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Administrivia (05/30)

• HW9 is out!

– due Friday, June 6th! (2 extra days!!)

thus, late due date is Saturday, June 7th 

we are not shifting office hour times – please plan around this!

advice: still try to finish on Wed, use Thu section for exam prep

– “capstone” programming & math homework

builds significantly off of section & HW8

intentionally no array proofs (see Matt’s guarantee on Wed)

•  Bob Bandes Nominations are out!

– nominate your GOAT TAs :)

– fun fact: 331 TA was a winner last year!
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https://www.cs.washington.edu/academics/teaching-assistants/bob-bandes-award/


Final Exam: Logistics

• Tuesday June 10th from 12:30 – 2:20 in KNE 130

• paper exam, closed book & closed notes

– we will provide you with a small reference sheet*

– you should bring your Husky card + writing tool

• focuses of the exam

– proving correctness of code

– implement (small) TS functions according to a spec

– writing tests for code (using testing heuristics)

– broader conceptual questions on all course topics (incl. 

debugging, client--server programming, OOP…)

• must let me know by Tuesday if there is a conflict
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Final Exam: Studying

• we intend for the exam to:
– mirror the homework as much as possible*

exception: some broader conceptual questions on coding material & topic 10

– thus, should not require significant explicit studying*

two key differences: closed book/notes and timed

• Matt’s advice
– do HW9! this will help you for the exam!

– start by making sure you’re solid on course content

not just reviewing slides/lectures – can you do the section problems & HW?

take notes on what’s hard. Get help on this!

– once you’re solid, then try a practice exam

simulate the exam environment (e.g. closed book & notes, time yourself)

after you do the exam – go back to the previous step!
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Final Exam: Other Resources

• existing 23sp practice midterm & final on website

• next week’s quiz section is exam review

– don’t skip to work on HW9!

• also dropping next week:

– another practice final & solutions (written by Matt)

– some async videos going through final solutions

• finals week:
– no office hours

– TA-led exam review session (likely Monday)

– still will be active on Ed!
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Specifying & Using

Mutable ADTs



Recall: Immutable Map ADT

• An "association list" also called a "map"

// List of (key, value) pairs

interface Map<K, V> {

  // @returns contains-key(x, obj)

  containsKey(x: K): boolean;

  // @requires contains-key(x, obj)

  // @returns get-value(x, obj)

  getValue(x: K): V;

  // @returns set-value(x, v, obj)

  setValue(x: K, v: V): Map<K, V>;

}

observer

observer

producer
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Using the Immutable Map ADT

// @returns a positive number

const f = (M: Map<string, number>): number => {

  const M1 = M.setValue("one", 2);

  const r = M1.getValue("one");

  return r;

};

• Let's check that this code is correct…
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Proving Correct Use of Immutable Map (1/4)

// @returns a positive number

const f = (M: Map<string, number>): number => {

  const M1 = M.setValue("one", 2);

  const r = M1.getValue("one");

  {{ Post: r > 0 }}

  return r;

};

// @requires contains-key(x, obj)

// @returns get-value(x, obj)

getValue(x: K): V;
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Proving Correct Use of Immutable Map (2/4)

// @returns a positive number

const f = (M: Map<string, number>): number => {

  const M1 = M.setValue("one", 2);

  {{ get-value("one", M1) > 0 }}

  const r = M1.getValue("one");

  {{ Post: r > 0 }}

  return r;

};

// @returns set-value(x, v, obj)

setValue(x: K, v: V): Map<K, V>;
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Proving Correct Use of Immutable Map (3/4)

// @returns a positive number

const f = (M: Map<string, number>): number => {

  {{ get-value("one", set-value("one", 2, M)) > 0 }}

  const M1 = M.setValue("one", 2);

  {{ get-value("one", M1) > 0 }}

  const r = M1.getValue("one");

  {{ Post: r > 0 }}

  return r;

};
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Proving Correct Use of Immutable Map (4/4)

// @returns a positive number

const f = (M: Map<string, number>): number => {

  {{ get-value("one", set-value("one", 2, M)) > 0 }}

  const M1 = M.setValue("one", 2);

  {{ get-value("one", M1) > 0 }}

  const r = M1.getValue("one");

  {{ Post: r > 0 }}

  return r;

};

set-value(x, v, L) := (x, v) :: L

get-value(x, (y, v) :: M) := v    if x = y
get-value(x, (y, v) :: M) := get-value(x, M) if x ≠ y

get-value("one", set-value("one", 2, M))
   = get-value("one", ("one", 2) :: M)   def of set-value
   = 2         def of get-value
   > 0
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Recall: Mutable Map

• An "association list" also called a "map"

// List of (key, value) pairs

interface Map<K, V> {

  // @returns contains-key(x, obj)

  containsKey(x: K): boolean;

  // @requires contains-key(x, obj)

  // @returns get-value(x, obj)

  getValue(x: K): V;

  // @modifies obj

  // @effects obj = set-value(x, v, obj)

  setValue(x: K, v: V): void;

}

observer

observer

mutator

We still need the immutable math functions

(e.g., set-value ) to define a mutable ADT
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Using the Mutable Map

// @returns a positive number

const f = (M: Map<string, number>): number => {

  M.setValue("one", 2);

  const r = M.getValue("one");

  return r;

};

• Let's check that this code is correct…

– try this forward this time…
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Proving Correct Use of Mutable Map (1/4)

// @returns a positive number

const f = (M: Map<string, number>): number => {

  M.setValue("one", 2);

  const r = M.getValue("one");

  return r;

};

// @modifies obj

// @effects obj = set-value(x, v, obj)

setValue(x: K, v: V): void;
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Proving Correct Use of Mutable Map (2/4)

// @returns a positive number

const f = (M: Map<string, number>): number => {

  M.setValue("one", 2);

  {{ M = set-value("one", 2, M0) }}

  const r = M.getValue("one");

  return r;

};

Notice that two versions (M0 vs M1)

show up in the reasoning 

even though our code has one version!
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Proving Correct Use of Mutable Map (3/4)

// @returns a positive number

const f = (M: Map<string, number>): number => {

  M.setValue("one", 2);

  {{ M = set-value("one", 2, M0) }}

  const r = M.getValue("one");

  {{ M = set-value("one", 2, M0) and r = get-value("one", M) }}

  return r;

};
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Proving Correct Use of Mutable Map (4/4)

// @returns a positive number

const f = (M: Map<string, number>): number => {

  M.setValue("one", 2);

  const r = M.getValue("one");

  {{ M = set-value("one", 2, M0) and r = get-value("one", M) }}

  {{ Post: r > 0 }}

  return r;

};

r = get-value("one", M)      
   = get-value("one", set-value("one", 2, M0)) since M = set-value("one", 2, M0)
   = get-value("one", ("one", 2) :: M0)   def of set-value
   = 2         def of get-value
   > 0
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set-value(x, v, L) := (x, v) :: L

get-value(x, (y, v) :: M) := v    if x = y
get-value(x, (y, v) :: M) := get-value(x, M) if x ≠ y



Implementing Mutable ADTs



ADTs in Topic 7

• Main place we have heap state is in an ADT

• Previously:

– state was immutable

– set in the constructor and then never changed

only need to confirm RI holds at the end of the constructor

if RI holds there, then it holds forever

• Now:

– allow state to be changed by methods
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ADTs With Mutability

• Main place we have heap state is in an ADT

• New Power:

– allow state to be changed by methods

• New Responsibilities:

– more complex specifications

add @effects and @modifies

– must check the RI holds after any method that mutates

often a good idea to write code to check this at runtime

– more responsibilities we will meet later…
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Recall: List ADT with a Fast getLast

// Represents an (immutable) list of numbers.

interface FastList {

  // @returns x :: obj

  cons: (x: bigint) => FastList;

  // @returns last(obj)

  getLast: () => bigint|undefined;

  // @returns obj

  toList: () => List<bigint>;

};

const makeFastList = (): FastList => {

  return new FastListImpl(nil);

};

producer method
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Mutable List ADT with a Fast getLast

// Represents a mutable list of numbers.

interface MutableFastList {

  // @modifies obj

  // @effects obj = x :: obj_0

  cons: (x: bigint) => void;

  …

• Method cons changes the list, putting x in front

– now returns void

– mutation explained in @modifies and @effects

abstract state is the old abstract state with x put in front

mutator method
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Recall: One Concrete Rep for FastList

class FastListImpl implements FastList {

  // RI: this.last = last(this.list)

  // AF: obj = this.list

  readonly last: bigint | undefined;

  readonly list: List<bigint>;

  constructor(list: List<bigint>) {

    this.list = list;

    this.last = last(this.list);

  }

  

• We can use the same rep for a mutable version

24



Mutable List ADT Implementation

class MutableFastListImpl implements MutableFastList {

  // RI: this.last = last(this.list)

  // AF: obj = this.list

  last: bigint | undefined;

  list: List<bigint>;

  // @modifies obj

  // @effects obj = x :: obj_0

  cons = (x: bigint): void => {

    this.list = cons(x, this.list);

  };

  

• Let’s check correctness…
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Proving MutableFastListImpl Correct (1/9)

class MutableFastListImpl implements MutableFastList {

  // RI: this.last = last(this.list)

  // AF: obj = this.list

  last: bigint | undefined;

  list: List<bigint>;

  // @modifies obj

  // @effects obj = x :: obj_0

  cons = (x: bigint): void => {

    this.list = cons(x, this.list);

    {{ this.list = x :: this.list0 }}

    {{ Post: obj = x :: obj0 }}

  };
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Proving MutableFastListImpl Correct (2/9)

class MutableFastListImpl implements MutableFastList {

  // RI: this.last = last(this.list)

  // AF: obj = this.list

  last: bigint | undefined;

  list: List<bigint>;

  // @modifies obj

  // @effects obj = x :: obj_0

  cons = (x: bigint): void => {

    this.list = cons(x, this.list);

    {{ this.list = x :: this.list0 }}

    {{ Post: obj = x :: obj0 }}

  };
  

obj = this.list     by AF

 = x :: this.list0     since this.list = cons(x, this.list0)

 = x :: obj0     by AF

What is missing?

Also, need the RI to hold!
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Proving MutableFastListImpl Correct (3/9)

class MutableFastListImpl implements MutableFastList {

  // RI: this.last = last(this.list)

  // AF: obj = this.list

  last: bigint | undefined;

  list: List<bigint>;

  // @modifies obj

  // @effects obj = x :: obj_0

  cons = (x: bigint): void => {

    this.list = cons(x, this.list);

    {{ this.list = x :: this.list0 }}

    {{ Post: obj = x :: obj0 and

    this.last = last(this.list) }}

  };
  

• Postcondition is @returns, @effects, and RI

Also, need the RI to hold!

Does it? No!
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Proving MutableFastListImpl Correct (4/9)

class MutableFastListImpl implements MutableFastList {

  // RI: this.last = last(this.list)

  // AF: obj = this.list

  last: bigint | undefined;

  list: List<bigint>;

  // @modifies obj

  // @effects obj = x :: obj_0

  cons = (x: bigint): void => {

    this.list = cons(x, this.list);

    this.last = last(this.list);

    {{ this.list = x :: this.list0 and this.last = last(this.list) }}

    {{ Post: obj = x :: obj0 and this.last = last(this.list) }}

  };

Rep Invariant now holds
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Proving MutableFastListImpl Correct (5/9)

class MutableFastListImpl implements MutableFastList {

  // RI: this.last = last(this.list)

  // AF: obj = this.list

  last: bigint | undefined;

  list: List<bigint>;

  // @modifies obj

  // @effects obj = x :: obj_0

  cons = (x: bigint): void => {

    this.last = last(this.list);

    {{ this.last = last(this.list) }}

    this.list = cons(x, this.list);

    {{ this.list = x :: this.list0 and this.last = last(this.list0) }}

    {{ Post: obj = x :: obj0 and this.last = last(this.list) }}

  };

Rep Invariant would not hold if we switched the order
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Proving MutableFastListImpl Correct (6/9)

class MutableFastListImpl implements MutableFastList {

  // RI: this.last = last(this.list)

  // AF: obj = this.list

  last: bigint | undefined;

  list: List<bigint>;

  // @modifies obj

  // @effects obj = x :: obj_0

  cons = (x: bigint): void => {

    this.list = cons(x, this.list);

    this.last = last(this.list);

    {{ this.list = x :: this.list0 and this.last = last(this.list) }}

    {{ Post: obj = x :: obj0 and this.last = last(this.list) }}

  };
This version is obviously correct, but O(n).

Can we do it faster?
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Proving MutableFastListImpl Correct (7/9)

class MutableFastListImpl implements MutableFastList {

  // RI: this.last = last(this.list)

  // AF: obj = this.list

  last: bigint | undefined;

  list: List<bigint>;

  // @modifies obj

  // @effects obj = x :: obj_0

  cons = (x: bigint): void => {

    if (this.list === nil)

      this.last = x;

    this.list = cons(x, this.list);

    {{ _____________________________________________________________ }}

    {{ Post: obj = x :: obj0 and this.last = last(this.list) }}

  };

O(1) version, but more complex reasoning (two branches)
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Proving MutableFastListImpl Correct (8/9)

class MutableFastListImpl implements MutableFastList {

  cons = (x: bigint): void => {

    if (this.list === nil)

      this.last = x;

    this.list = cons(x, this.list);

    {{ this.list = x :: this.list0 and this.list0 = nil and this.last = x }}

    {{ Post: obj = x :: obj0 and this.last = last(this.list) }}

  };

Case “then”:

last(this.list) = last(x :: this.list0)    since this.list = x :: this.list0

   = last(x :: nil)      since this.list0 = nil

   = x        def of last

   = this.last      since x = this.last

last(x :: nil)  :=  x 

last(x :: y :: L)  := last(y :: L)
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Proving MutableFastListImpl Correct (9/9)

class MutableFastListImpl implements MutableFastList {

  cons = (x: bigint): void => {

    if (this.list === nil)

      this.last = x;

    this.list = cons(x, this.list);

    {{ this.list = x :: this.list0 and this.list0 ≠ nil and

                this.last = this.last0 and this.last0 = last(this.last0) }}

    {{ Post: obj = x :: obj0 and this.last = last(this.list) }}

Case “else”:

last(this.list) = last(x :: this.list0)   since this.list = x :: this.list0

   = last(this.list0)    since this.list0 ≠ nil

   = this.last0     since this.last0 = last(this.list0)

   = this.last     since this.last = this.last0

from the RI

(will need this) 
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last(x :: nil)  :=  x 

last(x :: y :: L)  := last(y :: L)



Adding getFirst to MutableFastList

// Represents a mutable list of numbers.

interface MutableFastList {

  // @modifies obj

  // @effects obj = x :: obj_0

  cons: (x: bigint) => void;

  // @returns first(obj), where

  //     first(nil)    := 0

  //     first(x :: L) := x

  getFirst: () => bigint|undefined;

  // @returns last(obj), where …

  getLast: () => bigint|undefined;

};
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More Complex Uses of Mutable Map: extend

// @requires L /= nil

// @modifies R

// @effects R = (m+k) :: … :: (m+1) :: R_0,

//    where m = first(L)

const extend = (L: MutableFastList, k: bigint,

                R: MutableFastList): void => {

  let i = 1;

  // Inv: R = (m+i-1) :: … :: (m+1) :: R_0

  while (i <= k) {

    const m = L.getFirst();

    R.cons(m + i);

    i++;

  }

};
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Proving extend Correct (1/5)

// @requires L /= nil

// @modifies R

// @effects R = (m+k) :: … :: (m+1) :: R_0,

//    where m = first(L)

const extend = (L: MutableFastList, k: bigint,

                R: MutableFastList): void => {

  let i = 1;

  // Inv: R = (m+i-1) :: … :: (m+1) :: R_0

  while (i <= k) {

    {{ R = (m+i-1) :: … :: (m+1) :: R0 }}

    const m = L.getFirst();

    R.cons(m + i);

    i++;

    {{ R = (m+i-1) :: … :: (m+1) :: R0 }}

  }
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Proving extend Correct (2/5)

// @requires L /= nil

// @modifies R

// @effects R = (m+k) :: … :: (m+1) :: R_0,

//    where m = first(L)

const extend = (L: MutableFastList, k: bigint,

                R: MutableFastList): void => {

  let i = 1;

  // Inv: R = (m+i-1) :: … :: (m+1) :: R_0

  while (i <= k) {

    {{ R = (m+i-1) :: … :: (m+1) :: R0 }}

    const m = L.getFirst();

    {{ R = (m+i-1) :: … :: (m+1) :: R0 and m = first(L) }}

    R.cons(m + i);

    i++;

    {{ R = (m+i-1) :: … :: (m+1) :: R0 }}

  }
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Proving extend Correct (3/5)

// @requires L /= nil

// @modifies R

// @effects R = (m+k) :: … :: (m+1) :: R_0,

//    where m = first(L)

const extend = (L: MutableFastList, k: bigint,

                R: MutableFastList): void => {

  let i = 1;

  // Inv: R = (m+i-1) :: … :: (m+1) :: R_0

  while (i <= k) {

    const m = L.getFirst();

    {{ R = (m+i-1) :: … :: (m+1) :: R0 and m = first(L) }}

    R.cons(m + i);

    {{ R = (m+i) :: R1 and R1 = (m+i-1) :: … :: (m+1) :: R0 and m = first(L) }}

    i++;

    {{ R = (m+i-1) :: … :: (m+1) :: R0 }}

  }
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Proving extend Correct (4/5)

// @requires L /= nil

// @modifies R

// @effects R = (m+k) :: … :: (m+1) :: R_0,

//    where m = first(L)

const extend = (L: MutableFastList, k: bigint,

                R: MutableFastList): void => {

  let i = 1;

  // Inv: R = (m+i-1) :: … :: (m+1) :: R_0

  while (i <= k) {

    const m = L.getFirst();

    R.cons(m + i);

    {{ R = (m+i) :: R1 and R1 = (m+i-1) :: … :: (m+1) :: R0 and m = first(L) }}

    {{ R = (m+i) :: … :: (m+1) :: R0 }}

    i++;

    {{ R = (m+i-1) :: … :: (m+1) :: R0 }}

  }
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Proving extend Correct (5/5)

// @requires L /= nil

// @modifies R

// @effects R = (m+k) :: … :: (m+1) :: R_0,

//    where m = first(L)

const extend = (L: MutableFastList, k: bigint,

                R: MutableFastList): void => {

  let i = 1;

  // Inv: R = (m+i-1) :: … :: (m+1) :: R_0

  while (i <= k) {

    const m = L.getFirst();

    R.cons(m + i);

    {{ R = (m+i) :: R1 and R1 = (m+i-1) :: … :: (m+1) :: R0 and m = first(L) }}

    {{ R = (m+i) :: … :: (m+1) :: R0 }}

    i++;

  }

};

R = (m+i) :: R1

 = (m+i) :: (m+i-1) :: … :: (m+1) :: R0  since R1 = …
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WWDKS? (What Would Don Knuth Say?)

const extend = (L: MutableFastList, k: bigint,

                R: MutableFastList): void

• We have proven this code correct, but…

• We should also try it…

“Beware of bugs in the above code;

I have only proved it correct, not tried it.”

Donald Knuth, 1977
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Trying extend (1/2)

// @effects R = (m+k) :: … :: (m+1) :: R_0,

//    where m = first(L)

const extend = (L: MutableFastList, k: bigint,

                R: MutableFastList): void => {

• Try out the code:

… // L = 2 :: 1

… // R = 2 :: 1

extend(L, 3, R)

console.log(R);

• What list should this print?

5 :: 4 :: 3 :: 2 :: 1 :: nil
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Trying extend (2/2)

// @effects R = (m+k) :: … :: (m+1) :: R_0,

//    where m = first(L)

const extend = (L: MutableFastList, k: bigint,

                R: MutableFastList): void => {

• Try out the code:

… // L = 2 :: 1

… // R = 2 :: 1

extend(L, 3, R)

console.log(R);

• Instead, it prints 8 :: 5 :: 3 :: 2 :: 1 :: nil ! How?!?

L and R are aliases to the same MutableFastList
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Reasoning with Aliases

• Aliasing breaks reasoning!

– there was nothing wrong with our math

– our math did not correctly describing the program

modeling programs with aliasing is basically impossible

• Isn't this just a weird, special case?

– just double check that L ≠ R

• How about a more practical example?
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Demo: New HW8 Features



Reasoning with (all-too-common) Aliasing!

• Aliasing breaks reasoning!

– there was nothing wrong with our math

– our math did not correctly model the program

modeling programs with aliasing is basically impossible

• Aliasing is rampant in applications!

– no way to easily check that there are no aliases

– cannot reason about or debug individual functions

• Only option is to prevent unexpected aliasing…
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Aliasing and Mutation Don’t Mix

• Aliasing breaks reasoning!

– Root cause: mutating aliased data

– Fix: allow mutation XOR aliasing (i.e., not both)

• Option 1: data is immutable

– program can’t tell if data is aliased

• Option 2: data is not aliased

– local reasoning principles work great

– new responsibility: no aliases of my data

• See also: Rust enforces this rule with type checker
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Implementing More Mutable ADTs



Recall: Immutable Queue ADT

• A queue is a list that can only be changed two ways:

– add elements to the front

– remove elements from the back

// List that only supports adding to the front and

// removing from the end

interface NumberQueue {

  // @returns len(obj)

  size: () => bigint;

  // @returns [x] ++ obj

  enqueue: (x: bigint) => NumberQueue;

  // @requires len(obj) > 0

  // @returns (x, Q) with obj = Q ++ [x]

  dequeue: ()=> [bigint, NumberQueue];

}

observer

producer

producer
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Mutable Queue ADT

• Mutable versions has mutators instead of producers

// Mutable array that only supports adding to the front

// and removing from the end.

interface MutableNumberQueue {

  // @returns obj

  elements(): bigint[];

  // @modifies obj

  // @effects obj = [x] ++ obj_0

  enqueue(x: bigint): void;

  // @requires len(obj) > 0

  // @modifies obj

  // @effects obj_0 = obj ++ [x]

  // @returns x

  dequeue(): bigint;

}

observer

mutator

mutator

51



Recall: Implementing a Queue with Two Lists

// Implements a queue using two lists.

class ListPairQueue implements NumberQueue {

  // AF: obj = this.front ++ rev(this.back)

  // RI: if this.back = nil, then this.front = nil

  readonly front: List;

  readonly back: List;

  // makes obj = concat(front, rev(back))

  constructor(front: List, back: List) {

    …

  }

• Queue was in two parts, front and back

– back stored in reverse order

– full list was this.front ⧺ rev(this.back)
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Implementing Mutable Queue with Two Arrays

// Implements a mutable queue using two arrays.

class ArrayPairQueue implements MutableNumberQueue {

  // AF: obj = rev(this.front) ++ this.back

  front: bigint[];

  back: bigint[];

  // makes obj = vals

  constructor(vals: bigint[]) {

    this.front = [];

    this.back = vals;

  }

We should check this…
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Proving ArrayPairQueue Correct (1/2)

// Implements a mutable queue using two arrays.

class ArrayPairQueue implements MutableNumberQueue {

  // AF: obj = rev(this.front) ++ this.back

  front: bigint[];

  back: bigint[];

  // makes obj = vals

  constructor(vals: bigint[]) {

    this.front = [];

    this.back = vals;

    {{ this.front = [] and this.back = vals }}

    {{ Post: obj = vals }}

  }
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Proving ArrayPairQueue Correct (2/2)

// Implements a mutable queue using two arrays.

class ArrayPairQueue implements MutableNumberQueue {

  // AF: obj = rev(this.front) ++ this.back

  front: bigint[];

  back: bigint[];

  // makes obj = vals

  constructor(vals: bigint[]) {

    this.front = [];

    this.back = vals;

    {{ this.front = [] and this.back = vals }}

    {{ Post: obj = vals }}

  }

obj = rev(this.front) ⧺ this.back  by AF

 = rev([]) ⧺ this.back    since this.front = []

 = [] ⧺ this.back     def of rev

 = this.back = vals     since this.back = vals  

Is this really correct?

No way to say!
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Defensive Programming: Copy-on-Read

// Implements a mutable queue using two arrays.

class ArrayPairQueue implements MutableNumberQueue {

  // AF: obj = rev(this.front) ++ this.back

  front: bigint[];

  back: bigint[];

  // makes obj = vals

  constructor(vals: bigint[]) {

    this.front = [];

    this.back = vals.slice(0, vals.length);

  }

• Must make a copy of the array!

– then, we have the only reference to it (no aliases)
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Faster elements (in Mutable Queue)

// Implements a mutable queue using two arrays.

class ArrayPairQueue implements MutableNumberQueue {

  // AF: obj = rev(this.front) ++ this.back

  front: bigint[];

  back: bigint[];

  // @returns obj

  elements = (): bigint[] => {

    let revFront: bigint[] =

      this.front.slice(0, this.front.length);

    revFront.reverse();

    return revFront.concat(this.back);

  };

This is O(n)…

We can optimize it if front = [].

rev([]) ⧺ this.back = [] ⧺ this.back  = this.back
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elements Reasoning

// Implements a mutable queue using two arrays.

class ArrayPairQueue implements MutableNumberQueue {

  // AF: obj = rev(this.front) ++ this.back

  front: bigint[];

  back: bigint[];

  // @returns obj

  elements = (): bigint[] => {

    if (this.front.length === 0) {

      return this.back;   // O(1) when this.front = []

    } else {

      let revFront: bigint[] =

        this.front.slice(0, this.front.length);

      revFront.reverse();

      return revFront.concat(this.back);

    }

  };

Is this correct?

No way to say!
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Defensive Programming: Copy-on-Write

// Implements a mutable queue using two arrays.

class ArrayPairQueue implements MutableNumberQueue {

  // AF: obj = rev(this.front) ++ this.back

  front: bigint[];

  back: bigint[];

  // @returns obj

  elements = (): bigint[] => {

    let revFront: bigint[] = this.front.slice(0);

    revFront.reverse();

    return revFront.concat(this.back);

  };

• Cannot return an alias to this.back

– must make a copy in all cases
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Moral of the Story for Mutable Heap State

• More mutation gave us better efficiency

– saved memory

– immutable version could be just as fast

• More mutation means more complex reasoning

– more facts to keep track of

– more ways to make mistakes

– more work to make sure we did it right

• New possibilities for exciting bugs!

– must avoid aliasing of anything mutable

we call this “representation exposure”
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Need for Mutable Heap State

• Saw that mutable heap state is complex

– better to avoid when possible

• Cannot be avoided in some cases

1. server-side data storage

2. client-side UI

• In both cases, we try to constrain its use

– including coding conventions to keep ourselves sane
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Administrivia (06/02)

• fixed typo in sample final solution, Task 4b proof

• reminder: Bob Bandes Nominations are out!
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Object-Oriented Programming

• We haven’t done any OO this quarter

– this week, we will see some reasons why!

• Plan for this week:

– focus on topics that are good to know but not needed for HW

usually, mistakes you want to avoid

– every lecture will include one related to OO
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Subtypes of Concrete Types (in math)

• We initially defined types as sets

• In math, a subtype can be thought of as a subset

– e.g., the even integers are a subtype of ℤ

– e.g., the numbers {1, 2, 3, 4, 5, 6} are a subtype of ℤ

– likewise, a superset would be a supertype

• Any even integer “is an” integer

– “is a” is often (but not always) good intuition for subtypes

66



Subtypes of Concrete Types (in TypeScript)

• We initially defined types as sets

• In TypeScript, some subtypes are also subsets

– number has a set of allowed values

– it is a subtype of types that allow those values + more

number | string

number

unknown
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Subtypes of Concrete Types (for records)

• We initially defined types as sets

• In TypeScript, some subtypes are also subsets

– record types require certain fields but allow more

– record type with a superset of the fields is a subtype

{name: string}

{name: string, completed: boolean}
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Subtyping Used by TypeScript: Parameters

• TypeScript uses subtyping in function calls

const f = (s: number | string): number => { … };

const x: number = 3;

… f(x) …

– types are not the same  (number  vs  number | string)

– subtype can be passed where super-type is expected

any element of the subtype “is an” element of the super-type

• Similar rules in Java
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Subtyping Used by TypeScript: Returns

• TypeScript uses subtyping in function calls

const g = (n: number): number => { … };

const x: number | string = g(3);

– types are not the same  (number  vs  number | string)

– subtype can be returned where super-type is expected

any element of the subtype “is an” element of the super-type

• Similar rules in Java
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Subtyping Used by TypeScript: Invariants (1/2)

• TypeScript only sees the declared types

– any other behavior is left to reasoning

• Example: invariants

// RI: 0 <= index < options.length

type OptionState = {

  options: string[],

  index: number

}
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Subtyping Used by TypeScript: Invariants (2/2)

• OptionState is a subtype of the bare record type

– it is a record with those fields

– but reverse is not true

• TypeScript will see these as the same

– will let you pass the top where the bottom is expected

up to us to make sure this doesn’t happen

{options: string[], index: number}

OptionState
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Subtypes of Abstract Types

• Recall: ADTs are collections of functions

– hide the concrete representation

– pass functions that operate on the data

create, observe, mutate

• “Subtypes are subsets” does not work well here

– set of all possible functions with … yuck

• Would be nice to find a cleaner approach
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Subtypes Are Substitutable

• If B is a subtype of A, can send B where A is expected:

const f = (s: A): void => { … }

const g = (): B => { … }

const x: B = …;

f(x);              // okay

const y: A = g();  // okay

– okay to “substitute” a B where an A is expected

A

B
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Liskov Substitution Principle

• Subtypes are substitutable for supertype

– this is the “Liskov substitution principle”

– due to Barbara Liskov

• For ADTs, we use this as our definition of subtypes

– (for concrete types, subsets are usually easier)

photo courtesy MIT

75



Liskov’s Linked Lists

Def: If B is a subtype of A, can send B where A is 

expected. In Java, String is a subtype of Object. 

What is the subtyping relationship between 

List<String> and List<Object>?

Hint: consider these methods:

76

sli.do #cse331

1.  List<String> is a subtype of List<Object> 
2.  List<Object> is a subtype of List<String>

3.  both are subtypes of each other 

4.  neither are subtypes of each other

void foo(List<Object> a) {

  a.add(new Object());

}

String foo(List<String> b) {

  return b.get(0);

}



Defining Substitutable Abstract Types

• When is ADT B substitutable for A?

• Must satisfy two conditions:

1. B must provide all the methods of A

If A has a method “f”, then B must have a method called “f”

2. B’s corresponding method must…

must accept all the inputs that A’s does

must also promise everything in A’s postcondition

I.e., B must have the same or a "stronger" spec
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Review: Stronger Assertions vs Specifications

•  Assertion is stronger iff it holds in a subset of states

•  Stronger assertion implies the weaker one

– stronger is a synonym for “implies”

– weaker is a synonym for “is implied by”

Q2Q1
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Strengthening a Specification (1/3)

interface A {

  f: (x: number) => number

  // @requires x >= 0

  g: (x: number) => number

}

• Stronger specs promise more (or same) outputs

– more specific return type (or thrown type)

interface D extends A {

  f: (x: number) => 0 | 1 | 2 | 3

}

Q2Q1
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Strengthening a Specification (2/3)

interface A {

  f: (x: number) => number

  // @requires x >= 0

  g: (x: number) => number

}

• Stronger specs promise more (or same) outputs

– more specific return type (or thrown type)

– more facts included in  @returns and @effects

interface E extends A {

  // @requires x >= 0

  // @returns an even integer

  g: (x: number) => number

}

– fewer objects listed in @modifies

Q2Q1
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Strengthening a Specification (3/3)

interface A {

  f: (x: number) => number

  // @requires x >= 0

  g: (x: number) => number

}

• Stronger specs allow more (or same) inputs

– allowed argument types are supersets

interface B extends A {

  f: (x: number | string) => number

}

– fewer requirements on arguments

interface C extends A {

  g: (x: number) => number    // x can be negative

}

Q2Q1
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Example: Rectangle and Square

• Is Square a subtype of Rectangle?

– math intuition says yes

– a square “is a” rectangle

• Let’s check this with substitutability…
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Example: Immutable Rectangle and Square

interface Rectangle {

  getWidth: () => number,

  getHeight: () => number

}

// A rectangle with width = height

interface Square extends Rectangle {

  getSideLength: () => number

}

• Is Square substitutable for Rectangle?

– allows the same inputs (none)

– makes the same promises about outputs (numbers)

– adds another promise: both methods return same number

Yes

extra invariant

on abstract state

(an “abstract invariant”)
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Example: Mutable Rectangle and Square (1/2)

interface Rectangle {

  getWidth: () => number,

  getHeight: () => number

  resize: (width: number, height: number) => void

}

// A rectangle with width = height

interface Square extends Rectangle {

  // @requires width = height

  resize: (width: number, height: number) => void

}

• Is Square substitutable for Rectangle?

– allows fewer inputs to resize!

No!
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Example: Mutable Rectangle and Square (2/2)

• None of these work:

// @requires width = height

resize: (width: number, height: number) => void

// @throws Error if width != height

resize: (width: number, height: number) => void

// Sets height = width also

resize: (width: number , height: number) => void

• Mutation sometimes makes subtyping impossible

– yet another reason to avoid it

incomparable specs

weaker spec
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Review: Subclasses

• Subclassing is a means of sharing code

– subclass gets parent fields & methods (unless overridden)

class Product {

  private String name;

  private int price;

  public String getName() {return name; }

  public int getPrice() { return price; }

}

class SaleProduct extends Product {

  private float discount;

  public int getPrice() {

    return (1 – discount) * super.getPrice();

  }

}
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Subclasses are not always Subtypes

• Subclassing does not guarantee subtyping relationship

class Product {

  public int getPrice() { ... }

  // @returns true iff obj’s price < p’s price

  public boolean isCheaperThan(Product p) {

    return getPrice() < p.getPrice();

  }

}

class WackyProduct extends Product {

  // @returns some boolean value

  public boolean isCheaperThan(Product p) {

    return false;

  }

}
Legal Java, but not a subtype
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Subclasses in Java (and other OOP languages)

• Java subclassing is a means of sharing code

– subclass gets parent fields & methods (unless overridden)

• Does not guarantee subtyping

– up to you to check that method specs are stronger

• Java treats it as a subtype

– will let you pass subclasses where superclass is expected

• Subclassing is a surprisingly dangerous feature

– that’s not the only reason…
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Subclasses & Coupling

• Subclassing is a surprisingly dangerous feature

• Subclassing tends to break modularity

– creates tight coupling between super- and sub-class

– often see the “fragile base class” problem

changes to super class often break subclasses

• Let’s see some Java examples…
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Example 1: Tight Coupling

class Product {

  private int price;

  public int getPrice() { return price; }

  // @returns true iff obj’s price < p’s price

  public boolean isCheaperThan(Product p) {

    return getPrice() < p.getPrice();

  }

}

class SaleProduct extends Product {

  public int getPrice() {

    return (1 – discount) * super.getPrice();

  }

}

– looks okay so far…
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Example 1: Tight Coupling Gone Wrong!

class Product {

  private int price;

  public int getPrice() { return price; }

  // @returns true iff obj’s price < p’s price

  public boolean isCheaperThan(Product p) {

    return this.price < p.price;

  }

}

class SaleProduct extends Product {

  public int getPrice() {

    return (1 – discount) * super.getPrice();

  }

}

Made it “faster” by eliminating a method call!

What’s wrong?

Oops! Broke the subclass
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Example 2: Tight Coupling

class InstrumentedHashSet extends HashSet<Integer> {

  private static int count = 0;

  public boolean add(Integer e) {

    count += 1;

    return super.add(e);

  }

  public boolean addAll(Collection<Integer> c) {

    count += c.size();

    return super.addAll(c);

  }

  public int getCount() { return count; }

}

– what could possibly go wrong?
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Example 2: Tight Coupling Gone Wrong!

InstrumentedHashSet S = new InstrumentedHashSet();

System.out.println(S.getCount());  // 0

S.addAll(Arrays.asList(1, 2));

System.out.println(S.getCount());

– what does this print?

• What is printed depends on HashSet’s addAll:

– if it calls add, then this prints 4

– if it does not call add, then this prints 2

• Also possible to be dependent on order of calls

// 4?!?
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Generalizing Examples 1 & 2

• Creates tight coupling between super- and sub-class

• Example 1: super-class needs to know about subclass

– direct field access in parent breaks subclass

• Example 2: subclass needs to know about super-class

– subclass dependent on which methods call each other

• But wait… There’s more!
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Example 3: Tight Coupling

class WorkList {

  // RI: len(names) = len(times) and total = sum(times)

  protected ArrayList<String> names;

  protected ArrayList<Integer> times;

  protected int total;

  public addWork(Job job) {

    addToLists(job.getName(), job.getTime());

    total += job.getTime();

  }

  protected addToLists(String name, int time) {

    names.add(name);

    times.add(time);

  }

}
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Example 3: Tight Coupling … Okay So Far …

// Makes sure no task is too large compared to rest

class BalancedWorkList extends WorkList {

  protected addToLists(String name, int time) {

    if (times.size() <= 3 || 2*time < total)

      super.addToLists(name, time);  // okay

    } else {

      throw new ImbalancedWorkException(name, time);

    }

  }

}

– prevents item from being added if too big

– (also: this subclass is not a subtype!)
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Example 3: Tight Coupling Gone Wrong!

class WorkList {

  // RI: len(names) = len(times) and total = sum(times)

  protected ArrayList<String> names;

  protected ArrayList<Integer> times;

  protected int total;

  public addWork(Job job) {

    int time = job.getTime();  // just one call

    total += time;

    addToLists(job.getName(), time);

  }

}

– reordering the updates breaks the subclass!

– subclass is using total that includes the new job

RI not true in method call
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Generalizing Example 3

• RI can be false in calls to non-public methods

– only needs to hold at end of the public method

• Requires extra care to get it right

– method is tightly coupled with the ones that call it

– needs to know what is true in those methods

not enough to just know the RI

• Hard for multiple people to communicate this clearly

– can be okay when it’s all your code

– very error prone when methods are written by others
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Subclassing Creates Tight Coupling

• Creates tight coupling between super- and sub-class

– direct field access can break subclass

– subclass dependent on which methods call each other

– subclass dependent on order of method calls

– subclass can be called when RI is false

• Often see the “fragile base class” problem

• Subclassing is a surprisingly dangerous feature!

– up to you to verify subclass method specs are stronger

– up to you to prevent tight coupling
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Subclassing is Best Avoided

• Java advice: either design for subclassing or prohibit it

– from Josh Bloch, author of (much of) the Java libraries

• We haven’t used subclassing in TypeScript

– didn’t even describe how to do it!

we’ve just used classes as a quick way to create records

– these problems are the main reason why we avoided it

• Subclassing is not necessary anyway

– we have other ways to share code
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Administrivia (06/04)

• exam review session: Monday, June 9th, 5-6:30 PM 

– in CSE 3rd/4th/5th floor breakouts + one extra TBD CSE room

– each location focused on a topic, otherwise office hours-style

– completely optional

– more details on Ed. Bring your questions!

• Matt is behind on extra sample final – sorry!

– will make an Ed post when available

– no video accompanying final, but will have solutions

• course evals are out!

– please give us (actionable) feedback!

– will dedicate ~ 10 min in lecture on Friday to do them
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Equality of User-Defined Types

• For any type, useful to know which are “the same”

• TypeScript “===” is not useful on records:

{a: 1} === {a: 1}  // false!

– as in Java, this is “reference equality”

– tells you if they refer to the same object in memory

• deepStrictEquals would work here

– checks that the records have the same fields and values

– but that also is not perfect…
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Recall: Queue With Two Lists

// Implements a queue using two lists.

class ListPairQueue implements NumberQueue {

  // AF: obj = this.front ++ rev(this.back)

  readonly front: List<number>;

  readonly back: List<number>;

– three ways of representing the same abstract state:

front  back  front ⧺ rev(back)

[1, 2]  []    [1, 2]

[1]   [2]    [1, 2]

[]   [2, 1]   [1, 2]

– these should be considered equal!
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Defining Equality Methods

• Often useful / necessary to define your own equal

– check if references point to records that are “the same”

• Very important to get definitions correct

– reasoning uses definitions, so

if our definitions are wrong, our reasoning will be wrong

– only tools for checking definitions: simplicity & testing

• Sometimes we can also sanity check them

– saw this in Topic 8, e.g., get-value(x, set-value(x, v, L)) = v

– can do something similar here…
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Properties of Equality Functions

• Often useful / necessary to define your own equal

– check if references point to records that are “the same”

• Sensible definition should act like “=” in math:

1. equal(a, a) = T  for any a : A

2. equal(a, b) = equal(b, a)  for any a, b : A

3. if equal(a, b) and equal(b, c), then equal(a, c)  for any …

– (311 alert: this is an “equivalence relation”)

– Java has two more rules for Object.equal (see Java docs)

reflexive

symmetric

transitive
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Equality in Java

109



Example: Duration & Equality

• Define Duration to be an amount of time in seconds

type Duration = {min : ℤ, sec : ℤ}  with  0 ≤ sec < 60

– second part is a rep invariant

• Can define equality on Duration this way:

equal({min: m, sec: s}, {min: n, sec: t})   :=   (m = n) and (s = t)

– true iff these are the same amount of time

(wouldn’t be true without the invariant)
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Example: Duration & Checking Equality (1/2)

equal({min: m, sec: s}, {min: n, sec: t})   :=   (m = n) and (s = t)

• Does this have the required properties?

– reflexive

equal({min: m, sec: s}, {min: m, sec: s})

    = (m = m) and (s = s)     def of equal

    = T and T

    = T

– symmetric

equal({min: m, sec: s}, {min: n, sec: t})

    = (m = n) and (s = t)     def of equal

    = (n = m) and (t = s)

    = equal({min: n, sec: t}, {min: m, sec: s}) def of equal

proof by calculation

that it holds for any record

111



Example: Duration & Checking Equality (2/2)

equal({min: m, sec: s}, {min: n, sec: t})   :=   (m = n) and (s = t)

• Does this have the required properties?

– reflexive   yes

– symmetric  yes

– transitive  also yes (but a little long for a slide)

• Good evidence that this is a reasonable definition
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Non-Example: “==” in JavaScript

0 == "0"  true

 0 == ""  true

 0 == " "  true

• Which property fails?

– transitivity:  "" != " " (and "0" != " " )

• Good evidence that this is not a reasonable definition
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Example: List Equality (1/3)

• Can define equality on List type this way:

equal(nil, nil)   := T

equal(nil, b :: R)  := F

equal(a :: L, nil)  := F

equal(a :: L, b :: R)  := F   if a ≠ b

equal(a :: L, b :: R)  := equal(L, R) if a = b

• Checks that the values in the list are all the same

– this is a definition, so we can only check it on examples…

1 2 1 2equal(                      ,                      ) 2 2= equal(        ,         )

= equal(nil, nil)

= T
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Example: List Equality (2/3)

• Can define equality on List type this way:

equal(nil, nil)   := T

equal(nil, b :: R)  := F

equal(a :: L, nil)  := F

equal(a :: L, b :: R)  := F   if a ≠ b

equal(a :: L, b :: R)  := equal(L, R) if a = b

• Checks that the values in the list are all the same

– this is a definition, so we can only check it on examples…

equal(                      ,                      )1 2 1 3 = equal(        ,         )2 3

= F
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Example: List Equality (3/3)

• Can define equality on List type this way:

equal(nil, nil)   := T

equal(nil, b :: R)  := F

equal(a :: L, nil)  := F

equal(a :: L, b :: R)  := F   if a ≠ b

equal(a :: L, b :: R)  := equal(L, R) if a = b

• Has all three required properties

– how would we prove equal(L, L) holds for any list L?

induction
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Recall: Abstract Data Types (ADTs)

• Abstraction over data

– hide the details of the data representation

– only give users a set of operations (the interface)

data abstraction via procedural abstraction

• Can define Duration as an ADT instead…

– hide the representation as two fields
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Example: Duration as an ADT

// Represents an amount of time measured in seconds

class Duration {

  // RI: 0 <= sec < 60

  // AF: obj = 60 * this.min + this.sec

  readonly min: number;

  readonly sec: number;

  equal = (d: Duration): boolean => {

    return this.min === d.min && this.sec === d.sec;

  };

  …

– defines Duration as an ADT

getTime method not shown

equal still makes sense, just as before
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Recall: Subtypes vs Subclasses

• Subclasses are code sharing

– everything from the parent is copied into the subclass

– subclass can also replace (override) with its own versions

• Subtypes must be substitutable for supertype

– this is the “Liskov substitution principle”

– due to Barbra Liskov

• Not all subclasses are subtypes!

– it's dangerous whenever that happens
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Example: NanoDuration

• Suppose a subclass also measures nanoseconds

class NanoDuration extends Duration {

  // min: number (inherited)

  // sec: number (inherited)

  readonly nano: number;

  …

• How should we define equal?

– remember that it takes an argument of type Duration

we cannot accept fewer arguments
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Example: NanoDuration & Equality

class NanoDuration extends Duration {

  // min: number (inherited)

  // sec: number (inherited)

  readonly nano: number;

  equal = (d: Duration): boolean => {

    if (d instanceof NanoDuration) {

      return this.min === d.min &&

             this.sec === d.sec &&

             this.nano === d.nano;

    } else {

      return false;

    }

  };

– which property does this lack?

symmetry

Must take Duration

argument to be a subtype
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Example: NanoDuration & Equality, Gone Wrong

const d = new Duration(2, 10);

const n = new NanoDuration(2, 10, 300);

console.log(n.equal(d));  

console.log(d.equal(n));  

– NanoDuration is only equal to other NanoDurations

– Duration can be equal to a NanoDuration

if they have the same minutes and seconds

// false

// true!
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Example: NanoDuration & Equality, Round 2

class NanoDuration extends Duration {

  // min (inherited)

  // sec (inherited)

  readonly nano: number;

  equal = (d: Duration): boolean => {

    if (d instanceof NanoDuration) {

      return this.min === d.min &&

             this.sec === d.sec &&

             this.nano === d.nano;

    } else {

      return this.min == d.min && this.sec == d.sec;

    }

  };

– fixes symmetry! all good now?

No! It lacks transitivity
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Example: NanoDuration & Equality, Still Wrong

const n1 = new NanoDuration(2, 10, 300);

const d = new Duration(2, 10);

const n2 = new NanoDuration(2, 10, 400);

console.log(n1.equal(d));

console.log(d.equal(n2));

console.log(n1.equal(n2));

– transitivity requires n1 to equal n2 (but it doesn’t)

// true

// true

// false!
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Subclasses and Equals Don’t Always Mix

• No good solution to this problem!

– inherent tension between subtyping and equality

subtyping wants subclasses to behave the same

equality wants to treat them differently (using extra information)

• This is a general problem for “binary operations”

– equality is just one example

• Real issue is that NanoDuration isn’t a subtype…

– would have seen this if we documented the ADT carefully
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NanoDuration isn’t a Duration?

• Suppose a subclass also measures nanoseconds

// Represents an amount of time in nanoseconds

class NanoDuration extends Duration {

  // RI: 0 <= sec < 60 and 0 <= nano < 10000

  // AF: obj = 60,000,000 * this.min +

  //           1,000,000 * this.sec +

  //           this.nano

  readonly nano: number;

}

• Abstract states of the two types are different

– time in seconds vs nanoseconds

– abstract states of subtypes would need to be subtypes
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Constructors



Public Constructors

• Most Java classes have public constructors

– e.g., create an ArrayList with “new ArrayList<String>()”

• For our ADTs, we didn’t do this

– class was hidden (not exported)

– we exported a “factory function” that used the constructor

e.g., makeSortedNumberSet

– this was not accidental…

• Constructors have undesirable properties

– surprisingly error-prone

– several important limitations

128



Method Calls from Constructors

• Any method call from a constructor is dangerous!

• Almost always calling with RI false

– usually, the RI does not hold until all fields are assigned

typically, that is the last line of the constructor

– hence, any methods are called with the RI still false

• Asking for trouble!

– method needs to know that some parts of RI may be false

– eventually, someone changing code will mess this up

– better to avoid method calls in the constructor
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Limitations of Constructors

• Constructor is called after the object is created

– can’t decide, in the constructor, not to create it

• Limitations of constructors

1. Cannot return an existing object

2. Cannot return a different class

3. Does not have a name!
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Singleton

• Factory functions can return an existing object

• Common case: there is only one instance!

– factory function can avoid creating new objects each time

– called the “singleton” design pattern

• Example from before…
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Example Singleton

interface FastList {

  cons(x: bigint): FastList;

  getLast(): bigint|undefined;

  toList(): List<bigint>;

};

const nilList: FastList = new FastBackList(nil);

const makeFastList = (): FastList => {

  return nilList;

};

• No need to create a new object using “new” every time

– can reuse the same instance

– example of the “singleton” design pattern

Note: only allowed because FastList is immutable
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Returning a Subtype

• Factory functions can return a subtype

– declared to return A but returns subtype B instead

– allowed since every B is an A

• Example:

// @returns an empty NumberSet that can be used to

//     store numbers between min and max (inclusive)

const makeNumberSet = (min: number, max: number): NumberSet => {

  if (0 <= min && max <= 100) {

    return makeArrayNumberSet();  // only supports small sets

  } else {

    return makeSortedNumberSet(); // use a tree instead

  }

}
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Recall: Multiple Constructors

• Java classes allow multiple constructors

class HashMap {

  public HashMap() { … }  // initial capacity of 16

  public HashMap(int initialCapacity) { … }

}

• TypeScript classes do not, but

you can fake it with optional arguments

class HashMap {

  constructor(initialCapacity?: number) { ... }

}
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Constructors Have No Name

• Do not get to name constructors

– in Java, same name as the class

– in TypeScript, called “constructor”

• Names are useful!

1. Let you distinguish between different cases

– use names to distinguish cases that otherwise look the same

2. Let you explain what it does

– the only thing you know the client will read!
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Example: Distinguishing Constructors (1/3)

• JavaScript’s Array has multiple constructors

new Array()          // creates []

new Array(a1, …, aN) // creates [a1, …, aN]

new Array(2)         // creates [undefined, undefined]

– what does “new Array(a1)” return when a1 is a number?

– how to make a 1-element array containing just a1

const A = new Array(1);

A[0] = a1;

– don’t have a name to distinguish these cases!
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Example: Distinguishing Constructors (2/3)

• Factory functions have names

– allow us to distinguish these cases

// @returns []

const makeEmptyArray = (): Array => { … };

// @returns A with A.length = len and

//     A[j] = undefined for any 0 <= j < len

const makeArray = (len: number): Array => { … };

// @returns [args[0], …, args[N-1]]

const makeArrayContaining = (...): Array => { … };

– function name is also the one thing you know clients read!

best chance to tell them how to use it correctly
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Example: Distinguishing Constructors (3/3)

• Factory functions have names

– allow us to distinguish these cases

// @returns []

const makeEmptyArray = (): Array => { … };

// @returns A with A.length = len and

//     A[j] = undefined for any 0 <= j < len

const makeArray = (len: number): Array => { … };

// @returns A with A.length = len and

//     A[j] = val for any 0 <= j < len

const makeFilledArray =

    (len: number, val: number): Array => { … };

Be very, very careful…
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Argument Order Bugs

// @returns A with A.length = len and

//     A[j] = val for any 0 <= j < len

const makeFilledArray =

    (len: number, val: number): Array => { … };

• Some famous bugs due to mixing up argument order!

• If you program long enough, you will see this one

Be very, very careful…

Type checker won’t notice if client mixes these up!
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Use Records to Force Call-By-Name

• Can use a record to make clients type names

// @returns A with A.length = len and

//     A[j] = val for any 0 <= j < len

const makeFilledArray =

    (desc: {len: number, value: number}): Array

– takes one argument, not two

– client writes “makeFilledArray({len: 3, value: 0})”

much easier in JS than Java

• Think about mistakes clients might make

– be paranoid when debugging will be painful
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Administrivia (06/06)

• final exam Tue, June 10th, 12:30-2:20 in KNE 130

– bring just your Husky Card (ID) and writing utensil

• exam resources since last lecture…

– exam review session details finalized (see Ed post)

– 23sp sample final videos published!

– Matt’s sample final + solutions out tonight

•  Bob Bandes Nominations are out!
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First: Wrapping Up



What We Hope You Got From 331: The Core

• A toolkit for reasoning about code correctness

– within 331: formalized “expert intuition” with math

– requires slow, careful, and rigorous thinking

– used before testing & debugging (~ complementary)

• Learning when to use this toolkit

– not every problem requires it!

– treat reasoning as a spectrum

most experts reason informally for simple problems…

... use diagrams for difficult problems …

… and bring out pencil & paper for brutal problems!

(or, “automated reasoning” tools, e.g. proof assistants)
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What We Hope You Got From 331: Bonuses

• learning JavaScript & TypeScript

– different approaches to types & OOP than Java

– some issues are fundamental to both languages

• writing complex web applications

– async code is tricky!

– client-server interaction is complicated

– debugging client-server apps is hard!

– made some fun projects :)

• computer science is much more than writing code

– fundamental focus on reasoning & abstraction

– but also: many applications of “theoretical” CS & math
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If you want more…

• reasoning, math, and programming languages

– CSE 341 (PL), CSE 401 (Compilers), CSE 403 (SWE)

– CSE 505 (Grad PL), CSE 507 (Automated Reasoning)

– check out UW PLSE!

• interactive application development

– some great courses in CSE

CSE 340 (interaction programming, mobile dev), CSE 154 (web dev)*

more broadly: CSE 440 (HCI), CSE 442 (viz), CSE 443 (accessibility)

– but also, large culture of free self-paced resources

now have most of the vocabulary to learn reactive programming

largest barrier is time & practice, not “theory”

• matt’s summer advice : build your own side project!
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Course Evals

• This iteration of 331 is still relatively new

– some things probably (?) went well

– some things could still be better!

• Please give us feedback!

– your perspective is valuable; we read everything!

– one request: please be specific and actionable

specificity helps us understand problems

actionable suggestions scope out the solution space

– CSE 331 A eval link, CSE 331 B eval link

– also: your quiz section has an eval!
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Recall: Design Patterns

• Popularized in 1994 book of that name

– written by the “Gang of Four”

Gamma, Helm, Johnson, Vlissides

– worked in C++ and SmallTalk

(SmallTalk hugely influenced OOP in Java, etc.)

• Found that they independently developed

many of the same solutions to recurring problems

– wrote a book about them

• Many are problems with OO languages

– authors worked in C++ and SmallTalk

– some things are not easy to do in those languages
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Parts of a Design Patterns

Each pattern in the book includes

•  Problem to be solved

•  Description of the solution

•  Name of the pattern
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Java Example: Iterator

• Java Collections use the Iterator Design Pattern

– enumerate a collection while hiding data structure details

– return another ADT that outputs the items

that object knows how to walk through the data structure

operations for retrieving the current item and moving on to the next one

• Clever idea that is now used everywhere

– Kevin remembers when C++ introduced iterators

– huge improvement over code we were writing before
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Categories of Design Patterns (1/2)

The book has three categories of patterns

•  Creational: factory function, factory object,

     builder, prototype, singleton, …

•  Structural: adapter, bridge, composite, decorator,

     façade, flyweight, proxy

•  Behavioral: command, interpreter, iterator, mediator,

     observer, state, strategy, visitor, …

– we will not cover all, just some highlights
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Categories of Design Patterns (2/2)

The book has three categories of patterns

•  Creational: factory function, factory object,

     builder, prototype, singleton, …

•  Structural: adapter, bridge, composite, decorator,

     façade, flyweight, proxy

•  Behavioral: command, interpreter, iterator, mediator,

     observer, state, strategy, visitor, …

–  green and underlined = mentioned already
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Creational Patterns

The book has three categories of patterns

•  Creational: factory function, factory object,

     builder, prototype, singleton, …

•  Structural: adapter, bridge, composite, decorator,

     façade, flyweight, proxy

•  Behavioral: command, interpreter, iterator, mediator,

     observer, state, strategy, visitor, …

–  green and underlined = mentioned already
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Why Creational Patterns?

• One third of the patterns deal with object creation

• We just saw why: constructors are terrible

– surprisingly error-prone

– several important limitations

1. Cannot return an existing object

2. Cannot return a different class

3. Does not have a name!

• Already saw factory functions and singleton

– yet we still need more!
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Creational Pattern: Builder

• Object that helps with creation of another object

– constructor / factory requires you to give info all at once

– builder lets you describe what you want bit by bit

• Java Example: StringBuilder

StringBuilder buf = new StringBuilder();

buf.append("Total distance: ");

buf.append(distance);

buf.append(" meters.");

return buf.toString();

– each call adds more text / number to the final string

– we can’t do this with strings because strings are immutable
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Builders and “Mutation XOR Aliasing”

• Object that helps with creation of another object

– constructor / factory requires you to give info all at once

– builder lets you describe what you want bit by bit

• Good pairing: mutable Builder for an immutable type

– must avoid aliasing with the mutable builder

e.g., never use it as a key in a BST or Map

– immutable object can be shared arbitrarily

no worries about aliasing
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Writing a Builder

•  Builder is often written like this:

class FooBuilder {

  …

  public FooBuilder setX(int x) {

    this.x = x;

    return this;

  }

  …

  public Foo build() { … }

}

– can then use them like this

Foo f = new FooBuilder().setX(1).setY(2).build();

avoids worries about argument order 159



Recall: Argument Order Bugs

// @returns A with A.length = len and

//     A[j] = val for any 0 <= j < len

const makeFilledArray =

    (len: number, val: number): Array => { … };

• Some famous bugs due to mixing up argument order!

• If you program long enough, you will see this one

• Can fix with a record argument or a Builder

– Java does not have record types, so we need the latter

Be very, very careful…

Type checker won’t notice if client mixes these up!
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Argument Builder

// Returns an array with length & value given in args.

public Integer[] makeFilledArray(args: Args) { … }

class Args {

  public int length;

  public int value;

}

Args args = new Args();

args.length = 10;

args.value = 5;

… = makeFilledArray(args);

– code using the function is now more verbose…

can make this easier by giving them a Builder
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Writing an Argument Builder

// Returns an array with length & value given in args.

public Integer[] makeFilledArray(args: Args) { … }

class ArgsBuilder {

  …

  public ArgsBuilder setLength(int length) {

    this.length = length;

    return this;

  }

  …

  public Args toArgs() { … }

}

… = makeFilledArray(new ArgsBuilder()

    .setLength(10).setValue(5).toArgs());
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Structural Patterns

The book has three categories of patterns

•  Creational: factory function, factory object,

     builder, prototype, singleton, …

•  Structural: adapter, bridge, composite, decorator,

     façade, flyweight, proxy

•  Behavioral: command, interpreter, iterator, mediator,

     observer, state, strategy, visitor, …

–  green and underlined = mentioned already
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Recall: Java and Interoperability

• Mentioned this one in Topic 2…

• In Java, these two classes are not interoperable:

interface Duration {

  int getMinutes();

  int getSeconds();

}

interface AmountOfTime {

  int getMinutes();

  int getSeconds();

}

– cannot pass one where the other is expected
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Structural Pattern: Adapter

• Mentioned this one in Topic 2…

• Get around this by creating an adapter

class DurationAdapter implements AmountOfTime {

  private Duration d;

  public DurationAdapter(Duration d) {

    this.d = d;

  }

  int getMinutes() { return d.getMinutes(); }

  int getSeconds() { return d.getSeconds(); }

}

– makes a Duration into an AmountOfTime
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Adapters and Type Systems

• Adapters are often needed with nominal typing

– design pattern working around a language issue

• With structural typing, these two interoperate:

type Duration = {min: number, sec: number};

type AmountOfTime = {min: number, sec: number};

– can pass either where the other is expected

– not an issue of concrete vs abstract

still interoperable if we have getMinutes and getSeconds methods
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Behavioral Patterns

The book has three categories of patterns

•  Creational: factory function, factory object,

     builder, prototype, singleton, …

•  Structural: adapter, bridge, composite, decorator,

     façade, flyweight, proxy

•  Behavioral: command, interpreter, iterator, mediator,

     observer, state, strategy, visitor, …

–  green and underlined = mentioned already
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Trees

• Trees are inductive data types

– anything with a constructor that has 2+ recursive arguments

HW8 tree (Square) has 4 recursive arguments

• They arise frequently in practice

–  HTML: used to describe UI

–  JSON: used for client/server communication

–  parse trees: represent code
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Parse Tree Example

• Output of parsing is a tree

– encodes the order of operations

• Example: parse of “x = a * 3 + b / 4”

x +

=

*

a3

/

4b
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Defining Parse Trees Inductively

• Output of parsing is a tree

– records the order of operations

• Parse tree is an inductive data type

type Expression  :=  variable(name: 𝕊*)

        |   constant(val : ℤ)

        |   plus(left : Expr, right : Expr)

        |   times(left : Expr, right : Expr)

        |   divide(left : Expr, right : Expr)

        |   assign(name : 𝕊*, value : Expr)

– parse of “x = a * b + c / d”

assign("x", plus(times(constant(3), variable("a")),

                            divide(variable("b"), constant(4)))
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Operations on Parse Trees (1/2)

• Compilers perform various operations on expressions

– type check

– evaluate

– code generation

• Each operation defined for each type of expression

Type of Expr

Variable Plus Times

Operation
type check

evaluate

code gen
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Operations on Parse Trees (2/2)

• Need to write code for each box

– each case is slightly different

• Two reasonable ways to organize into files

– file per expression type:  Interpreter pattern

– file per operation:   Procedural pattern

Type of Expr

Variable Plus Times

Operation
type check

evaluate

code gen
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Interpreter Pattern Example

interface Expr {

  typeCheck = (c: Context) => Type,

  evaluate = (c: Context) => number | undefined,

  generate = (c: Context) => List<Instruction>

}

class Variable implements Expr {

  name: string;

  typeCheck = (c: Context): Type => {

    return c.get(this.name);

  }

  evaluate = (c: Context): number | undefined => {

    return undefined;

  }

  …

}

• Each type of expression is a class
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Interpreter Pattern Tradeoffs

interface Expr {

  typeCheck = (c: Context) => Type,

  evaluate = (c: Context) => number | undefined,

  generate = (c: Context) => List<Instruction>

}

• Easy to add new types of expression

– new subtype of Expr

– goes into its own file

• Hard to add new operations

– new method of Expr

– changes every file
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Procedural Pattern Example

interface Procedure<R> {

  processVar = (v: Variable, c: Context) => R,

  processConst = (n: Constant, c: Context) => R,

  …

}

class TypeChecker implements Procedure<boolean> {

  processVar = (v: Variable, c: Context): boolean => {

    return c.has(v.name);

  }

  processConst = (n: Constant, c: Context): boolean => {

    return true;

  }

  …

}

• Each type of procedure is a class

–  one method for each type of expression
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Procedural Pattern Tradeoffs

interface Procedure<R> {

  processVar = (v: Variable, c: Context) => R,

  processConst = (n: Constant, c: Context) => R,

  …

}

• Easy to add new types of operations

– new subtype of Procedure

– goes into its own file

• Hard to add new expressions

– new method of Procedure

– changes every file
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Interpreter vs Procedural Pattern

• Both patterns are reasonable

– best choice is problem-dependent

for a compiler, I prefer the procedural pattern

• But there is a problem with Procedural in OO

– suppose e is an Expr but we don’t know which one

– how do we call the right method?

could be processVar, processConst, processPlus, …
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Problems with Procedural Pattern in OO

const process = (p: Procedure, e: Expr, c: Context) => {

  if (e instanceof Variable) {

    p.processVar(e, c);

  } else if (e instanceof Constant) {

    p.processConst(e, c);

  } else if (e instanceof Plus) {

    p.processPlus(e, c);

  } else …

}

• Not great, Bob!

– code is slow

– will call it enough times that this will matter

• There is a solution, but… buckle up!
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Dynamic Dispatch (good case in Java)

interface Expr {

  boolean typeCheck(Context c);

}

class Variable implements Expr {

  public boolean typeCheck(Context c) { … }

}

class Constant implements Expr {

  public boolean typeCheck(Context c) { … } 

}

• Java / TypeScript (or any OO) makes this case easy

Expr e = …

e.typeCheck(c);         // e could be any Expr

– automatically “dispatches” to the right method
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Dynamic Dispatch (bad case in Java)

interface Procedure<R> {

  R process(Variable v, Context c);

  R process(Constant n, Context c);

  …

}

class TypeChecker implements Procedure<Boolean> {

  Boolean process(Variable v, Context c) { … }

  Boolean process(Constant c, Context c) { … }

  …

}

• This is impossible in Java:

TypeChecker t = new TypeChecker();

Expr e = …

t.process(e, c);         // e could be any Expr

overloading
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“Fixing” Impossible Dynamic Dispatch

• This is impossible in Java:

TypeChecker t = new TypeChecker();

Expr e = …

t.process(e, c);         // e could be any Expr

• Need to put “e” before “.” to get dynamic dispatch

– here’s how we do that… (gulp)

181



Implementing Double Dispatch

interface Procedure<R> {

  R process(Variable v, Context c);

  R process(Constant n, Context c);

  …

}

interface Expr {

  R perform(Procedure<R> p, Context c);

}

class Variable implements Expr {

  public R perform(Procedure<R> p, Context c) {

    p.process(this, c);

  }

}

class Constant implements Expr {

  public R perform(Procedure<R> p, Context c) {

    p.process(this, c);

  }

}

calls process(Variable, Context)

calls process(Constant, Context)
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Using Double Dispatch

interface Procedure<R> {

  R process(Variable v, Context c);

  R process(Constant n, Context c);

  …

}

interface Expr {

  R perform(Procedure<R> p, Context c);

}

• We can now do this

Process p = new TypeChecker();

Expr e = …

e.perform(p, c);         // e could be any Expr

– calls Expr.perform, which calls TypeChecker.process

– two function calls is still faster than all the “if”s
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Multiple Dispatch?

• This works, but... why so hard?

• Other languages just let you do this:

Process p = new TypeChecker();

Expr e = …

p.process(e, c);         // e could be any Expr

– or even more general “multiple dispatch” cases

– use a better language?
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Traversing Trees

• Same idea is used to traverse trees

type Expression  :=  variable(name: 𝕊*)

        |   constant(val : ℤ)

        |   plus(left : Expr, right : Expr)

        |   times(left : Expr, right : Expr)

        |   divide(left : Expr, right : Expr)

        |   assign(name : 𝕊*, value : Expr)

– parse of “x = 3 * a + b / 4”

assign(“x”, plus(times(constant(3), variable(“a”)),

                            divide(variable(“b”), constant(4)))

– would like to process (“visit”) each node in this tree
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Visitor Pattern

interface ExprVisitor {

  visitVariable = (v: Variable) => void,

  visitConstant = (n: Constant) => void,

  visitPlus = (p: Plus) => void,

  …

}

interface Expr {

  // Visits this node and all its children.

  accept = (v: ExprVisitor) => void

}

class Variable implements Expr {

  name: string;

  accept = (v: ExprVisitor): void => {

    v.visitVariable(this);

  }

}
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Visitor Pattern (with child nodes)

• Combines double dispatch with tree traversal

class Plus implements Expr {

  left: Expr;

  right: Expr;

  accept = (v: ExprVisitor): void => {

    left.accept(v);

    right.accept(v);

    v.visitVariable(this);

  }

}

– traverses children before visiting parent
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Visitor Pattern (in steps)

p.accept(v)

   t.accept(v)

     h.accept(v)

       v.visitConstant(h)

     a.accept(v)

       v.visitVariable(a)

     v.visitTimes(t)

   d.accept(v)

     …

     v.visitDivide(f)

   v.visitPlus(p)

+

*

a3

/

4b

p

t d

h fa b
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