare implements ResizablePolygon {
S: number;
constructor(s: number) {
this.s = s;
}
getArea = (): number => { return this.s * this.s; }
getPerimeter = (): number => { return this.s * 4; }
setSides = (sides: number[]): void => { this.s = sides[©@]; }

Page 29

NETID :

Consider the following type:

// a resizable regular polygon is an n-sided convex shape where

// - all sides have equal length
// - all interior angles have equal measure
// - the side length can be changed to grow or shrink the polygon

interface ResizableRegularPolygon {
getArea: () => number;
getPerimeter: () => number;
setSideLength: (len: number): void;

}

Are the following subclasses proper subtypes of ResizableRegularPolygon?

Subclass of ResizableRegularPolygon

Subtype?
(T/F)

class ResizableTriangle2 implements ResizableRegularPolygon {
sl: number; s2: number; s3: number;
constructor(sl: number, s2: number, s3: number) {
this.s1l = sl1; this.s2 = s2; this.s3 = s3;
}
getArea = (): number => {
const s = (this.sl + this.s2 + this.s3) / 2;
return Math.sqrt(s*(s - this.sl)*(s - this.s2)*(s - this.s3));
}
getPerimeter = (): number => this.sl + this.s2 + this.s3;
setSideLength = (len: number): void => {
this.sl = len; this.s2 = len; this.s3 = len;
s
}

class ResizableSquare2 implements ResizableRegularPolygon {

s: number;
constructor(s: number) {

this.s = s;
}
getArea = (): number => { return this.s * this.s; }
getPerimeter = (): number => { return this.s * 4; }
setSidelength = (sidelLength: number): void => {

this.s = sidelength;

Page 30

NETID :

Jared Bonus #1 (2 BONUS Points Possible)

Remember our right triangle library from Question 7. In one project, Jared implemented the
RightTri interface using the SimpleRightTri class and corresponding factory functions.
However, some of his users want to make a right triangle given one of the angles and the length
of the hypotenuse. Implement this factory function to help Jared’s users out. You have to get the
code perfect to get bonus points! Make sure to use SimpleRightTri for this bonus!

/**

Make a SimpleRightTri from one of its angles and the hypot length.
ofAH([“AH”, x], h) gives tri from angle x between side A and hypot h
ofAH([“BH”, x], h) gives tri from angle x between side B and hypot h
@requires angle measure and hyp to be positive */

const ofAH = (angle: [[“AH” | “BH”], number], hyp: number) : RightTri => {

EE

Page 31

NETID :

Jared Bonus #2 (2 BONUS Points Possible)

Remember our right triangle library from Question 7. In another project, Jared implemented the
RightTri interface using the OtherRightTri class and corresponding factory functions.
However, some of his users want to make a right triangle given either of the sides and the
length of the hypotenuse. Implement this factory function to help Jared’s users out. You have to
get the code perfect to get bonus points! Make sure to use OtherRightTri for this bonus!

/**

Make a SimpleRightTri from either of its sides and the hypot length.
ofSH([“A”, x], h) gives tri with side A length x and hypot length h
ofSH([“B”, x], h) gives tri with side B length x and hypot length h
@requires side length and hyp to be positive */

const ofSH = (side: [[“A” | “B”], number], hyp: number) : RightTri => {

EE

Page 32

NETID :

Jared Bonus #3 (1 BONUS Point Possible)

This quarter we exhausted all our Jared jokes! Unless we can get some new ones, future
students in 331 may not hear about our favorite “friend of the class”.

Please give us a new Jared joke below! If you can’t come up with one, that is OK too. Instead,
just share which moments of the course were your favorite.

THE END

Thanks for a great quarter!
Hope you have a fantastic Spring Break!!

Page 33

	Question 1 : Type Checking (22 points)
	Question 2 : Equality (34 points)
	Question 3 : Encoding Inductive Datatypes (22 points total)
	Question 4 : Counting Inductive Datatypes (21 points)
	type A =
	 | { kind: "P" }
	 | { kind: "Q" };
	type B =
	 | { kind: "S", value: B };
	type C =
	 | { kind: "CA", value: bool }
	 | { kind: "CB", value: B };
	type D =
	 | { kind: "DA", value: bool }
	 | { kind: "DC", value: C };
	type E =
	 | { kind: "X" }
	 | { kind: "Y", value: ℤ };
	type F =
	 | { kind: "FA" }
	 | { kind: "FB", v1: F, v2: F, v3: F };
	type G =
	 | { kind: "GA", v1: [G, A] };
	 | { kind: "GC", v1: [G, C] };

	Question 5: Pattern Matching (6 points)
	Question 6 : Specification Strength (54 points)
	
	Question 7 : Spec and Implement ADTs (20 points total)
	Question 8 : Hoare Triples (20 points)
	Question 9 : Loop Invariants (25 points total)
	Question 10 : Strength of Assertions (24 points)
	Question 11 : Aliasing and Mutable ADTs (10 points)
	
	Question 12 : Subtypes (30 points)
	Jared Bonus #1 (2 BONUS Points Possible)
	Jared Bonus #2 (2 BONUS Points Possible)
	Jared Bonus #3 (1 BONUS Point Possible)

