
Software

Development &

Reasoning

Matt Wang
& Ali, Alice, Andrew, Anmol, Antonio, Connor,

Edison, Helena, Jonathan, Katherine, Lauren,

Lawrence, Mayee, Omar, Riva, Saan, and Yusong

CSE 331

Spring 2025

xkcd #1739

Administrivia

• HW4 is out!

– it is longer & contains math and programming

– we are grading on correctness now!

– (it is also worth more of your grade)

• Matt has added another office hour:

11:30-12:20 on Mondays (after A lecture)

2

HW3 Summary: Bugs & Time per Bug

• Average solution was ~ 120 lines of code;

 ~ 1 bug per 40 lines of code

• Avg of 57 minutes per bug

• 34% more than 1 hour! Increasing “long tail” trend
3

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

%
 o

f
b

u
gs

Minutes Debugging (60 is 60+)

Minutes per Bug

HW3 Summary: Search Space of Bugs

• How many functions were searched

– 62% of bugs searched more than one function

– time require for debugging

 1-2 functions 47 mins

 3-4 functions 67 mins

 5-6 functions 85 min

 7+ functions 114 min

– on average, every extra function meant ~10 more mins

• Shrinking the search space helps a lot

– unit tests!

– defensive programming!

double check that preconditions are satisfied

run-time type checking of request/responses 4

Summary of HW1–3

• HW1: type checking is important

– found almost 50% of the bugs

• HW2: mutation is dangerous

– cause of the most horrible kinds of debugging

• HW3: unit testing is important

– debugging a small space for ~1/3rd of bugs

• Debugging will still happen…

– need to get better at quickly narrowing in on the bug

5

Software Development Process

Software Development Process (right now)

Converting
Ideas to Code

Given: a problem description (in English)

Type Checking

Debugging Beta Users

All Users

Beta users are understanding about failures,

Regular users are completely unforgiving!

(Regular users do not give credit for effort.)

Testing

7

How Much Debugging? (1/2)

• Bugs typed in… 1 per 20 lines

– the norm for pretty much everyone

• Bugs after type checking… 1 per 40 lines

– assume 50% caught by type checker (saw 39% in HW1)

• Bugs after unit testing… 1 per 133 lines

– assume 70% caught by unit testing

optimistic: studies find about <70% are caught by unit testing

– remaining bugs are sent to beta testers

8

How Much Debugging? (2/2)

• Bugs after testing… 1 per 133 lines

– assume 70% caught by testing

– studies find about 65% are caught by testing

• Are rest are caught by beta users?

– not enough of them

– millions of users will find all bugs

• Bugs after beta users… 1 per 2000 lines

– number from Microsoft

– anything created by humans has mistakes

only a small number of users give 0 stars

All Users

Testing

Beta Users

9

How Many Bugs Sent to Beta Users?

• Every 2000 lines of code

100 bugs typed in 1 per 20 lines

 – 50 bugs caught by type checker (50%)

 = 50 bugs

 – 35 bugs caught by unit testing (70%)

 = 15 bugs

• Need to debug 14 bugs from beta users

– will still send 1 bug to regular users

10

What Kind of Bugs Sent to Beta Users?

• Comes back without steps to reproduce the failure

– only comes back with a description of the failure

maybe a vague (possibly incorrect) description of steps

• Only sent to beta users if it…

– type checks

– gets past unit tests

• Most such bugs often at the seams between functions

– multiple functions need to be debugged

– will take a long time to track down (many hours)

we saw an extra 10 minutes for every additional function in HW3

HW3 had 700 lines… industry programs will be 100,000 minimum

11

Productivity Estimate

• 2000 lines of code

– assume a familiar setting (know how to solve problems)

– let "h" be the number of hours to debug one such bug

5 hours typing & fixing type errors

5 hours testing & fixing unit test failures

14 * h hours debugging & fixing bugs

12

70%

75%

80%

85%

90%

95%

2 2.5 3 3.5 4 4.5 5 5.5 6

%
 o

f
to

ta
l t

im
e

Hours per Bug

% of Time Spent Debugging

What Else Can We Do?

• 2000 lines of code

– assume a familiar setting (know how to solve problems)

– let "h" be the number of hours to debug one such bug

5 hours typing & fixing type errors

5 hours ?? removes 11 bugs ??

5 hours testing & fixing unit test failures

3 * h hours debugging & fixing bugs

even at h=5, debugging

not the majority of time

bottom programmer is

2 times more productive

13

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 2.5 3 3.5 4 4.5 5 5.5 6

%
 o

f
to

ta
l t

im
e

Hours per Bug

% of Time Spent Debugging

Debugger

???

How Much Room For Improvement?

• Suppose we could…

– remove all 14 bugs by the end of unit testing

– in the same amount of time

plausible since fixing unit test failures involves debugging

5 hours typing & fixing type errors

3 hours ?? removes 14 bugs ??

2 hours testing & fixing unit test failures

would cut 90% of time spent

would be 10x more productive

"10x developer" possible in a setting

where debugging is hard but can be

avoided with extra effort

14

70%

75%

80%

85%

90%

95%

2 2.5 3 3.5 4 4.5 5 5.5 6

%
 o

f
to

ta
l t

im
e

Hours per Bug

% of Time Spent Debugging

Standard Techniques for Correctness

Standard practice (60+ years) uses three techniques:

• Tools: type checker, libraries, etc.

• Testing: try it on a well-chosen set of examples

• Reasoning: think through your code carefully

– convince yourself it works correctly on all inputs

– have another person do the same (“code review”)

16

Comparing These Techniques

• Differ along some key dimensions

– does it consider all allowed inputs

– does it make sure the answer is fully correct ("=")

• Combination removes >97% of bugs

– each tends to find different kinds of errors

– e.g., type checker is good at typos & reasoning is not

humans often skip right over typos when reading

Technique All Inputs Fully Correct Machine-Checkable

Type Checker Yes No Yes

Testing No Yes Yes

Reasoning Yes Yes
No

(*mostly)

17

Avoiding Debugging in Software Development

Converting
Ideas to Code

Given: a problem description (in English)

Type Checking Reasoning Testing

Debugging Beta Users

All Users

Only send to beta users bugs that get past

type checking, reasoning, & testing

18

Brian Kernighan

“Debugging is twice as hard as
writing the code in the first place.”

Reasoning is Expected

• In industry: you will be expected to think through your code

– standard practice is to do this twice (“code review”)

you think through your code then ask someone else to also

• Professionals spend most of their coding time reasoning

– reasoning is the core skill of programming

• Interviews are tests of reasoning

– take the computer away so you only have reasoning

– typical coding problem has lots of cases that are easy to miss

if you don’t think through carefully

– (not about knowing “the answer” to the question

interviewers will throw out interviews that went too well!)

20

“Automating” Reasoning & LLMs

• Reasoning & debugging are provably impossible for a

computer to solve in all cases

• Current LLM error rates are much higher than humans

– requires an (expert) human to do a lot of debugging

starts with reading and understanding all the generated code…

probably easier to rewrite it yourself

– studies (so far) show little productivity improvement

if it reads your mind, it saves you typing, but that's not the limiting factor

if it doesn't read your mind, you must still spend time understanding it

• LLMs are especially bad at reasoning

– e.g., bad at learning formal properties

– e.g., bad at catching rare cases

21

Actually Correct Automated Reasoning

• There are non-LLM (and crucially, deterministic)

approaches to automated reasoning

– “formal methods” & “formal verification”

– SAT & SMT-based solvers (incl. model checking)

– program synthesis

– automated theorem proving & proof assistants

• Very promising area of research, but…

– many require graduate-level study to use

– many current open problems (modularity, scalability)

– thus, not common in most software engineering fields

(yet!)

22

Reasoning

• “Thinking through” what the code does on all inputs

– neither testing nor type checking can do this

• Can be done formally or informally

– most professionals reason informally

– we will start with formal reasoning and move to informal

formal reasoning is a stepping stone to informal reasoning (same core ideas)

formal reasoning still needed for the hardest problems

• Definition of correctness comes from the

specification…

23

Correct Requires a Specification

Specification contains two sets of facts

 Precondition:
facts we are promised about the inputs

 Postcondition:
facts we are required to ensure for the output

 Correctness (satisfying the spec):
for every input satisfying the precondition,

the output will satisfy the postcondition

24

Specifications in TypeScript: JSDoc

• TypeScript, like Java, writes specs in /** … */

/**

 * High level description of what function does

 * @param a What "a" represents + any conditions

 * @param b What "b" represents + any conditions

 * @returns Detailed description of return value

 */

const f = (a: bigint, b: bigint): bigint => {..};

– these are formatted as “JSDoc” comments

– (in Java, they are JavaDoc comments)

25

Preconditions & Postconditions in JSDoc

• Specifications are written in the comments

/**

 * Returns the first n elements from the list L

 * @param n non-negative length of the prefix

 * @param L the list whose prefix should be returned

 * @requires n <= len(L)

 * @returns list S such that L = S ++ T for some T

 */

const prefix = (n: bigint, L: List): List => {..};

– precondition written in @param and @requires

– postcondition written in @returns

26

Proof by

Calculation

(& Cases)

Matt Wang
& Ali, Alice, Andrew, Anmol, Antonio, Connor,

Edison, Helena, Jonathan, Katherine, Lauren,

Lawrence, Mayee, Omar, Riva, Saan, and Yusong

CSE 331

Spring 2025

xkcd #2585

Recall: Specification

Specification contains two sets of facts

 Precondition:
facts we are promised about the inputs

 Postcondition:
facts we are required to ensure for the output

 Correctness (satisfying the spec):
for every input satisfying the precondition,

the output will satisfy the postcondition

28

Facts (1/2)

• Basic inputs to reasoning are “facts”

– things we know to be true about the variables

these hold for all inputs (no matter what value the variable has)

– typically, “=” or “≤”

// @param n a natural number

const f = (n: bigint): bigint => {

 const m = 2n * n;

 return (m + 1n) * (m – 1n);

};

• At the return statement, we know these facts:

– n ∈ ℕ (or n ∈ ℤ and n ≥ 0)

– m = 2n

find facts by reading along path

from top to return statement

29

Facts (2/2)

• Basic inputs to reasoning are “facts”

– things we know to be true about the variables

these hold for all inputs (no matter what value the variable has)

– typically, “=” or “≤”

// @param n a natural number

const f = (n: bigint): bigint => {

 const m = 2n * n;

 return (m + 1n) * (m – 1n);

};

• No need to include the fact that n is an integer (n ∈ ℤ)

– that is true, but the type checker takes care of that

– no need to repeat reasoning done by the type checker

30

Finding Facts at a Return Statement

• Consider this code

// Returns a non-negative integer.

const f = (a: bigint, b: bigint): bigint => {

 const L: List = cons(a, cons(b, nil));

 if (a >= 0n && b >= 0n)

 return sum(L);

 …

• Known facts include “a ≥ 0”, “b ≥ 0”, and “L = cons(…)”

• Remains to prove that “sum(L) ≥ 0”

find facts by reading along path

from top to return statement

facts are math statements about the code

31

Implications

• We can use the facts we know to prove more facts

– if we can prove R using facts P and Q,

we say that R “follows from” or “is implied by” P and Q

– proving this fact is proving an “implication”

• Checking correctness requires proving implications

– need to prove facts about the return values

– return values must satisfy the facts of the postcondition

32

Collecting Facts

• Saw how to collect facts in code consisting of

– "const" variable declarations

– "if" statements

– collect facts by reading along path from top to return

• Those elements cover all code without mutation

– covers everything describable by our math notation

– we can calculate interesting values with recursion

• Will need more tools to handle code with mutation…

33

Mutation Makes Reasoning Harder

Description Testing Tools Reasoning

no mutation full coverage type checker calculation
induction

local variable mutation “” “” Floyd logic

array mutation “” “” for-any facts

heap state mutation “” “” rep invariants

HW5

HW6

HW8

HW9

34

Correctness with No Mutation

• Proving implications is the core step of reasoning

– other techniques output implications for us to prove

• Facts are written in our math notation

– we will use math tools to prove implications

• Core technique is "proof by calculation"

• Other techniques we will need:

– proof by cases (today)

– structural induction (Wednesday)

35

Proof by Calculation

Proof by Calculation

• Proves an implication

– fact to be shown is an equation or inequality

• Uses known facts and definitions

– latter includes, e.g., the fact that len(nil) = 0

37

Example Proof by Calculation

• Given x = y and z ≤ 10, prove that x + z ≤ y + 10
– show the third fact follows from the first two

• Start from the left side of the inequality to be proved

x + z

since x = y

= y + z ≤ y + 10

since z ≤ 10

All together, this tells us that x + z ≤ y + 10

38

Example Proof by Calculation (across lines)

• Given x = y and z ≤ 10, prove that x + z ≤ y + 10
– show the third fact follows from the first two

• Start from the left side of the inequality to be proved

x + z = y + z since x = y

 ≤ y + 10 since z ≤ 10

– easier to read when split across lines

– “calculation block”, includes explanations in right column

proof by calculation means using a calculation block

– “=” or “≤” relates that line to the previous line

39

Calculation Blocks: Equalities

• Chain of “=” shows first = last

a = b

 = c

 = d

– proves that a = d

– all 4 of these are the same number

40

Calculation Blocks: Inequalities

• Chain of “=” and “≤” shows first ≤ last

x + z = y + z since x = y

 ≤ y + 10 since z ≤ 10

 = y + 3 + 7

 ≤ w + 7 since y + 3 ≤ w

– each number is equal or strictly larger that previous

last number is strictly larger than the first number

– analogous for “≥”

41

Calculation Blocks: Mixing Inequalities Gotcha

• Consider:

1 + 1 = 2

 ≥ 2 ∗ 1

 = 1 * 2

 ≤ 1 * 3

 ≥ 3

– cannot derive meaningful conclusion from “proof”

each step is still true, but cannot make final conclusion

– rule of thumb: inequalities should only go in one direction

42

Proving Code by Calculation: Example 1 (1/2)

// Inputs x and y are positive integers

// Returns a positive integer.

const f = (x: bigint, y, bigint): bigint => {

 return x + y;

};

• Known facts “x ≥ 1” and “y ≥ 1”

• Correct if the return value is a positive integer

x + y

43

Proving Code by Calculation: Example 1 (2/2)

// Inputs x and y are positive integers

// Returns a positive integer.

const f = (x: bigint, y, bigint): bigint => {

 return x + y;

};

• Known facts “x ≥ 1” and “y ≥ 1”

• Correct if the return value is a positive integer

x + y ≥ x + 1 since y ≥ 1

 ≥ 1 + 1 since x ≥ 1

 = 2

 ≥ 1

– calculation shows that x + y ≥ 1
44

Proving Code by Calculation: Example 2 (1/2)

// Inputs x and y are integers with x > 8 and y > -9

// Returns a positive integer.

const f = (x: bigint, y, bigint): bigint => {

 return x + y;

};

• Known facts “x ≥ 9” and “y ≥ –8”

• Correct if the return value is a positive integer

x + y

45

Proving Code by Calculation: Example 2 (2/2)

// Inputs x and y are integers with x > 8 and y > -9

// Returns a positive integer.

const f = (x: bigint, y, bigint): bigint => {

 return x + y;

};

• Known facts “x ≥ 9” and “y ≥ –8”

• Correct if the return value is a positive integer

x + y ≥ x + -8 since y ≥ -8

 ≥ 9 – 8 since x ≥ 9

 = 1

46

Proving Code by Calculation: Example 3 (1/2)

// Inputs x and y are integers with x > 8 and y > -9

// Returns a positive integer.

const f = (x: bigint, y, bigint): bigint => {

 return x + y;

};

• Known facts “x > 8” and “y > –9”

• Correct if the return value is a positive integer

x + y

47

Proving Code by Calculation: Example 3 (2/2)

// Inputs x and y are integers with x > 8 and y > -9

// Returns a positive integer.

const f = (x: bigint, y, bigint): bigint => {

 return x + y;

};

• Known facts “x > 8” and “y > –9”

• Correct if the return value is a positive integer

x + y > x + -9 since y > -9

 > 8 - 9 since x > 8

 = -1

warning: avoid using “>” (or “<“) multiple times in a calculation block 48

Proving Code by Calculation: Example 4 (1/2)

// Inputs x and y are integers with x > 3 and y > 4

// Returns an integer that is 10 or larger.

const f = (x: bigint, y, bigint): bigint => {

 return x + y;

};

• Known facts “x ≥ 4” and “y ≥ 5”

• Correct if the return value is 10 or larger

x + y

49

Proving Code by Calculation: Example 4 (2/2)

// Inputs x and y are integers with x > 3 and y > 4

// Returns an integer that is 10 or larger.

const f = (x: bigint, y, bigint): bigint => {

 return x + y;

};

• Known facts “x ≥ 4” and “y ≥ 5”

• Correct if the return value is 10 or larger

x + y ≥ x + 5 since y ≥ 5

 ≥ 4 + 5 since x ≥ 4

 = 9

proof doesn’t work because the code is wrong!

50

Using Definitions in Calculations

• Most useful with function calls

– cite the definition of the function to get the return value

• For example:

 sum(nil) := 0

 sum(x :: L) := x + sum(L)

• Can cite facts such as

– sum(nil) = 0

– sum(a :: b :: nil) = a + sum(b :: nil)

second case of definition with x = a and L = b :: nil

51

Recall: Finding Facts at a Return Statement

• Consider this code

// Inputs a and b must be integers.

// Returns a non-negative integer.

const f = (a: bigint, b: bigint): bigint => {

 const L: List = cons(a, cons(b, nil));

 if (a >= 0n && b >= 0n)

 return sum(L);

 …

• Known facts include “a ≥ 0”, “b ≥ 0”, and “L = cons(…)”

• Must prove that sum(L) ≥ 0

find facts by reading along path

from top to return statement

52

Using Definitions in Calculations (1/2)

 sum(nil) := 0

 sum(x :: L) := x + sum(L)

• Know “a ≥ 0”, “b ≥ 0”, and “L = a :: b :: nil”

• Prove the “sum(L)” is non-negative

sum(L)

53

Using Definitions in Calculations (2/2)

 sum(nil) := 0

 sum(x :: L) := x + sum(L)

• Know “a ≥ 0”, “b ≥ 0”, and “L = a :: b :: nil”

• Prove the “sum(L)” is non-negative

sum(L) = sum(a :: b :: nil) since L = a :: b :: nil

 = a + sum(b :: nil) def of sum

 = a + b + sum(nil) def of sum

 = a + b def of sum

 ≥ 0 + b since a ≥ 0

 ≥ 0 since b ≥ 0

54

Proving Correctness with Conditionals (Top)

// Inputs x and y are integers.

// Returns a number less than x.

const f = (x: bigint, y, bigint): bigint => {

 if (y < 0n) {

 return x + y;

 } else {

 return x – 1n;

 }

};

• Known fact in “then” (top) branch: “y ≤ -1”

x + y ≤ x + -1 since y ≤ -1

 < x + 0 since -1 < 0

 = x

55

Proving Correctness with Conditionals (Bottom)

// Inputs x and y are integers.

// Returns a number less than x.

const f = (x: bigint, y, bigint): bigint => {

 if (y < 0n) {

 return x + y;

 } else {

 return x – 1n;

 }

};

• Known fact in else (bottom) branch: “y ≥ 0”

x – 1 < x + 0 since –1 < 0

 = x

56

Proving Correctness with Multiple Claims

• Need to check the claim from the spec at each return

• If spec claims multiple facts, then

we must prove that each of them holds

// Inputs x and y are integers with x < y - 1

// Returns a number less than y and greater than x.

const f = (x: bigint, y, bigint): bigint => { .. };

– multiple known facts: x : ℤ, y : ℤ, and x < y – 1

– multiple claims to prove: x < r and r < y
where “r” is the return value

– requires two calculation blocks

57

Example Correctness with Conditionals

// Returns r with (r=a or r=b) and r >= a and r >= b

const max = (a: bigint, b, bigint): bigint => {

 if (a >= b) {

 return a;

 } else {

 return b;

 }

};

• Three different facts to prove at each return

• Two known facts in each branch (return value is “r”):

– then branch: a ≥ b and r = a

– else branch: a < b and r = b

declarative spec of max

58

Proof By Cases

• Sometimes necessary split a proof into cases

– fact may be hard to prove for all values at once

• Example: can't prove it for all x at once,

but can prove it for x ≥ 0 and x < 0
– will see an example next

• If we can prove it in those two cases, it holds for all x
– follows since the cases are exhaustive

(don’t need to be exclusive in this case)

59

Example Proof By Cases

f : ℤ → ℤ

 f(m) := 2m + 1 if m ≥ 0

 f(m) := 0 if m < 0

• Want to prove that f(m) > m

• Doesn't seem possible as is

– can't even apply the definition of f

– need to know if m < 0 or m ≥ 0

• Split our analysis into these two separate cases…

60

Proof By Cases (1/3)

f(m) := 2m + 1 if m ≥ 0

 f(m) := 0 if m < 0

• Prove that f(m) > m

Case m ≥ 0:

 f(m) =

 > m

61

Proof By Cases (2/3)

f(m) := 2m + 1 if m ≥ 0

 f(m) := 0 if m < 0

• Prove that f(m) > m

Case m ≥ 0:

 f(m) = 2m + 1 def of f (since m ≥ 0)

 ≥ m + 1 since m ≥ 0

 > m since 1 > 0

62

Proof By Cases (3/3)

f(m) := 2m + 1 if m ≥ 0

 f(m) := 0 if m < 0

• Prove that f(m) > m

Case m ≥ 0:

 f(m) = … > m

Case m < 0:

 f(m) = 0 def of f (since m < 0)

 > m since m < 0

Since these two cases are exhaustive, f(m) > m holds in general.

63

Proofs in Class & HW versus the “Real World”

• Lecture (mostly) focuses on toy examples

– Goal is to explain syntax & intuition (and build skill)

– Thus, pick simple problems (that may feel “obvious”)

– Because I prep, I don’t get “stuck”

• Section & HW will (mostly) focus on proving that

correct code is correct

– Seems mean to give you incorrect code :’)

– But, problems will be new and more challenging

• In real world, likely even harder examples and

will not know correctness ahead of time 64

Reasoning with

Structural

Induction

Matt Wang
& Ali, Alice, Andrew, Anmol, Antonio, Connor,

Edison, Helena, Jonathan, Katherine, Lauren,

Lawrence, Mayee, Omar, Riva, Saan, and Yusong

CSE 331

Spring 2025

JS Wacky Weekly Wednesday

// setTimeout: call function after n

milliseconds

// prints 0 1 2

for (let i = 0; i < 3; i++) {

 setTimeout(() => {

 console.log(i);

 }, 1000);

}

// prints 3 3 3 ????

let i;

for (i = 0; i < 3; i++) {

 setTimeout(() => {

 console.log(i);

 }, 1000);

}

Structural Induction

Proof by Calculation on Lists

• Our proofs so far have used fixed-length lists

– e.g., sum(a :: b :: nil) ≥ 0

• Would like to prove facts about any length list L

• For example…

67

Example: Echo Function

• Consider the following function:

 echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Produces a list where every element is repeated twice

echo(1 :: 2 :: nil)

 = 1 :: 1 :: echo(2 :: nil) def of echo

 = 1 :: 1 :: 2 :: 2 :: echo(nil) def of echo

 = 1 :: 1 :: 2 :: 2 :: nil def of echo

68

Example: Proving Len & Echo Correct

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Suppose we have the following code:

const m = len(S); // S is some List

const R = echo(S);

…

return 2*m; // = len(echo(S))

– spec says to return len(echo(S)) but code returns 2 len(S)

• Need to prove that len(echo(S)) = 2 len(S)

69

Matt’s Proof Strategy Advice (1/3)

• Stuck on a proof?

– Try splitting into cases!

70

Trying Proof by Cases on Len & Echo (1/2)

len(echo(S)) = 2 len(S)

Case S = nil:

 len(echo(S)) = len(nil) def of echo (since S = nil)

 = 0 def of len

 = 2 len(nil) def of len

 = 2 len(S)

71

Trying Proof by Cases on Len & Echo (2/2)

len(echo(S)) = 2 len(S)

Case S = x :: L :

 len(echo(x :: L)) = len(x :: x :: echo(L)) def of echo

 = 1 + len(x :: echo(L)) def of len

 = 2 + len(echo(L)) def of len

Now need to prove: len(echo(L)) = 2 len(L)

Case L = nil: see previous slide

Case L = x :: M :

 len(echo(x :: M)) = len(x :: x :: echo(M)) def of echo

 = 1 + len(x :: echo(M)) def of len

 = 2 + len(echo(M)) def of len

Now need to prove: len(echo(M)) = 2 len(M)

72

Proof by Cases Breaks on Inductive Data

• Our proofs so far have used fixed-length lists

– e.g., sum(a :: b :: nil) ≥ 0

• Would like to prove facts about any length list L

• Need more tools for this…

– structural recursion calculates on inductive types

– structural induction reasons about structural recursion

or more generally, to prove facts containing variables of an inductive type

– both tools are specific to inductive types

73

Structural Induction is Two Implications

Let P(S) be the claim “len(echo(S)) = 2 len(S)”

To prove P(S) holds for any list S, prove two implications

 Base Case: prove P(nil)

– use any known facts and definitions

 Inductive Step: prove P(x :: L)

– x and L are variables

– use any known facts and definitions plus one more fact…

– make use of the fact that L is also a List

74

Structural Induction: Inductive Hypothesis

To prove P(S) holds for any list S, prove two implications

 Base Case: prove P(nil)

– use any known facts and definitions

 Inductive Hypothesis: assume P(L) is true

– use this in the inductive step, but not anywhere else

 Inductive Step: prove P(x :: L)

– use known facts and definitions and Inductive Hypothesis

75

Why Structural Induction Works

With Structural Induction, we prove two facts

 P(nil) len(echo(nil)) = 2 len(nil)

 P(x :: L) len(echo(x :: L)) = 2 len(x :: L)

 (second assuming len(echo(L)) = 2 len(L))

Why is this enough to prove P(S) for any S : List?

76

Inductive Data is “Built Up” in Steps

Build up an object using constructors:

 nil first constructor (nil)

 2 :: nil second constructor (cons)

 1 :: 2 :: nil second constructor (cons)

1 2 nil

nil already exists when building 2 :: nil

2 :: nil already exists when building 1 :: 2 :: nil

77

Inductive Proofs are “Built Up” in Steps

Build up a proof the same way we built up the object

 P(nil) len(echo(nil)) = 2 len(nil)

 P(x :: L) len(echo(x :: L)) = 2 len(x :: L)

 (second assuming len(echo(L)) = 2 len(L))

1 2 nil

P(nil) already proven when proving P(2 :: nil)

P(2 :: nil) already proven when proving P(1 :: 2 :: nil)

P(nil)

78

Example: Echo & Len Base Case (1/2)

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that len(echo(S)) = 2 len(S) for any S : List

Base Case (nil):

 Need to prove that len(echo(nil)) = 2 len(nil)

 len(echo(nil)) =

len(nil) := 0

len(x :: L) := 1 + len(L)
79

Example: Echo & Len Base Case (2/2)

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that len(echo(S)) = 2 len(S) for any S : List

Base Case (nil):

 len(echo(nil)) = len(nil) def of echo

= 0 def of len

= 2 · 0
 def of len = 2 len(nil)

80

Example: Echo & Len Inductive Step (1/3)

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that len(echo(S)) = 2 len(S) for any S : List

Inductive Step (x :: L):

 Need to prove that len(echo(x :: L)) = 2 len(x :: L)

 Get to assume claim holds for L, i.e., that len(echo(L)) = 2 len(L)

81

Example: Echo & Len Inductive Step (2/3)

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that len(echo(S)) = 2 len(S) for any S : List

Inductive Hypothesis: assume that len(echo(L)) = 2 len(L)

Inductive Step (x :: L):

 len(echo(x :: L))

 = 2 len(x :: L)
len(nil) := 0

len(x :: L) := 1 + len(L)
82

Example: Echo & Len Inductive Step (3/3)

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that len(echo(S)) = 2 len(S) for any S : List

Inductive Hypothesis: assume that len(echo(L)) = 2 len(L)

Inductive Step (x :: L):

 len(echo(x :: L)) = len(x :: x :: echo(L)) def of echo

 = 2 len(x :: L)

= 1 + len(x :: echo(L)) def of len

= 2 + len(echo(L)) def of len

= 2 + 2 len(L) Ind. Hyp.

= 2(1 + len(L))

def of len

83

Matt’s Proof Strategy Advice (2/3)

• Stuck on a proof and…

– the data type is not inductive? Try splitting into cases!

– the data type is inductive? Try structural induction!

84

Example 2: Echo & Sum

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Suppose we have the following code:

const y = sum(S); // S is some List

const R = echo(S);

…

return 2*y; // = sum(echo(S))

– spec says to return sum(echo(S)) but code returns 2 sum(S)

• Need to prove that sum(echo(S)) = 2 sum(S)

85

Example 2: Echo & Sum Base Case (1/2)

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that sum(echo(S)) = 2 sum(S) for any S : List

Base Case (nil):

 sum(echo(nil)) =

 = 2 sum(nil)

sum(nil) := 0

sum(x :: L) := x + sum(L)
86

Example 2: Echo & Sum Base Case (2/2)

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that sum(echo(S)) = 2 sum(S) for any S : List

Base Case (nil):

 sum(echo(nil)) = sum(nil) def of echo

 = 2 sum(nil)

Inductive Step (x :: L):

 Need to prove that sum(echo(x :: L)) = 2 sum(x :: L)

 Get to assume claim holds for L, i.e., that sum(echo(L)) = 2 sum(L)

= 0 def of sum

= 2 · 0

def of sum

87

Example 2: Echo & Sum Inductive Step (1/2)

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that sum(echo(S)) = 2 sum(S) for any S : List

Inductive Hypothesis: assume that sum(echo(L)) = 2 sum(L)

Inductive Step (x :: L):

 sum(echo(x :: L)) =

 = 2 sum(x :: L)

sum(nil) := 0

sum(x :: L) := x + sum(L)
88

Example 2: Echo & Sum Inductive Step (2/2)

echo(nil) := nil

 echo(x :: L) := x :: x :: echo(L)

• Prove that sum(echo(S)) = 2 sum(S) for any S : List

Inductive Hypothesis: assume that sum(echo(L)) = 2 sum(L)

Inductive Step (x :: L):

 sum(echo(x :: L)) = sum(x :: x :: echo(L)) def of echo

 = x + sum(x :: echo(L)) def of sum

 = 2x + sum(echo(L)) def of sum

 = 2x + 2 sum(L) Ind. Hyp.

 = 2(x + sum(L))

 = 2 sum(x :: L) def of sum

89

sum(nil) := 0

sum(x :: L) := x + sum(L)

Recall: Concatenating Two Lists

• Mathematical definition of concat(S, R)

 concat(nil, R) := R

 concat(x :: L, R) := x :: concat(L, R)

• Puts all the elements of L before those of R

concat(1 :: 2 :: nil, 3 :: 4 :: nil)

 = 1 :: concat(2 :: nil, 3 :: 4 :: nil) def of concat

 = 1 :: 2 :: concat(nil, 3 :: 4 :: nil) def of concat

 = 1 :: 2 :: 3 :: 4 :: nil def of concat

important operation

abbreviated as "⧺"

90

Example 3: Length of Concatenated Lists

concat(nil, R) := R

 concat(x :: L, R) := x :: concat(L, R))

• Suppose we have the following code:

const m = len(S); // S is some List

const n = len(R); // R is some List

…

return m + n; // = len(concat(S, R))

– spec returns len(concat(S, R)) but code returns len(S) + len(R)

• Need to prove that len(concat(S, R)) = len(S) + len(R)

important operation

abbreviated as "⧺"

91

Example 3: Len & Concat Base Case (1/2)

concat(nil, R) := R

 concat(x :: L, R) := x :: concat(L, R))

• Prove that len(concat(S, R)) = len(S) + len(R)
– prove by induction on S

– prove the claim for any choice of R (i.e., R is a variable)

Base Case (nil):

 len(concat(nil, R)) =

 = len(nil) + len(R)

92

Example 3: Len & Concat Base Case (2/2)

concat(nil, R) := R

 concat(x :: L, R) := x :: concat(L, R))

• Prove that len(concat(S, R)) = len(S) + len(R)
– prove by induction on S

– prove the claim for any choice of R (i.e., R is a variable)

Base Case (nil):

 len(concat(nil, R)) = len(R) def of concat

 = 0 + len(R)

 = len(nil) + len(R) def of len

93

Example 3: Len & Concat Inductive Step (1/3)

concat(nil, R) := R

 concat(x :: L, R) := x :: concat(L, R))

• Prove that len(concat(S, R)) = len(S) + len(R)

Inductive Step (x :: L):

 Need to prove that

 len(concat(x :: L, R)) = len(x :: L) + len(R)

 Get to assume claim holds for L, i.e., that

 len(concat(L, R)) = len(L) + len(R)

94

Example 3: Len & Concat Inductive Step (2/3)

concat(nil, R) := R

 concat(x :: L, R) := x :: concat(L, R))

• Prove that len(concat(S, R)) = len(S) + len(R)

Inductive Hypothesis: assume that len(concat(L, R)) = len(L) + len(R)

Inductive Step (x :: L):

 len(concat(x :: L, R)) =

 = len(x :: L) + len(R)

95

Example 3: Len & Concat Inductive Step (3/3)

concat(nil, R) := R

 concat(x :: L, R) := x :: concat(L, R))

• Prove that len(concat(S, R)) = len(S) + len(R)

Inductive Hypothesis: assume that len(concat(L, R)) = len(L) + len(R)

Inductive Step (x :: L):

 len(concat(x :: L, R)) = len(x :: concat(L, R)) def of concat

 = 1 + len(concat(L, R)) def of len

 = 1 + len(L) + len(R) Ind. Hyp.

 = len(x :: L) + len(R) def of len

96

Matt’s Proof Strategy Advice (3/3)

• Stuck on a proof and…

– the data type is not inductive? Try splitting into cases!

– the data type is inductive? Try structural induction!

• When using structural induction, consider

– where can the inductive step be used?

the power of structural induction!

– which variable should be inducted on?

– definitions can be applied in both directions

97

Comparing Reasoning vs Testing

const concat = (S: List, R: List): List => {

 if (S.kind === "nil") {

 return R;

 } else {

 return cons(S.hd, concat(S.tl, R));

 }

};

• Testing: 3 cases

– loop coverage requires 0, 1, and many recursive calls

• Reasoning: 2 calculations

98

Structural Induction … Gone Wrong? (1/3)

allEqual(nil) := true

 allEqual(x :: nil) := true

 allEqual(x :: y :: L) := x = y and allEqual(y :: L)

• Claim: this function satisfies the above spec

const allEqual(S: List): boolean => {

 return true;

};

• Need to prove that allEqual(S) = true

99

Structural Induction … Gone Wrong? (2/3)

allEqual(nil) := true

 allEqual(x :: nil) := true

 allEqual(x :: y :: L) := x = y and allEqual(y :: L)

Base Case (nil): allEqual(nil) = true def of allEqual

Base Case (x :: nil): allEqual(x:: nil) = true def of allEqual

Now, what if we got a bit sloppy?

Inductive Hypothesis: assume that allEqual(S) = true for lists S

 Inductive Step (x :: y :: L):

 y :: L is a list – so, allEqual(y :: L) = true inductive hypothesis

x :: y :: nil is a list – so allEqual(x :: y :: nil) = true inductive hypothesis

 thus, x = y definition of allEqual

 allEqual(x :: y :: L) = true definition of allEqual

100

Structural Induction … Gone Wrong? (3/3)

allEqual(nil) := true

 allEqual(x :: nil) := true

 allEqual(x :: y :: L) := x = y and allEqual(y :: L)

Base Case (nil): allEqual(nil) = true def of allEqual

Base Case (x :: nil): allEqual(x:: nil) = true def of allEqual

Inductive Hypothesis: assume that allEqual(L) = true only applies to L

 Inductive Step (x :: y :: L):

 y :: L is a list – so, allEqual(y :: L) = true not true!

x :: y :: nil is a list – so allEqual(x :: y :: nil) = true not true!

 thus, x = y not true!

 allEqual(x :: y :: L) = true not true!

101

Example 4: Faster Sum

sum-acc(nil, r) := r

 sum-acc(x :: L, r) := sum-acc(L, x + r)

• Suppose we have the following code:

const s = sum_acc(S, 0); // S is some List

…

return s; // = sum(S)

– spec says to return sum(S) but code returns sum-acc(S, 0)

• Need to prove that sum-acc(S, 0) = sum(S)

– will prove, more generally, that sum-acc(S, r) = sum(S) + r

linear time

102

Example 4: Faster Sum Base Case (1/2)

sum-acc(nil, r) := r

 sum-acc(x :: L, r) := sum-acc(L, x + r)

• Prove that sum-acc(S, r) = sum(S) + r
– prove by induction on S

– prove the claim for any choice of r (i.e., r is a variable)

Base Case (nil):

 sum-acc(nil, r) =

 = sum(nil) + r

103

Example 4: Faster Sum Base Case (2/2)

sum-acc(nil, r) := r

 sum-acc(x :: L, r) := sum-acc(L, x + r)

• Prove that sum-acc(S, r) = sum(S) + r
– prove by induction on S

– prove the claim for any choice of r (i.e., r is a variable)

Base Case (nil):

 sum-acc(nil, r) = r def of sum-acc

 = 0 + r

 = sum(nil) + r def of sum

104

Example 4: Faster Sum Inductive Step (1/3)

sum-acc(nil, r) := r

 sum-acc(x :: L, r) := sum-acc(L, x + r)

• Prove that sum-acc(S, r) = sum(S) + r

Inductive Step (x :: L):

 Need to prove that

 sum-acc(x :: L, r) = sum(x :: L) + r

 Get to assume claim holds for L, i.e., that

 sum-acc(L, r) = sum(L) + r holds for any r

105

Example 4: Faster Sum Inductive Step (2/3)

sum-acc(nil, r) := r

 sum-acc(x :: L, r) := sum-acc(L, x + r)

• Prove that sum-acc(S, r) = sum(S) + r

Inductive Hypothesis: assume that sum-acc(L, r) = sum(L) + r

Inductive Step (x :: L):

 sum-acc(x :: L, r) =

 = sum(x :: L) +r

106

Example 4: Faster Sum Inductive Step (3/3)

sum-acc(nil, r) := r

 sum-acc(x :: L, r) := sum-acc(L, x + r)

• Prove that sum-acc(S, r) = sum(S) + r

Inductive Hypothesis: assume that sum-acc(L, r) = sum(L) + r

Inductive Step (x :: L):

 sum-acc(x :: L, r) = sum-acc(L, x + r) def of sum-acc

 = sum(L) + x + r Ind. Hyp.

 = x + sum(L) + r

 = sum(x :: L) +r def of sum

107

	Slide 1: Software Development & Reasoning
	Slide 2: Administrivia
	Slide 3: HW3 Summary: Bugs & Time per Bug
	Slide 4: HW3 Summary: Search Space of Bugs
	Slide 5: Summary of HW1–3
	Slide 6: Software Development Process
	Slide 7: Software Development Process (right now)
	Slide 8: How Much Debugging? (1/2)
	Slide 9: How Much Debugging? (2/2)
	Slide 10: How Many Bugs Sent to Beta Users?
	Slide 11: What Kind of Bugs Sent to Beta Users?
	Slide 12: Productivity Estimate
	Slide 13: What Else Can We Do?
	Slide 14: How Much Room For Improvement?
	Slide 16: Standard Techniques for Correctness
	Slide 17: Comparing These Techniques
	Slide 18: Avoiding Debugging in Software Development
	Slide 19: “Debugging is twice as hard as writing the code in the first place.”
	Slide 20: Reasoning is Expected
	Slide 21: “Automating” Reasoning & LLMs
	Slide 22: Actually Correct Automated Reasoning
	Slide 23: Reasoning
	Slide 24: Correct Requires a Specification
	Slide 25: Specifications in TypeScript: JSDoc
	Slide 26: Preconditions & Postconditions in JSDoc
	Slide 27: Proof by Calculation (& Cases)
	Slide 28: Recall: Specification
	Slide 29: Facts (1/2)
	Slide 30: Facts (2/2)
	Slide 31: Finding Facts at a Return Statement
	Slide 32: Implications
	Slide 33: Collecting Facts
	Slide 34: Mutation Makes Reasoning Harder
	Slide 35: Correctness with No Mutation
	Slide 36: Proof by Calculation
	Slide 37: Proof by Calculation
	Slide 38: Example Proof by Calculation
	Slide 39: Example Proof by Calculation (across lines)
	Slide 40: Calculation Blocks: Equalities
	Slide 41: Calculation Blocks: Inequalities
	Slide 42: Calculation Blocks: Mixing Inequalities Gotcha
	Slide 43: Proving Code by Calculation: Example 1 (1/2)
	Slide 44: Proving Code by Calculation: Example 1 (2/2)
	Slide 45: Proving Code by Calculation: Example 2 (1/2)
	Slide 46: Proving Code by Calculation: Example 2 (2/2)
	Slide 47: Proving Code by Calculation: Example 3 (1/2)
	Slide 48: Proving Code by Calculation: Example 3 (2/2)
	Slide 49: Proving Code by Calculation: Example 4 (1/2)
	Slide 50: Proving Code by Calculation: Example 4 (2/2)
	Slide 51: Using Definitions in Calculations
	Slide 52: Recall: Finding Facts at a Return Statement
	Slide 53: Using Definitions in Calculations (1/2)
	Slide 54: Using Definitions in Calculations (2/2)
	Slide 55: Proving Correctness with Conditionals (Top)
	Slide 56: Proving Correctness with Conditionals (Bottom)
	Slide 57: Proving Correctness with Multiple Claims
	Slide 58: Example Correctness with Conditionals
	Slide 59: Proof By Cases
	Slide 60: Example Proof By Cases
	Slide 61: Proof By Cases (1/3)
	Slide 62: Proof By Cases (2/3)
	Slide 63: Proof By Cases (3/3)
	Slide 64: Proofs in Class & HW versus the “Real World”
	Slide 65: Reasoning with Structural Induction
	Slide 66: Structural Induction
	Slide 67: Proof by Calculation on Lists
	Slide 68: Example: Echo Function
	Slide 69: Example: Proving Len & Echo Correct
	Slide 70: Matt’s Proof Strategy Advice™️ (1/3)
	Slide 71: Trying Proof by Cases on Len & Echo (1/2)
	Slide 72: Trying Proof by Cases on Len & Echo (2/2)
	Slide 73: Proof by Cases Breaks on Inductive Data
	Slide 74: Structural Induction is Two Implications
	Slide 75: Structural Induction: Inductive Hypothesis
	Slide 76: Why Structural Induction Works
	Slide 77: Inductive Data is “Built Up” in Steps
	Slide 78: Inductive Proofs are “Built Up” in Steps
	Slide 79: Example: Echo & Len Base Case (1/2)
	Slide 80: Example: Echo & Len Base Case (2/2)
	Slide 81: Example: Echo & Len Inductive Step (1/3)
	Slide 82: Example: Echo & Len Inductive Step (2/3)
	Slide 83: Example: Echo & Len Inductive Step (3/3)
	Slide 84: Matt’s Proof Strategy Advice™️ (2/3)
	Slide 85: Example 2: Echo & Sum
	Slide 86: Example 2: Echo & Sum Base Case (1/2)
	Slide 87: Example 2: Echo & Sum Base Case (2/2)
	Slide 88: Example 2: Echo & Sum Inductive Step (1/2)
	Slide 89: Example 2: Echo & Sum Inductive Step (2/2)
	Slide 90: Recall: Concatenating Two Lists
	Slide 91: Example 3: Length of Concatenated Lists
	Slide 92: Example 3: Len & Concat Base Case (1/2)
	Slide 93: Example 3: Len & Concat Base Case (2/2)
	Slide 94: Example 3: Len & Concat Inductive Step (1/3)
	Slide 95: Example 3: Len & Concat Inductive Step (2/3)
	Slide 96: Example 3: Len & Concat Inductive Step (3/3)
	Slide 97: Matt’s Proof Strategy Advice™️ (3/3)
	Slide 98: Comparing Reasoning vs Testing
	Slide 99: Structural Induction … Gone Wrong? (1/3)
	Slide 100: Structural Induction … Gone Wrong? (2/3)
	Slide 101: Structural Induction … Gone Wrong? (3/3)
	Slide 102: Example 4: Faster Sum
	Slide 103: Example 4: Faster Sum Base Case (1/2)
	Slide 104: Example 4: Faster Sum Base Case (2/2)
	Slide 105: Example 4: Faster Sum Inductive Step (1/3)
	Slide 106: Example 4: Faster Sum Inductive Step (2/3)
	Slide 107: Example 4: Faster Sum Inductive Step (3/3)

