24wi Final Review

These practice questions are from CSE 331 2024 Winter. Questions relating to content that was
not covered in 2025 Summer were removed. The remaining questions are similar to the style of
questions you can expect to see on the 25SU exam and cover topics that are fair game, but it is
not a perfect representation of what topics will be emphasized in the 25SU exam or the length.

Question 1 : Testing Subdomains

a. For the following function, select one input that is not required to test using the 331
Testing Rules (assuming all other options would be tested)?

const foo = (x: number) : number => { A 0
. B. 13
if (x < @

() { C 1
const a = x * 2; D. -1

const b = a - 2;
return b * 3 + 1;
} else if (x > 10) {
return 100 * x - x / 2
} else {
return 55;

b. For the following function, what is the minimum number of tests needed?

const bar = (x: number) : number => { A. 1
if (x === 0) { g: g
return 9; D 4
} else { E. 5
if (x % 2 === 0) { // x is even F. 6
return bar(x / 2); ﬁ: g+
} else { // x is odd
return bar(x - 1);
}
}
}

Question 2: Types

Pick the best, most precise definition for what this inductive data type represents.
type T=A(x:Z) | Bx:Z,y: T, z:T)

Lists of integers

Non-empty lists of integers

Binary trees of integers
Non-empty binary trees of integers

oowp

Question 3: Proof By Calculation

For each of the proofs below, select the correct option to fill in the blank () space in order
for the proof to be deemed correct.

Prove that sum(twice(L)) = 2sum(L) where L = cons(a, cons(b, nil))

sum(twice(L)) = sum(twice(cons(a, cons(b, nil)))) P1 .
= sum(cons(2a, twice(cons(b, nil)))) def of twice
= sum(cons(2a, cons(2b, twice(nil)))) def of twice
= sum(cons(2a, cons(2b, __P2))) def of twice
= 2a + sum(cons(2b, nil)) def of sum
= 2a + 2b + sum(nil) def of sum
=2a+2b+0 def of sum
=2(a+b+0) algebra
=2(a+b+_P3) def of sum
= 2(a + sum(cons(b, nil))) def of sum
= 2(sum(cons(a, cons(b, nil)))) def of sum
= 2(sum(L)) def of L

Part 1:

What should go in the blank reasoning space on the 1st line of the proof:
A. def of List
B. def of cons
C. defof L
D. def of sum
Part 2:
What should go in the blank space on the 4th line of the proof: sum(cons(2a, cons(2b, _P2)))
twice(0)
B. 0
C. nil
D. twice(nil)
Part 3:
What should go in the blank space on the 9th line of the proof: 2(a+ b+ _P3)
A. sum(nil)

>

B. nil
C. 0
D. sum(0)

Question 5

For each of the programs below, determine whether there will be a type error using both
structural (as in TypeScript) and nominal (as in Java) typing. Assume the following types and

variables are in scope for all of the programs.

type A = {x: bigint}

type B = {x: bigint}

type C = {x: number}

type D = {x: bigint, y: bigint}

type E = {y: bigint, x: bigint}
const a : A = {x: 123n}

const b : B = {x: 456n}

const ¢ : C = {x: 789}

const d : D = {x: 1n, y: 2n}
const e : E = {y: 3n, x: 4n}
Program Structural Typing Nominal Typing

Error (Yes/No)

Error (Yes/No)

ve: E = {x: 12n, y: 34n}

vl : B = a
v2 : C=b
v3 : D=c¢e
vd : E=d
v5 ¢ A =¢e
vé : E = a

foo = (x: E) : D => {
return {x: 123n, y: 456n}

v7 : D = foo(e)

foo = (x : A) : B => {
return (x.x > @n) ? {x: 1n} : {x: -1n}
}
bar = (x : B) : C
return (x.x ===

=>{
on) ? {x: -1.5} : {x:

v8 : C = bar(foo({x: @on}))

2 ** 32}

v9 : A = {x: null}

vlie : B = {x : @on}
{x : vie.x}

<
=
=
pd
1]

Question 6

: Equality

For each of the expressions below, write the boolean value (T/F) that the expression will

evaluate to.
Code Eval (T/F)
3n === 3

“I love 331”

=== “I love 331”

5n == 5
10.0 === 10
false === 5 < 4
const a: {x: bigint, s: string} = {x: 4n, s: “hello”};
const b: {x: bigint, s: string} = {x: 5n, s: “hello”};
a:::b
const a: {x: bigint, s: string} = {x: 5n, s: “hello”};
const b: {x: bigint, s: string} = {x: 5n, s: “hello”};
a:::b
const a : {b: boolean, s: string, x: bigint}
= {b: true, s: “okapi”, x: 1n};
const b : {a: bigint, b: string, c: boolean}
= {a: 1n, b: “giraffe”, c: false};
b.a === a.x
“101” === 101
“horses” === “horse” + “s”
const x = 5/2;
const y = 2;
X===y
undefined === null

Question 8: Inductive Data Types in TypeScript

For each of the following, select True if the TypeScript type is a correct encoding of the
mathematical inductive data definition.

Math Definition

TypeScript Encoding

Match?
T/F

type X=A|B| C(x: X)

type X =
{kind: “A”}

| {kind: “B”}

| {kind: “C”}

typeY=A(n:Z) | B(n: Z)

type Y =
A(n: bigint)
| B(n: bigint)

typeZ=A|B(z:7Z)

type Z
{kind: “A”}
| {kind: “B”, z: Z}

type U =
Ax:Z) | B(x:Z,y: U, z:U)

type U =
{kind: “A”, x: bigint}
| {kind: “B”, x: bigint, y: U, z: U }

type V=A(r: R) | B(n: Z)

type V =
{r: number}
| {n: integer}

Question 9: Implications

For each of the following, answer T or F based on if the facts imply the obligation.

y=0

Do the facts
imply the
Facts Obligation obligation?
T/F
Forx,y,z: N, x>1z/3
x =y and
2y >z
Forx,y: Z, return x + y returns a
x = 9and positive integer
y=-10
Forx,y: Z,
x+y<-5and xs7
y=2
Forx,y,z:Z, K<z
x=z-yand

Question 10: Structural Induction

The following proof is incorrect. In one sentence, identify an error in the proof. In
another single sentence, explain how to fix the proof either by adding, changing,
or removing steps.

func concat(nil, R) =R for any R : List

concat(cons(x, L), R) := cons(x, concat(L, R)) foranyx:ZandanyL, R: List

Prove that len(concat(S, R)) =len(S) + len(R)
This proof is by structural induction on S.

Base Case: S = nil.
Goal is to show len(concat(nil, R)) = len(nil) + len(R)

len(concat(nil, R)) =len(R) def of concat
=0 + len(R)
= len(nil) + len(R) def of len

Inductive Hypothesis: assume that len(concat(L, R)) = len(L) + len(R)

Inductive Step S =(cons(x, L)).
Goal is to show len(concat(cons(x, L), R) =len(cons(x, L)) + len(R)

len(concat(cons(x, L), R)) = len(cons(x, concat(L, R))) def of concat
=1+ len(L) + len(R) Ind. Hyp.
= len(cons(x, L)) + len(R) def of len

Question 11: Induction Hypothesis

Recall the definition of Trees: type Tree := leaf | node(x: Z, L : Tree, R : Tree)

Suppose we are doing a proof of some property P by structural induction on S : Tree.

What induction hypothesis/es can we assume in the inductive case of the proof, where we have
S =node(x, L, R)?

P(S)
P(L)
P(R)
P(L) and P(R)
P(L) and P(S)
P(R) and P(S)

TMoOw»®

Question 12: Generic Types

Consider these types:

type A =

| { kind:

type B =

| { kind:
| { kind:

type C =

| { kind:
| { kind:

type D =

| { kind:
| { kind:

type E =

| { kind:
| { kind:

type F =

| { kind:
| { kind:

How many distinct values are there of each type (e.g., “zero”, “one”, “two

"M", value: A };

"pr 3
Q" };

"CA", value:

"CB", value:

bool }
B };

"DA", value: Z }

"DB", value: bool };

"EA" }
"EB", vl1: [E, B] };

"FA", vl: F, v2: F] }
"FB" };

, ..., “infinity”)?

Question 13. Comparing Specifications
Here are four different specifications.

Spec A
@param x, a natural number
@returns a natural number between 1 and 10

Spec B

@param x, a natural number

@requires x is even

@returns a natural number between 1 and 10

Spec C
@param x, an integer between 0 and 10
@returns an integer between 0 and 20

Spec D
@param x, a natural number
@returns an integer between -10 and 10

For each pair of specs, fill in the blank if the first spec is stronger than, weaker than, or
incomparable to the second.

Ais than/to B
Ais than/to C
Bis than/to C
Bis than/to D
Cis than/to D

Dis than/to A

Question 14. ADTs

Consider the following public specification for an ADT representing a Rectangle:

// A Rectangle is represented by a triple (p, 1, w) where:
// p is the location of the top-left corner, 1 is the length, and w is the width
export interface Rectangle {

length: () => bigint;

width: () => bigint;

topLeft: () => {x: bigint, y: bigint};

For each of the following concrete representations of the Rectangle abstract data type, write down the
abstraction function (AF) and representation invariant (RI), if any.

class TopLeftRectangle implements Rectangle {
// AF: obj =
// RI:
readonly topLeft: {x: bigint, y: bigint};
readonly length: bigint;
readonly width: bigint;

class OppositeCornersRectangle implements Rectangle {
// AF:
// RI:
readonly topLeft: {x: bigint, y: bigint};
readonly bottomRight: {x: bigint, y: bigint};

}

class CenterRectangle implements Rectangle {
// AF: obj =
// RI:

readonly center: {x: bigint, y: bigint};
readonly length: bigint;
readonly area: bigint;

Bonus: Give an example of a Rectangle you can represent in the other two
implementations but not this one

Question 15: Hoare Triples

For each of the following Hoare Triples, determine whether the triple is valid.

{{x<0}}

y = 2n * x;

{{ys0}}

{{xzy}

z = X - Yy

{z>0}}

{{ True }}

if (x >= 10n) {
y = x % Tn;

} else {
y = x - 1n;

}
{{ty<9}

{x<0}}
if (x < 100n) {

x = -1n;
} else {

x = 1n;
}
{{x<0}}

/**

* @param n: a natural number

* @returns a natural number

*/

const foo = (n: bigint): bigint => {

}

// some other code that calls foo

{{x=0/\y=0}}
if (x < vy) |

y = -1ln * x
1
z = fool(y)

{{z=20}}

Question 17: Weakest Assertion

Select the weakest assertion in each set. The first row is filled in as an example.

Assertions Weakest

{{ True }} A
{{ False }}

{{z=42}}

{{x=20}}
{{x>10}}
{{xz10}

{{t=2}
{{t#0}}
{{t>0}

{{x>0Ny>0}
{x>0Vy>0};

{Ix+yl>w}}
{x+y>w}}

WP (O>O0W> | OW> | OD>

Question 18: Array Loop Invariants

/*

*

Swaps two elements in an array
@param A The array in which to swap elements

@modifies A

@param i The index of the first element
@param j The index of the second element
@requires 0 <= i < A.length /\ 0 <= j < A.length

*/

const swap = (A: bigint[],
const tmp = A[i];

Ali] = A[3];

A[j] = tmp;

}

/**

*

*

*

Sorts an array in place
@param A
@modifies A

i:

void => {

*/
const sort = (A: bigint[]):
let 1 = 0;
// Inv: TODO
while (1 < A.length) {
let 3 = 1i;
// Inv: TODO
while (j < A.length) {
if (A[i] > A[3]) |
swap (A, i, J);
}
j=3+1;
}
i =1+ 1;
}
// Postcondition: A[x] < Aly]

for all 0

number, J:

<

number) : void => {

x < A.length and x

What is the correct invariant for the outer loop?

A.
B.
C.
D.
E.

Alx] <A
Alx] <
Alx] <

Alx] < Aly]forall0 <x<iandx<y<iand 0 <i< Alength

[y]forall0 <x<iandx<y<iand 0 <i<Alength

What is the correct invariant for the inner loop?

A A[x] <

B
C
D.
E

< A[j]forall 0 <i<j<Alength

A[j] foralli<x<jand 0 <i<j<Alength
Afj]foralli<x<jand 0 <i<j< Alength

< A[j] foralli < x < Alength and 0 <i <j < Alength

<

<Aly]foralli<x<jandx<y<jand 0 <i<j<Alength

y < A.length

Alx] < Aly]forall0 <x<iandx <y < Alengthand 0 <i < Alength

Aly]forall0 <x<iandx <y <Alengthand 0 <i < Alength
Aly] forall0 <x<iand 0 <i< Alengthand x <y < Alength

Question 19: Servers and Routes

For each of the following, mark whether it applies to client/server interactions, normal function
calls, both, or neither

Client/Server Interaction Normal Function Call

The public specification
should be documented

It is asynchronous

The arguments must be
serialized to JSON or text

It can throw an error

The function and the code
that calls it are implemented
in different languages

Question 20: Stateful Ul

type FooState = { items: string[] };
class Foo extends Component<{}, TodoState> {

// Called when the user clicks on the button to clear all items.
doClearClick = (_: MouseEvent<HTMLButtonElement>): void => {
const name = this.state.input.trim();
if (name.length === 0) {
return;

}

// Now set the state to empty array

Which of the following options should go on the line in the method above?
A. this.state = {items: []};
B. this.setState({items: []});
C. Either A or B will work
D. Neither A nor B is correct.

Question 21: Status Codes

For each of the following scenarios, indicate the most appropriate status code for the response

Scenario Error Code (200, 400, 500)
The request had all of the required parameters A. 200
and the response contains the information the B. 400
user was looking for about New Zealand C. 500
The request is missing the country name (a A. 200
required parameter), so the search cannot be B. 400
completed C. 500
The server receives the request and it has the A. 200
required parameters, but there is a problem with B. 400
the database, so the server is unable to complete C. 500
the search

	24wi Final Review
	Question 1 : Testing Subdomains
	Question 2: Types
	
	
	Question 3: Proof By Calculation
	
	
	Question 5
	Question 6: Equality
	
	Question 8: Inductive Data Types in TypeScript
	Question 9: Implications
	
	Question 10: Structural Induction
	Question 11: Induction Hypothesis
	Question 12: Generic Types
	Consider these types:
	type A =
	 | { kind: "M", value: A };
	
	type B =
	 | { kind: "P" }
	 | { kind: "Q" };
	type C =
	 | { kind: "CA", value: bool }
	 | { kind: "CB", value: B };
	type D =
	 | { kind: "DA", value: ℤ }
	 | { kind: "DB", value: bool };
	type E =
	 | { kind: "EA" }
	 | { kind: "EB", v1: [E, B] };
	type F =
	 | { kind: "FA", v1: F, v2: F] }
	 | { kind: "FB" };
	How many distinct values are there of each type (e.g., “zero”, “one”, “two”, ..., “infinity”)?
	Question 13. Comparing Specifications
	Question 14. ADTs
	Question 15: Hoare Triples
	Question 17: Weakest Assertion
	Question 18: Array Loop Invariants
	Question 19: Servers and Routes
	Question 20: Stateful UI
	Question 21: Status Codes

