
Arrays I

Matt Wang
& Ali, Alice, Andrew, Anmol, Antonio, Connor,

Edison, Helena, Jonathan, Katherine, Lauren,

Lawrence, Mayee, Omar, Riva, Saan, and Yusong

CSE 331

Spring 2025

xkcd #2939

Administrivia (05/23)

• HW8 is out!

– beware: coding portion has a good chunk of math!

– but also: very fun app :)

• Holiday on Monday…

– no class

– no office hours

– some (reduced) Ed activity

• Implication: please start HW8 early!!

• next Fri: a bit on the final exam

2

List Indexing

 at : (List, ℕ) → ℤ

 at(nil , n) := undefined

 at(x :: L , 0) := x

 at(x :: L , n+1) := at(L, n)

• Retrieve an element of the list by index

– use "L[j]" as an abbreviation for at(j, L)

• Not an efficient operation on lists…

3

Linked Lists in Memory

• Must follow the "next" pointers to find elements

– at(L, n) is an O(n) operation

– no faster way to do this

1

3

5

2

4L

4

Faster Implementation of at

• Alternative: store the elements next to each other

– can find the n-th entry by arithmetic:

location of L[4] = (location of L) + 4 * sizeof(data)

• Resulting data structure is an array

– consider: arrays can be an implementation of the List ADT

1 3 52 4

L L[4]

5

Array Efficiency

• Resulting data structure is an array

• Efficient to read L[i]

• Inefficient to…

– insert elements anywhere but the end

– write operations with an immutable ADT

– trees can do all of this in O(log n) time

1 3 52 4

L L[4]

6

Access By Index

• Easily access both L[0] and L[n-1], where n = len(L)
– can process a list in either direction

• “With great power, comes great responsibility”
— the Peter Parker Principle

• Whenever we write “A[j]”, we must check 0 ≤ j < n
– new bug just dropped!

with list, we only need to worry about nil and non-nil

once we know L is non-nil, we know L.hd exists

– TypeScript will not help us with this!

type checker does catch “could be nil” bugs, but not this

7

Recall: Sum List With a Loop

sum-acc(nil, r) := r

 sum-acc(x :: L, r) := sum-acc(L, x + r)

• Tail recursive version is a loop

const sum = (S: List<bigint>): bigint => {

 let r = 0;

 // Inv: sum(S0) = r + sum(S)

 while (S.kind !== "nil") {

 r = S.hd + r;

 S = S.tl;

 }

 return r;

};

Change to a version that uses indexes…

8

Sum Array by Index

• Change to using an array and accessing by index

const sum = (S: Array<bigint>): bigint => {

 let r = 0;

 let j = 0;

 // Inv: …

 while (j !== S.length) { // … S.kind !== "nil"

 r = S[j] + r; // … r = S.hd + r

 j = j + 1; // … S = S.tl

 }

 return r;

};
Note that S is no longer changing

9

Sum Array by Index: compared to sum-acc

sum-acc : (List, ℕ, ℤ) → ℤ

 sum-acc(S, j, r) := r if j = len(S)

 sum-acc(S, j, r) := sum-acc(S, j+1, S[j] + r) if j ≠ len(S)

• Change to using an array and accessing by index

const sum = (S: Array<bigint>): bigint => {

 let r = 0;

 let j = 0;

 // Inv: …

 while (j !== S.length) {

 r = S[j] + r;

 j = j + 1;

 }

 return r;

};

10

Sublists

• Use indexes to refer to a section of a list (a "sublist"):

 sublist : (List<ℤ>, ℕ, ℤ) → List<ℤ>

 sublist(L, i, j) := nil if j < i

 sublist(L, i, j) := L[i] :: sublist(L, i + 1, j) if i ≤ j

• Useful for reasoning about lists and indexes

• This includes both L[i] and L[j]

sublist(L, 0, 2) = L[0] :: sublist(L, 1, 2) def of sublist (since 0 ≤ 2)

 = L[0] :: L[1] :: sublist(L, 2, 2) def of sublist (since 1 ≤ 2)

 = L[0] :: L[1] :: L[2] :: sublist(L, 3, 2) def of sublist (since 2 ≤ 2)

 = L[0] :: L[1] :: L[2] :: nil def of sublist (since 3 < 2)

 = [L[0], L[1], L[2]]
11

Sublists and Edge Cases

• Use indexes to refer to a section of a list (a "sublist"):

 sublist : (List<ℤ>, ℕ, ℤ) → List<ℤ>

 sublist(L, i, j) := nil if j < i

 sublist(L, i, j) := L[i] :: sublist(L, i + 1, j) if i ≤ j

• The sublist is empty when the range is empty

 sublist(L, 3, 2) = nil

– weird-looking example that comes up a lot:

 sublist(L, 0, -1) = nil

– not an array out of bonds error! (this is math, not Java)

12

Sublist Shorthands and Facts

sublist : (List<ℤ>, ℕ, ℤ) → List<ℤ>

 sublist(L, i, j) := nil if j < i

 sublist(L, i, j) := L[i] :: sublist(L, i + 1, j) if i ≤ j

• Will use "L[i .. j]" as shorthand for "sublist(L, i, j)"

– again, using an operator for most common operations

• Some useful facts about sublists:

L = L[0 .. len(L)-1]

L[i .. j] = L[i .. k] ⧺ L[k+1 .. j] for any k with i – 1 ≤ k ≤ j (and 0 ≤ i ≤ j < n)

13

Sum Array by Index: sum-acc, in math

sum-acc(S, j, r) := r if j = len(S)

 sum-acc(S, j, r) := sum-acc(S, j+1, S[j] + r) if j ≠ len(S)

• Change to using an array and accessing by index

const sum = (S: Array<bigint>): bigint => {

 let r = 0;

 let j = 0;

 // Inv: … ?? …

 while (j != S.length) {

 r = S[j] + r;

 j = j + 1;

 }

 return r;

};

Still need to fill in Inv…

Need a version using indexes.

14

Recall: Sum List With a Loop, with Invariant

• Tail recursive version is a loop

const sum = (S: List<bigint>): bigint => {

 let r = 0;

 // Inv: sum(S0) = r + sum(S)

 while (S.kind !== "nil") {

 r = S.hd + r;

 S = S.tl;

 }

 return r;

}; Inv says sum(S0) is r plus sum of rest (S)

Not the most explicit way of explaining "r"…

15

Visual Intuition for Sum List Loop Invariant

• "r" contains sum of the part of the list seen so far

• Can explain this more simply with indexes…

– no longer need to move S

sum(S0) = r + sum(S)

SS0

16

Visual Intuition for Index & Sublist Loop Invariant

• Sum is the part in "r" plus the part left in S[j .. n-1]

• What sum is in "r"?

 r = sum(S[0 .. j-1])

– we can use just this as our invariant! (it's all we need)

sum(S) = r + sum(S[j .. n-1])

j

S

17

Sum of an Array: Loop Invariant

• Array version uses access by index

const sum = (S: Array<bigint>): bigint => {

 let r = 0;

 let j = 0;

 // Inv: r = sum(S[0 .. j-1])

 while (j != S.length) {

 r = S[j] + r;

 j = j + 1;

 }

 return r;

};
Are we sure this is right?

Let's think it through…

18

Sum of an Array Floyd Logic: Initialization

const sum = (S: Array<bigint>): bigint => {

 let r = 0;

 let j = 0;

 {{ r = 0 and j = 0 }}

 {{ Inv: r = sum(S[0 .. j-1]) }}

 while (j != S.length) {

 r = S[j] + r;

 j = j + 1;

 }

 return r;

};

Does Inv hold initially?

sum(S[0 .. j-1])
 = sum(S[0 .. -1]) since j = 0
 = sum([])
 = 0 def of sum
 = r

19

Sum of an Array Floyd Logic: Postcondition

const sum = (S: Array<bigint>): bigint => {

 let r = 0;

 let j = 0;

 {{ Inv: r = sum(S[0 .. j-1]) }}

 while (j != S.length) {

 r = S[j] + r;

 j = j + 1;

 }

 {{ r = sum(S[0 .. j-1]) and j = len(S) }}

 {{ r = sum(S) }}

 return r;

};

Does the postcondition hold?

r = sum(S[0 .. j-1])
 = sum(S[0 .. len(S)-1]) since j = len(S)
 = sum(S)

20

Sum of an Array Floyd Logic: Loop Body (1/4)

const sum = (S: Array<bigint>): bigint => {

 let r = 0;

 let j = 0;

 {{ Inv: r = sum(S[0 .. j-1]) }}

 while (j != S.length) {

 {{ r = sum(S[0 .. j-1]) and j ≠ len(S) }}

 r = S[j] + r;

 j = j + 1;

 {{ r = sum(S[0 .. j-1]) }}

 }

 return r;

};

21

Sum of an Array Floyd Logic: Loop Body (2/4)

const sum = (S: Array<bigint>): bigint => {

 let r = 0;

 let j = 0;

 {{ Inv: r = sum(S[0 .. j-1]) }}

 while (j != S.length) {

 {{ r = sum(S[0 .. j-1]) and j ≠ len(S) }}

 r = S[j] + r;

 {{ r = sum(S[0 .. j]) }}

 j = j + 1;

 {{ r = sum(S[0 .. j-1]) }}

 }

 return r;

};

22

Sum of an Array Floyd Logic: Loop Body (3/4)

const sum = (S: Array<bigint>): bigint => {

 let r = 0;

 let j = 0;

 {{ Inv: r = sum(S[0 .. j-1]) }}

 while (j != S.length) {

 {{ r = sum(S[0 .. j-1]) and j ≠ len(S) }}

 {{ S[j] + r = sum(S[0 .. j]) }}

 r = S[j] + r;

 {{ r = sum(S[0 .. j]) }}

 j = j + 1;

 {{ r = sum(S[0 .. j-1]) }}

 }

 return r;

};

23

Sum of an Array Floyd Logic: Loop Body (4/4)

const sum = (S: Array<bigint>): bigint => {

 let r = 0;

 let j = 0;

 {{ Inv: r = sum(S[0 .. j-1]) }}

 while (j != S.length) {

 {{ r = sum(S[0 .. j-1]) and j ≠ len(S) }}

 {{ S[j] + r = sum(S[0 .. j]) }}

 r = S[j] + r;

 {{ r = sum(S[0 .. j]) }}

 j = j + 1;

 {{ r = sum(S[0 .. j-1]) }}

 }

 return r;

};

Is this valid?

24

Proving Loop Body “Preservation” (1/3)

{{ r = sum(S[0 .. j-1]) and j ≠ len(S) }}

 {{ S[j] + r = sum(S[0 .. j]) }}

S[j] + r

 = S[j] + sum(S[0 .. j-1]) since r = sum(S[0 .. j-1])

 = sum(S[0 .. j-1]) + S[j]

 = sum(S[0 .. j-1]) + sum([S[j]]) def of sum

 = sum(S[0 .. j-1]) + sum(S[j .. j])

 = …

 = sum(S[0 .. j])

25

Proving Loop Body “Preservation” (2/3)

{{ r = sum(S[0 .. j-1]) and j ≠ len(S) }}

 {{ S[j] + r = sum(S[0 .. j]) }}

S[j] + r

 = S[j] + sum(S[0 .. j-1]) since r = sum(S[0 .. j-1])

 = sum(S[0 .. j-1]) + S[j]

 = sum(S[0 .. j-1]) + sum([S[j]]) def of sum

 = sum(S[0 .. j-1]) + sum(S[j .. j])

 = …

 = sum(S[0 .. j-1] ⧺ S[j .. j])

 = sum(S[0 .. j])

• We saw that len(L ⧺ R) = len(L) + len(R)

• Does sum(L ⧺ R) = sum(L) + sum(R)?
– Yes! Very similar proof by structural induction. (Call this Lemma 3)

26

Proving Loop Body “Preservation” (3/3)

{{ r = sum(S[0 .. j-1]) and j ≠ len(S) }}

 {{ S[j] + r = sum(S[0 .. j]) }}

S[j] + r

 = S[j] + sum(S[0 .. j-1]) since r = sum(S[0 .. j-1])

 = sum(S[0 .. j-1]) + S[j]

 = sum(S[0 .. j-1]) + sum([S[j]]) def of sum

 = sum(S[0 .. j-1]) + sum(S[j .. j])

 = sum(S[0 .. j-1] ⧺ S[j .. j]) by Lemma 3

 = sum(S[0 .. j])

(The need to reason by induction comes up all the time.)

27

Linear Search of a List

contains(nil, y) := false

 contains(x :: L, y) := true if x = y

 contains(x :: L, y) := contains(L, y) if x ≠ y

• Tail-recursive definition

const contains =

 (S: List<bigint>, y: bigint): bigint => {

 // Inv: contains(S0, y) = contains(S, y)

 while (S.kind !== "nil" && S.hd !== y) {

 S = S.tl;

 }

 return S.kind !== "nil"; // implies S.hd === y

};

Change to a version that uses indexes…

35

Linear Search of an Array

contains(nil, y) := false

 contains(x :: L, y) := true if x = y

 contains(x :: L, y) := contains(L, y) if x ≠ y

• Change to using an array and accessing by index

const contains =

 (S: Array<bigint>, y: bigint): bigint => {

 let j = 0;

 // Inv: …

 while (j !== S.length && S[j] !== y) {

 j = j + 1;

 }

 return j !== S.length;

};

S.hd with S changing becomes

S[j] with j changing

What is the invariant now?

36

Linear Search of an Array: Loop Invariant

contains(nil, y) := false

 contains(x :: L, y) := true if x = y

 contains(x :: L, y) := contains(L, y) if x ≠ y

• Change to using an array and accessing by index

const contains =

 (S: Array<bigint>, y: bigint): bigint => {

 let j = 0;

 // Inv: contains(S, y) = contains(S[j .. n-1], y)

 while (j !== S.length && S[j] !== y) {

 j = j + 1;

 }

 return j !== S.length;

};

Can we explain this better?

37

Linear Search of an Array: Visual Intuition

• What do we know about the left segment?

– it does not contain "y"

– that's why we kept searching

contains(S, y) = contains(S[j .. n-1], y)

j

S

j

S __ ≠ y

38

Linear Search of an Array: Refined Invariant

• Update the invariant to be more informative

const contains =

 (S: Array<bigint>, y: bigint): bigint => {

 let j = 0;

 // Inv: S[i] ≠ y for any i = 0 .. j-1

 while (j !== S.length && S[j] !== y) {

 j = j + 1;

 }

 return j !== S.length;

};

j

S __ ≠ y

39

Sublist “For any” Facts

• “With great power, comes great responsibility”

• Since we can easily access any L[j],
may need to keep track of facts about it

– may need facts about every element in the list

applies to preconditions, postconditions, and intermediate assertions

• We can write facts about several elements at once:

– this says that elements at indexes 0 .. j-1 are not y

 S[i] ≠ y for any 0 ≤ i < j

– shorthand for j facts: S[0] ≠ y, …, S[j-1] ≠ y

40

Reasoning Toolkit

Description Testing Tools Reasoning

no mutation full coverage type checker calculation
induction

local variable mutation “ “ Floyd logic

heap state “ “ rep invariants

arrays “ “ for-any facts

41

Sublist “For any” Facts & Pictures

• “With great power, comes great responsibility”

– since we can easily access any L[j], may need facts about it

• We can write facts about several elements at once:

– this says that elements at indexes 0 .. j-1 are not y

 S[i] ≠ y for any 0 ≤ i < j

• These facts get hard to write down!

– we will need to find ways to make this easier

– a common trick is to draw pictures instead…

42

Visual Presentation of Facts

• Just saw this example

• But we have seen "for any" facts with BSTs…

– "for any" facts are common in more complex code

– drawing pictures is a typical coping mechanism

j

S __ ≠ y

x

L R

contains-key(y, L) → (y < x)
contains-key(z, R) → (x < z)

43

Proving Linear Search of an Array: Initialization

const contains =

 (S: Array<bigint>, y: bigint): boolean => {

 let j = 0;

 {{ j = 0 }}

 {{ Inv: S[i] ≠ y for any 0 ≤ i ≤ j – 1 }}

 while (j !== S.length && S[j] !== y) {

 j = j + 1;

 }

 return j !== S.length;

};

j

S __ ≠ y

What is the picture when j = 0?

j

S

Inv holds because no i is in [0, -1]

(“vacuously true”)

44

Linear Search of an Array: Preservation (1/4)

const contains =

 (S: Array<bigint>, y: bigint): boolean => {

 let j = 0;

 {{ Inv: S[i] ≠ y for any 0 ≤ i ≤ j – 1 }}

 while (j !== S.length && S[j] !== y) {

 {{ (S[i] ≠ y for any 0 ≤ i ≤ j – 1) and j ≠ len(S) and S[j] ≠ y }}

 j = j + 1;

 {{ S[i] ≠ y for any 0 ≤ i ≤ j – 1 }}

 }

 return j !== S.length;

};

j

S __ ≠ y

45

Linear Search of an Array: Preservation (2/4)

const contains =

 (S: Array<bigint>, y: bigint): boolean => {

 let j = 0;

 {{ Inv: S[i] ≠ y for any 0 ≤ i ≤ j – 1 }}

 while (j !== S.length && S[j] !== y) {

 {{ (S[i] ≠ y for any 0 ≤ i ≤ j – 1) and j ≠ len(S) and S[j] ≠ y }}

 {{ S[i] ≠ y for any 0 ≤ i ≤ j }}

 j = j + 1;

 {{ S[i] ≠ y for any 0 ≤ i ≤ j – 1 }}

 }

 return j !== S.length;

};

j

S __ ≠ y

Is this valid?

46

Linear Search of an Array: Preservation (3/4)

{{ (S[i] ≠ y for any 0 ≤ i ≤ j – 1) and j ≠ len(S) and S[j] ≠ y }}

 {{ S[i] ≠ y for any 0 ≤ i ≤ j }}

• What does the top assertion say about S[j]?

– it is not y

j

S __ ≠ y

47

Linear Search of an Array: Preservation (4/4)

{{ (S[i] ≠ y for any 0 ≤ i ≤ j – 1) and j ≠ len(S) and S[j] ≠ y }}

 {{ S[i] ≠ y for any 0 ≤ i ≤ j }}

• What is the picture for the bottom assertion?

• Do the facts above imply this holds?

– Yes! It's the same picture

j

S __ ≠ y

j+1

j

S __ ≠ y

48

Array Indexing & Off-By-One Bugs (1/2)

{{ (S[i] ≠ y for any 0 ≤ i ≤ j – 1) and j ≠ len(S) and S[j] ≠ y }}

 {{ S[i] ≠ y for any 0 ≤ i ≤ j }}

• What is the picture for the bottom assertion?

• Most likely bug is an off-by-one error

– must check S[j], not S[j-1] or S[j+1]

j

S __ ≠ y

j+1

j

S __ ≠ y

49

Array Indexing & Off-By-One Bugs (2/2)

while (j !== S.length && S[j+1] !== y) {

 {{ (S[i] ≠ y for any 0 ≤ i ≤ j – 1) and j ≠ len(S) and S[j+1] ≠ y }}

 {{ S[i] ≠ y for any 0 ≤ i ≤ j }}

• What is the picture for the bottom assertion?

• Reasoning would verify that this is not correct

j

S __ ≠ y

j+1

j

S __ ≠ y

j+1

50

Proving Linear Search of an Array: Exit (1/2)

const contains =

 (S: Array<bigint>, y: bigint): boolean => {

 let j = 0;

 {{ Inv: S[i] ≠ y for any 0 ≤ i ≤ j – 1 }}

 while (j !== S.length && S[j] !== y) {

 j = j + 1;

 }

 {{ Inv and (j = len(S) or S[j] = y) }}

 {{ contains(S, y) = (j ≠ len(S)) }}

 return j !== S.length;

};

j

S __ ≠ y

"or" means cases…

Case j ≠ len(S):

Must have S[j] = y.

What is the picture now?

j

__ ≠ y y

Code should and does return true.

51

Proving Linear Search of an Array: Exit (2/2)

const contains =

 (S: Array<bigint>, y: bigint): boolean => {

 let j = 0;

 {{ Inv: S[i] ≠ y for any 0 ≤ i ≤ j – 1 }}

 while (j !== S.length && S[j] !== y) {

 j = j + 1;

 }

 {{ Inv and (j = len(S) or S[j] = y) }}

 {{ contains(S, y) = (j ≠ len(S)) }}

 return j !== S.length;

};

Case j = len(S):

What does Inv say now?

"or" means cases…

j

__ ≠ y

Says y is not in the array!

Code should and does return false.

j

S __ ≠ y

52

	Slide 1: Arrays I
	Slide 2: Administrivia (05/23)
	Slide 3: List Indexing
	Slide 4: Linked Lists in Memory
	Slide 5: Faster Implementation of at
	Slide 6: Array Efficiency
	Slide 7: Access By Index
	Slide 8: Recall: Sum List With a Loop
	Slide 9: Sum Array by Index
	Slide 10: Sum Array by Index: compared to sum-acc
	Slide 11: Sublists
	Slide 12: Sublists and Edge Cases
	Slide 13: Sublist Shorthands and Facts
	Slide 14: Sum Array by Index: sum-acc, in math
	Slide 15: Recall: Sum List With a Loop, with Invariant
	Slide 16: Visual Intuition for Sum List Loop Invariant
	Slide 17: Visual Intuition for Index & Sublist Loop Invariant
	Slide 18: Sum of an Array: Loop Invariant
	Slide 19: Sum of an Array Floyd Logic: Initialization
	Slide 20: Sum of an Array Floyd Logic: Postcondition
	Slide 21: Sum of an Array Floyd Logic: Loop Body (1/4)
	Slide 22: Sum of an Array Floyd Logic: Loop Body (2/4)
	Slide 23: Sum of an Array Floyd Logic: Loop Body (3/4)
	Slide 24: Sum of an Array Floyd Logic: Loop Body (4/4)
	Slide 25: Proving Loop Body “Preservation” (1/3)
	Slide 26: Proving Loop Body “Preservation” (2/3)
	Slide 27: Proving Loop Body “Preservation” (3/3)
	Slide 35: Linear Search of a List
	Slide 36: Linear Search of an Array
	Slide 37: Linear Search of an Array: Loop Invariant
	Slide 38: Linear Search of an Array: Visual Intuition
	Slide 39: Linear Search of an Array: Refined Invariant
	Slide 40: Sublist “For any” Facts
	Slide 41: Reasoning Toolkit
	Slide 42: Sublist “For any” Facts & Pictures
	Slide 43: Visual Presentation of Facts
	Slide 44: Proving Linear Search of an Array: Initialization
	Slide 45: Linear Search of an Array: Preservation (1/4)
	Slide 46: Linear Search of an Array: Preservation (2/4)
	Slide 47: Linear Search of an Array: Preservation (3/4)
	Slide 48: Linear Search of an Array: Preservation (4/4)
	Slide 49: Array Indexing & Off-By-One Bugs (1/2)
	Slide 50: Array Indexing & Off-By-One Bugs (2/2)
	Slide 51: Proving Linear Search of an Array: Exit (1/2)
	Slide 52: Proving Linear Search of an Array: Exit (2/2)

