
24wi Final Review SOLUTIONS
These practice questions are from CSE 331 2024 Winter. Questions relating to content that was
not covered in 2025 Summer were removed. The remaining questions are similar to the style of
questions you can expect to see on the 25SU exam and cover topics that are fair game, but it is
not a perfect representation of what topics will be emphasized in the 25SU exam or the length of
a complete exam.

We recommend that you attempt these questions in the non-solutions version first before
looking at the answers. Please read the explanations (if included) to make sure you
understand the answers, and ask questions on Ed for further clarification.

Question 1 : Testing Subdomains
a.​ For the following function, select one input that is not required to test using the 331

Testing requirements (assuming all other options would be tested)? [multiple correct
answers]

const foo = (x: number) : number => {

 if (x < 0) {

 const a = x * 2;

 const b = a - 2;

 return b * 3 + 1;

 } else if (x > 10) {

 return 100 * x - x / 2

 } else {

 return 55;

 }

}

A.​ 0
B.​ 13
C.​ 1
D.​ -1

Explanation: To reach statement and branch coverage, we must include test -1 for coverage of
the first branch and 13 for coverage of the second branch. Then, for coverage of the 3rd branch
0 and 1 would each be valid inputs, so if either is tested, the other wouldn’t be necessary under
the minimum 331 testing requirements. Of course, testing both is perfectly fine, and doing so
also gets us closer to meeting the boundary testing heuristic which is an optional (in 331) but
recommended heuristic.

b.​ For the following function, what is the minimum number of tests needed?

const bar = (x: number) : number => {

 if (x === 0) {

 return 0;

 } else {

 if (x % 2 === 0) { ​ ​ // x is even

 return bar(x / 2);

 } else { ​ ​ ​ // x is odd

 return bar(x - 1);

 }

 }

}

A.​ 1
B.​ 2
C.​ 3
D.​ 4
E.​ 5
F.​ 6
G.​ 7
H.​ 8+

Explanation: This is a recursive function, so we know we need to test 0, 1, and 2+ recursive
calls (before hitting the base case). Since there are recursive calls in 2 branches, your first
instinct should be to satisfy 1 and 2+ recursive calls for both, however, in the “x is even” branch,
it is not possible to enter that branch, make 1 recursive call, and then hit the base case
(because no non-zero, even number / 2 = 0). So, we only need a test for 2+ recursive calls in
the “even” branch (e.g. 6), a test for 1 recursive call in the “odd” branch (1), a test for 2+
recursive calls in the “odd” branch (e.g. 3), and a base case test (0).
Satisfying this 0-1-2+ heuristic will also satisfy statement and branch coverage.

Question 2: Types
Pick the best, most precise definition for what this inductive data type represents.

type T = A(x: ℤ) | B(x: ℤ, y: T, z: T)

A.​ Lists of integers
B.​ Non-empty lists of integers
C.​ Binary trees of integers
D.​ Non-empty binary trees of integers

Explanation: The base constructor has an integer, so we know it represents something
non-empty. The recursive constructor has two T fields, so we can think of it as a node with two
children. And it has one integer field. So in our data type, we have integers, and we have
integer nodes with two children. That is a non-empty binary tree of integers.

Question 3: Proof By Calculation
For each of the proofs below, select the correct option to fill in the blank (____) space in order
for the proof to be deemed correct.

Prove that sum(twice(L)) = 2sum(L) where L = cons(a, cons(b, nil))

sum(twice(L)) = sum(twice(cons(a, cons(b, nil))))​ ​ ​ P1 .
​ ​ = sum(cons(2a, twice(cons(b, nil))))​ ​ ​ def of twice
​ ​ = sum(cons(2a, cons(2b, twice(nil))))​ ​ def of twice
​ ​ = sum(cons(2a, cons(2b, P2)))​ ​ ​ def of twice
​ ​ = 2a + sum(cons(2b, nil))​ ​ ​ ​ def of sum
​ ​ = 2a + 2b + sum(nil)​ ​ ​ ​ ​ def of sum
​ ​ = 2a + 2b + 0​ ​ ​ ​ ​ ​ def of sum
​ ​ = 2(a + b + 0)​​ ​ ​ ​ ​ algebra
​ ​ = 2(a + b + P3)​ ​ ​ ​ ​ def of sum
​ ​ = 2(a + sum(cons(b, nil)))​ ​ ​ ​ def of sum
​ ​ = 2(sum(cons(a, cons(b, nil))))​ ​ ​ def of sum
​ ​ = 2(sum(L))​ ​ ​ ​ ​ ​ def of L

Part 1:
What should go in the blank reasoning space on the 1st line of the proof:

A.​ def of List
B.​ def of cons
C.​ def of L
D.​ def of sum

Explanation: Here, we’re substituting in the value of L from its definition: L = cons(a, cons(b,
nil))

Part 2:
What should go in the blank space on the 4th line of the proof: sum(cons(2a, cons(2b, P2)))

A.​ twice(0)
B.​ 0
C.​ nil
D.​ twice(nil)

Explanation: From the definition of twice, we know that twice(nil) = nil.

Part 3:
What should go in the blank space on the 9th line of the proof: 2(a + b + P3)

A.​ sum(nil)
B.​ nil
C.​ 0
D.​ sum(0)

Explanation: From the definition of sum, we know that sum(nil) = 0.

Question 5
For each of the programs below, determine whether there will be a type error using both
structural (as in TypeScript) and nominal (as in Java) typing. Assume the following types and
variables are in scope for all of the programs.

type A = {x: bigint}
type B = {x: bigint}
type C = {x: number}
type D = {x: bigint, y: bigint}
type E = {y: bigint, x: bigint}

const a : A = {x: 123n}
const b : B = {x: 456n}
const c : C = {x: 789}
const d : D = {x: 1n, y: 2n}
const e : E = {y: 3n, x: 4n}

Program Structural Typing
Error (Yes/No)

Nominal Typing
Error (Yes/No)

v0: E = {x: 12n, y: 34n} No No

v1 : B = a No Yes

v2 : C = b Yes Yes

v3 : D = e
v4 : E = d

No Yes

v5 : A = e No Yes

v6 : E = a Yes Yes

foo = (x: E) : D => {
 return {x: 123n, y: 456n}
}
v7 : D = foo(e)

No No

foo = (x : A) : B => {
 return (x.x > 0n) ? {x: 1n} : {x: -1n}
}
bar = (x : B) : C => {
 return (x.x === 0n) ? {x: -1.5} : {x: 2 ** 32}
}
v8 : C = bar(foo({x: 0n}))

No No

v9 : A = {x: null} Yes Yes

v10 : B = {x : 0n}
v11 : A = {x : v10.x}

No No

Question 6: Equality
For each of the expressions below, write the boolean value (T/F) that the expression will
evaluate to.

Code Eval (T/F)

3n === 3 F
Explanation: === doesn’t do type conversion. 3n and 3 are not the same type, so they will
never be equal.

“I love 331” === “I love 331” T
Explanation: Strings are primitives in TypeScript, so we can compare them for equality using
== and ===

5n == 5 T
Explanation: == converts the arguments to be the same type first, and 5n and 5 represent the
same number, so they are equal.

10.0 === 10 T
Explanation: 10.0 is equal to 10

false === 5 < 4 T
Explanation: 5 < 4 evaluates to false, so it is equal to false

const a: {x: bigint, s: string} = {x: 4n, s: “hello”};
const b: {x: bigint, s: string} = {x: 5n, s: “hello”};

a === b

F

Explanation: When applied to objects, === compares by reference, so two objects will never be
equal unless they point to literally the same point in memory. a and b are not equal because
they refer to two different objects

const a: {x: bigint, s: string} = {x: 5n, s: “hello”};
const b: {x: bigint, s: string} = {x: 5n, s: “hello”};

a === b

F

Explanation: When applied to objects, === compares by reference, so two objects will never be
equal unless they point to literally the same point in memory. a and b are not equal because
they refer to two different objects

const a : {b: boolean, s: string, x: bigint}
 = {b: true, s: “okapi”, x: 1n};

const b : {a: bigint, b: string, c: boolean}
 = {a: 1n, b: “giraffe”, c: false};

b.a === a.x

T

Explanation: a.x is the bigint 1n, and b.a is also 1n, so they are equal

“101” === 101 F
Explanation: === does not do type conversion, so a string and a number will never be equal

“horses” === “horse” + “s” T
Explanation: The right-hand side evaluates to “horses”, so it is equal to the string literal
“horses”

const x = 5/2;
const y = 2;

x === y

F

Explanation: Since these are floating point numbers, 5/2 evaluates to 2.5, which is not equal to
2.

undefined === null F
Explanation: === does not do type conversion. undefined and null are different types, so they
are not equal. Note that undefined == null returns true, which is potentially confusing and
may be a source for bugs. This is an example of why you should prefer === over == whenever
possible.

Question 8: Inductive Data Types in TypeScript

For each of the following, select True if the TypeScript type is a correct encoding of the
mathematical inductive data definition.

Math Definition TypeScript Encoding Match?
T/F

type X = A | B | C(x: X) type X =
 {kind: “A”}
| {kind: “B”}​
| {kind: “C”}

F

Explanation: The record type for the C constructor is missing the x field.

type Y = A(n: ℤ) | B(n: ℤ) type Y =
 A(n: bigint)
| B(n: bigint)

F

Explanation: This is not syntactically-valid TypeScript

type Z = A | B(z : Z) type Z =
 {kind: “A”}
| {kind: “B”, z: Z}

T

Explanation: This is the correct encoding. Each constructor corresponds to a record type, and
the inductive data type is the union of these record types.

type U =
A(x: ℤ) | B(x: ℤ, y: U, z: U)

type U =
 {kind: “A”, x: bigint}
| {kind: “B”, x: bigint, y: U, z: U }

T

Explanation: This is the correct encoding. Each constructor corresponds to a record type, and
the inductive data type is the union of these record types.

type V = A(r: ℝ) | B(n: ℤ) type V =
 {r: number}
| {n: integer}

F

Explanation: The record types are missing the kind field, so it doesn’t properly encode the
constructors.

Question 9: Implications

For each of the following, answer T or F based on if the facts imply the obligation.

Facts

Obligation

Do the facts
imply the

obligation?

T/F

For x, y, z : ℕ,
x = y and
2y > z

x > z/3 T

Explanation: The obligation is claiming something about x, so let’s start a proof by calculation
from there.

x = y [given]
 > z/2 [dividing 2 from both sides from 2y > z]

We’ve shown x > z/2, so x > z/3 must be true (given that x, y, and z are natural numbers.)

For x, y: ℤ,
x ≥ 9 and
y ≥ -10

return x + y returns a
positive integer

F

Explanation: The obligation is claiming something about x + y, so let’s start a proof by
calculation from there.

x + y ≥ x - 10 [since y ≥ -10]
 ≥ 9 - 10 [since x ≥ 9]
 = -1

We’ve shown x + y ≥ -1, so return x + y will not always return a positive integer.

For x, y: ℤ,
x + y ≤ -5 and
y = 2

-x ≤ 7 F

Explanation: The obligation is claiming something about -x, so let’s start a proof by calculation
from there.

-x ≥ 5 + y [since x + y ≤ -5]
 ≥ 5 + 2 [since y = 2]
 = 7

We’ve shown -x ≥ 7, so -x ≤ 7 is false.

For x, y, z : ℤ,
x = z - y and
y ≥ 0

x ≤ z T

Explanation: The obligation is claiming something about x, so let’s start a proof by calculation
from there.

x = z - y [given]
 ≤ z - 0 [since y ≥ 0 and we are subtracting y from z]
 = z

We’ve exactly shown x ≤ z, it is true.

Question 10: Structural Induction

The following proof is incorrect. In one sentence, identify an error in the proof. In
another single sentence, explain how to fix the proof either by adding, changing,
or removing steps.

func concat(nil, R)​ ​ := R​ ​ ​ ​ for any R : List

 concat(cons(x, L), R)​ := cons(x, concat(L, R))​ for any x : ℤ and any L, R : List

Prove that len(concat(S, R)) = len(S) + len(R)
This proof is by structural induction on S.

​ Base Case: S = nil.

Goal is to show len(concat(nil, R)) = len(nil) + len(R)
​ ​ len(concat(nil, R))​ = len(R)​ ​ ​ def of concat
​ ​ ​ ​ ​ = 0 + len(R)
​ ​ ​ ​ ​ = len(nil) + len(R)​ ​ def of len
​

Inductive Hypothesis: assume that len(concat(L, R)) = len(L) + len(R)

Inductive Step S =(cons(x, L)).
Goal is to show len(concat(cons(x, L), R) = len(cons(x, L)) + len(R)

len(concat(cons(x, L), R))​ = len(cons(x, concat(L, R)))​ def of concat

= 1 + len(L) + len(R)​ ​ Ind. Hyp.

= len(cons(x, L)) + len(R)​ ​ def of len

Explanation:
In the inductive step, there is a skipped step. Before applying the Inductive Hypothesis, we need
to use the definition of len:
len(cons(x, concat(L, R))) = 1 + len(concat(L, R))

We cannot apply the Inductive Hypothesis to the term len(cons(x, concat(L, R))) directly.

Question 11: Induction Hypothesis
Recall the definition of Trees: type Tree := leaf | node(x : ℤ, L : Tree, R : Tree)
Suppose we are doing a proof of some property P by structural induction on S : Tree.
What induction hypothesis/es can we assume in the inductive case of the proof, where we have
S = node(x, L, R)?

A.​ P(S)
B.​ P(L)
C.​ P(R)
D.​ P(L) and P(R)
E.​ P(L) and P(S)
F.​ P(R) and P(S)

Explanation:
The correct answer is D: P(L) and P(R).
In the inductive case, you can assume that the property holds for the smaller elements that are
arguments to the constructor. In the case of trees, that is the left subtree and the right subtree.
It is not okay to assume P(S)-- that’s what we’re trying to prove!

Question 12: Generic Types
Consider these types:

​ How many distinct values are there of each type (e.g., “zero”, “one”, “two”, ..., “infinity”)?

type A =

 | { kind: "M", value: A };

Explanation: To use the M constructor, you need to already have an A, and there’s no base
constructor, so there’s no way to actually make a value of type A. Therefore, there are zero
values in this type.

type B =

 | { kind: "P" }

 | { kind: "Q" };

Explanation: There are two values of type B: P and Q. There are two constructors, and neither
of them take any arguments, so there are only two values.

type C =

 | { kind: "CA", value: bool }

 | { kind: "CB", value: B };
Explanation: There are 4 values of type C. There are two constructors, so we consider how
many values there are of each constructor, and add these. There are two values that are
possible to build with the CA constructor: CA(true) and CA(false). There are two values that are
possible to build with the CB constructor: CB(P) and CB(Q). In total, that gives 4 possible
values.

type D =

 | { kind: "DA", value: ℤ }

 | { kind: "DB", value: bool };

Explanation: There are infinite values of type D. Again, with two constructors, we add the
number of values from each constructor. There are two values from constructor DB: DB(true)
and DB(false). There are infinite values that can be built with the DA constructor. Since it takes
an integer value, and there are infinite integers, there are infinite values.

type E =

 | { kind: "EA" }

 | { kind: "EB", v1: [E, B] };

Explanation: There are infinite values of type E. Here, we have one base constructor and one
recursive constructor. We can apply the recursive constructor an arbitrary number of times, so
there are infinite values in this type. This type represents lists of B elements. There is a nil case
(the EA constructor) and a cons case (the EB constructor takes a B and another element of type
E).

type F =

 | { kind: "FA", v1: F, v2: F] }

 | { kind: "FB" };

Explanation: There are infinite values of type F. This is pretty similar to the previous type. There
is one base constructor (FB) and one recursive constructor (FA), which can be applied arbitrarily
many times to construct values of type F. This type represents trees with no data.

Question 13. Comparing Specifications

Here are four different specifications.​​ ​

Spec A
@param x, a natural number
@returns a natural number between 1 and 10

Spec B
@param x, a natural number
@requires x is even
@returns a natural number between 1 and 10

Spec C
@param x, an integer between 0 and 10
@returns an integer between 0 and 20

Spec D
@param x, a natural number
@returns an integer between -10 and 10

For each pair of specs, fill in the blank if the first spec is stronger than, weaker than, or
incomparable to the second.

Explanations (In general):
Strengthening cannot break the clients

●​ A stronger spec accepts the original inputs (or more inputs)
●​ A stronger spec makes the original promises about outputs (or more)

Weakening cannot break the implementation

●​ A weaker spec does not allow more (new) inputs
●​ A weaker spec does not add more promises about outputs

A is ________________stronger____________________ than/to B
Explanation: A is stronger than B. They both make the same guarantees on the output (an
integer between 1 and 10), but A makes fewer assumptions about the inputs (accepts more
inputs than B). A client using B can never break if they switch to A, but a client using A might
break if they switch to B (for example, if they call the function with an odd number, which is
allowed by A but not allowed by B).

A is ________________stronger____________________ than/to C
Explanation: A returns fewer outputs than C. A accepts more inputs than C. Therefore, A is
stronger than C.

B is ________________incomparable____________________ than/to C
Explanation:: B and C are incomparable because they have different requirements on their
inputs. B accepts any even numbers while C accepts even or odd inputs but the input must be
between 0 and 10.

B is ________________incomparable____________________ than/to D
Explanation: B accepts fewer inputs (only even nats compared to any nat). However, B also
returns fewer outputs (1 - 10 compared to -10 - 10). So they are incomparable. A client could
break switching from B to D (for example, the client could be relying on the fact that B returns a
positive number, which D does not). A client could also break switching from D to B (for
example, it could be calling the function with an odd input).

C is ________________incomparable____________________ than/to D
Explanation: The specs make incomparable guarantees about the output range. A client could
break in either direction.

D is ________________weaker____________________ than/to A
Explanation: A and D make the same assumptions about the inputs (accept the same inputs).
However, A makes more guarantees about the outputs (produces fewer outputs). So A is
stronger than D (D is weaker than A).

Question 14. ADTs
Consider the following public specification for an ADT representing a Rectangle:

// A Rectangle is represented by a triple (p, l, w) where:

// p is the location of the top-left corner, l is the length, and w is the width

export interface Rectangle {

 length: () => bigint;

 width: () => bigint;

 topLeft: () => {x: bigint, y: bigint};

}

For each of the following concrete representations of the Rectangle abstract data type, write down the
abstraction function (AF) and representation invariant (RI), if any.

class TopLeftRectangle implements Rectangle {

 // AF: obj = (p = (this.topLeft.x, this.topLeft.y), l = this.length,

 // w = this.width)

 // RI: this.length > 0 & this.width > 0

 readonly topLeft: {x: bigint, y: bigint};

 readonly length: bigint;

 readonly width: bigint;

}

Explanation: In this implementation, we represent the rectangle using p, l, and w, so the
abstraction function just needs to map from the record field names to the mathematical tuple (p,
l, w).
The representation invariant is that length and width are positive, because negative values don’t
make sense for a rectangle.

class OppositeCornersRectangle implements Rectangle {

 // AF: obj = (p = (this.topLeft.x, this.topLeft.y),

 // l = this.bottomRight.x - this.topLeft.x,

 // w: this.topLeft.y - this.bottomRight.y)

 // RI: this.bottomRight.x > this.topLeft.x & this.topLeft.y > this.bottomRight.x

 readonly topLeft: {x: bigint, y: bigint};

 readonly bottomRight: {x: bigint, y: bigint};

}

Explanation: In this implementation, we represent the rectangle using two corners. So to map
from these two points to the mathematical tuple (p, l, w), we need to compute the length and
width.
The representation invariant constrains that the topLeft point is actually above and to the left of

the bottomRight point.

class CenterRectangle implements Rectangle {

 // AF: obj = (p = (this.center.x - this.length / 2, this.center.y +

 // (this.area/this.length/2)), l = this.length, w = this.area / this.length)

 // RI: this.length > 0 and this.area > 0 and this.area % this.length = 0

 readonly center: {x: bigint, y: bigint};

 readonly length: bigint;

 readonly area: bigint;

}

Bonus: Give an example of a Rectangle you can represent in the other two
implementations but not this one

Explanation: In this implementation, we represent the rectangle by its midpoint, length, and
area. To map from these values to the (p, l, w) mathematical representation, we need to
compute the width as area / length and the location of the top-left corner by subtracting half the
length and half the width from the midpoint’s x and y coordinates, respectively.
The representation invariant requires that the length and area are both positive. We also require
that area / length is an integer, so that the width is representable by an integer.
Bonus: We cannot represent the rectangle whose top left corner is at (0, 2) with a length 3 and
width 2. Its center point would be at (1.5, 1), but that’s not representable using bigints.

Question 15: Hoare Triples
For each of the following Hoare Triples, determine whether the triple is valid.

{{ x < 0 }}
y = 2n * x;
{{ y ≤ 0 }}

Valid

Explanation: After the assignment, we know x < 0 and y = 2x. Thus, we know y ≤ 0.

{{ x ≥ y }}
z = x - y;
{{ z > 0 }}

Invalid

Explanation: If x = y, then z = 0, and z > 0 will not hold.

{{ True }}
if (x >= 10n) {
 y = x % 7n;
} else {
 y = x - 1n;
}
{{ y < 9 }}

Valid

Explanation: If x ≥ 10, then y will be x % 7. In this case 0 ≤ y < 7. If x < 10, then y will be x - 1.
So after the conditional, we’ll have {{ x ≥ 10 and 0 ≤ y < 7 or x < 10 and y = x - 1 }}. From here,
we can prove by cases that y < 9 (in the first case, it follows directly from 0 ≤ y < 7. in the
second case, we can show y < 10 - 1 (since x < 10).)

{{ x < 0 }}
if (x < 100n) {
 x = -1n;
} else {
 x = 1n;
}
{{ x < 0 }}

Valid

Explanation: The postcondition here would not hold if the else branch executed (it is not true
that 1 < 0). However, that branch is impossible to reach since x < 0 and the condition is x < 100.
So the postcondition we have after the conditional is {{ x0 < 0 /\ x0 < 100 /\ x = -1 \/ (x0 < 0 /\ x0 ≥
100) /\ x = 1 }}. Since the second clause of the or is always False, we just have to show that the
first implies the postcondition, which it does because -1 < 0.

/**
* @param n: a natural number​
* @returns a natural number
*/

Invalid

const foo = (n: bigint): bigint => {
 …
}

// some other code that calls foo
{{ x ≥ 0 /\ y ≥ 0 }}
if (x < y) {
 y = -1n * x
}
z = foo(y)
{{ z ≥ 0 }}

Explanation: This one is invalid because it might not be valid to call foo on argument y. If x <
y, then we set y to -x. In this case, we’d then know that y ≤ 0 (since x ≥ 0). However, foo requires
the input to be a natural number, so calling it with y ≤ 0 is not valid. If we call the function with an
invalid input, we cannot make any claims about what it returns.

Question 17: Weakest Assertion
Select the weakest assertion in each set. The first row is filled in as an example.

Assertions Weakest

A.​ {{ True }}
B.​ {{ False }}
C.​ {{ z = 42 }}

A

A.​ {{ x = 20 }}
B.​ {{ x > 10 }}
C.​ {{ x ≥ 10 }}

C

A.​ {{ t = 2 }}
B.​ {{ t ≠ 0 }}
C.​ {{ t > 0 }}

B

A.​ {{ x > 0 /\ y > 0 }}
B.​ {{ x > 0 \/ y > 0 }}

B

A.​ {{ |x + y| > w }}
B.​ {{ x + y > w }}

A

Question 18: Array Loop Invariants
/**
* Swaps two elements in an array
* @param A The array in which to swap elements
* @modifies A
* @param i The index of the first element
* @param j The index of the second element
* @requires 0 <= i < A.length /\ 0 <= j < A.length
*/
const swap = (A: bigint[], i: number, j: number): void => {
 const tmp = A[i];
 A[i] = A[j];
 A[j] = tmp;
}
/**
* Sorts an array in place
* @param A
* @modifies A
*/
const sort = (A: bigint[]): void => {
 let i = 0;
 // Inv: TODO
 while (i < A.length) {
 let j = i;
 // Inv: TODO
 while (j < A.length) {
 if (A[i] > A[j]) {
 swap(A, i, j);
 }
 j = j + 1;
 }
 i = i + 1;
 }
// Postcondition: A[x] ≤ A[y] for all 0 ≤ x < A.length and x ≤ y < A.length

What is the correct invariant for the outer loop?

A.​ A[x] ≤ A[y] for all 0 ≤ x ≤ i and x ≤ y ≤ i and 0 ≤ i < A.length

B.​ A[x] ≤ A[y] for all 0 ≤ x ≤ i and x ≤ y ≤ A.length and 0 ≤ i < A.length

C.​ A[x] < A[y] for all 0 ≤ x < i and x ≤ y < i and 0 ≤ i < A.length

D.​ A[x] < A[y] for all 0 ≤ x < i and x ≤ y < A.length and 0 ≤ i < A.length

E.​ A[x] ≤ A[y] for all 0 ≤ x < i and 0 ≤ i < A.length and x ≤ y < A.length

Explanation: The intuition for this invariant is that it’s saying “the array is sorted up to i”. We

start i at 0 (nothing is sorted) and we end when i = arr.length (everything is sorted). It’s also a

weakening of the postcondition which is a common pattern for invariants and a good clue

here.

What is the correct invariant for the inner loop?

A.​ A[x] ≤ A[j] for all i < x < j and 0 ≤ i < j < A.length

B.​ A[x] ≤ A[j] for all i ≤ x ≤ j and 0 ≤ i < j < A.length

C.​ A[x] ≤ A[y] for all i ≤ x < j and x ≤ y < j and 0 ≤ i < j < A.length

D.​ A[x] ≤ A[j] for all i ≤ x < A.length and 0 ≤ i < j < A.length

E.​ A[i] ≤ A[j] for all 0 ≤ i < j < A.length

Explanation: The intuition for this invariant is: “A[i] is smaller than everything between A[i] and

A[j]”.

Question 19: Servers and Routes
For each of the following, mark whether it applies to client/server interactions, normal function
calls, both, or neither

 Client/Server Interaction Normal Function Call

The public specification
should be documented

✅ ✅

Explanation: Both public functions and public server APIs need to be documented so that
callers know how to call them correctly.

It is asynchronous ✅ ❌

Explanation: Client/Server interactions are always asynchronous. Requests are sent over the
network (which takes time). The server listens for requests and then sends a response back
over the network (which also takes time). In normal function calls, when there’s code that calls a
function, it doesn’t proceed to the next line until it gets the return value from the function (this is
called “blocking”).

The arguments must be
serialized to JSON or text

✅ ❌

Explanation: Normal function calls can take any kind of arguments (records, inductive data
types, functions, etc). Requests and responses sent over the network must be serialized as
either JSON or text.

It can throw an error ✅ ✅

Explanation: Errors can be thrown in either :)

The function and the code
that calls it are implemented
in different languages

❌ ❌

Explanation: While it is possible to have a client and server implemented in different languages,
it’s not necessarily true. For example, in this class, we will implement both client-side and
server-side code in TypeScript. On the flip side, while it’s often true for normal function calls that
the caller and the function are implemented in the same language, it is possible to call a function
written in another language using something called a Foreign Function Interface

https://en.wikipedia.org/wiki/Foreign_function_interface

Question 20: Stateful UI

type FooState = { items: string[] };

class Foo extends Component<{}, TodoState> {

...

// Called when the user clicks on the button to clear all items.

doClearClick = (_: MouseEvent<HTMLButtonElement>): void => {

const name = this.state.input.trim();

 ​ if (name.length === 0) {

 ​ ​ return;

 ​ }

 ​

 ​ // Now set the state to empty array

...

}

Which of the following options should go on the line in the method above?

A.​ this.state = {items: []};
B.​ this.setState({items: []});
C.​ Either A or B will work
D.​ Neither A nor B is correct.

Explanation: Directly modifying React state does not work and will lead to very subtle bugs.
Instead, you should always use this.setState() to make changes to the state. This way,
React can detect these changes and re-render the component.

Question 21: Status Codes
For each of the following scenarios, indicate the most appropriate status code for the response

Scenario Error Code (200, 400, 500)

The request had all of the required parameters
and the response contains the information the
user was looking for about New Zealand

A.​ 200
B.​ 400
C.​ 500

Explanation: The status code 200 means OK. This status code is used when everything went
smoothly with the request and response, as in this case.

The request is missing the country name (a
required parameter), so the search cannot be
completed

A.​ 200
B.​ 400
C.​ 500

Explanation: 4xx status codes mean there was something wrong with the request, and so it
could not be fulfilled. They indicate that the problem was with the client, not a problem with the
server. In this case, we use 400, which means “bad request” to indicate that the client did not
provide all of the required parameters.

The server receives the request and it has the
required parameters, but there is a problem with
the database, so the server is unable to complete
the search

A.​ 200
B.​ 400
C.​ 500

Explanation: 5xx status codes mean there was something wrong with the server. These errors
indicate that the request appeared valid, but there was something on the server side that
prevented the request from being fulfilled.

	24wi Final Review SOLUTIONS
	Question 1 : Testing Subdomains
	Question 2: Types
	Question 3: Proof By Calculation
	Question 5
	Question 6: Equality
	
	Question 8: Inductive Data Types in TypeScript
	Question 9: Implications
	
	Question 10: Structural Induction
	Question 11: Induction Hypothesis
	Question 12: Generic Types
	Consider these types:
	type A =
	 | { kind: "M", value: A };
	
	type B =
	 | { kind: "P" }
	 | { kind: "Q" };
	type C =
	 | { kind: "CA", value: bool }
	 | { kind: "CB", value: B };
	type D =
	 | { kind: "DA", value: ℤ }
	 | { kind: "DB", value: bool };
	type E =
	 | { kind: "EA" }
	 | { kind: "EB", v1: [E, B] };
	type F =
	 | { kind: "FA", v1: F, v2: F] }
	 | { kind: "FB" };
	Question 13. Comparing Specifications
	Question 14. ADTs
	
	
	Question 15: Hoare Triples
	
	Question 17: Weakest Assertion
	Question 18: Array Loop Invariants
	Question 19: Servers and Routes
	
	Question 20: Stateful UI
	
	Question 21: Status Codes

