CSE 331 DIVSON NOTATION
Spring 2025 P‘+B} SCHOOLCHILD

BJA
Specifications A/B SOFTUARE ENGINEER
NORMAL PERSON OR

A
8 UNICODE ENTHUSIAST
A

B

SCIENTIST

AB

AB
ELECH{IHH)I' OH NO, RUN

F(G): 4" Mase
A P 5
A,

FANCY SCIENTIST

Matt Wang xked #2687

& Ali, Alice, Andrew, Anmol, Antonio, Connor,
Edison, Helena, Jonathan, Katherine, Lauren,
Lawrence, Mayee, Omar, Riva, Saan, and Yusong

A Brief Look at HW: Time Spent

 Time spent per bug: ~ 42 min/bug, 25% > 1 hour
« ~1 bug per 22 lines of code (harder with JSX)

Minutes per Bug

% of bugs
[
(0]

5
60

20 30 40 50

0
0 10
Minutes Debugging (60 is 60+)

* Long tail is making itself visible...

HW2 & Mutation

 Was the bug due to a disallowed mutation?
— students reported 'yes' for 11.5% of bugs
— such bugs took >40% longer to debug on average

HW2 Debugging via User Report (1/2)

* User reports the following bug:

"Sometimes, | can't click on one of the markers.
Usually, it it works fine. But occasionally, you can't click on it."

* First step is to figure out how to reproduce it

— can't debug otherwise
wouldn't know that you've fixed the bug

— key reason why event-driven debugging is harder
command-line failure is instantly reproducible

— debugging a crash is easier than a non-crash!
crash comes with a stack trace (line of code with a failure)

HW2 Debugging via User Report (2/2)

* Eventually, you find a way to reproduce it
— no longer clickable after you move it very far away

* To debug, you must learn how 2App . tsx wWorks
— markers are stored in some kind of tree
— searches the tree to find markers near the click

* To debug, you must learn how marker tree.ts WOrks
— internal tree nodes split into NW, NE, SE, SW regions
— marker was inserted into the correct region
— when you search for it, it's no longer in the right region

One "Solution" to HW2 (1/2)

type EditorState = {

newMarker: Marker;

}s

doNameChange = (evt: ChangeEvent<..>): void => |{
this.state.newMarker.name = evt.target.value;

this.setState ({newName: evt.target.value})

}s

doSaveClick = (evt: MouseEvent<..>): void => {

this.props.onSaveClick (newMarker.name, ..);
I

already suspicious...
mutating this. state directly

One "Solution" to HW2 (2/2)

constructor (props) {

super (props) ;

this.state = {newMarker: this.props.marker, ..};

doMoveToChange = (evt: ChangeEvent<.>): void => {
const bldg = findBuildingByName (evt.target.value);
newMarker.location = bldg.location;

this.setState({moveTo: evt.target.value});

}s

e Starting to get nervous...
— are we allowed to mutate that marker?
— no! that location is a key in a tree

#KEYANDPEELE
#KPClearCookies

Staying Safe in 331

1. Do not use mutable state

— don’t need to think about aliasing at all
— any nhumber of aliases is fine

2. Do not allow aliases to mutable state
a) do not hand out aliases yourself
b) make a copy of anything you want to keep

ensures only one reference to the object (no aliases)

* For 331, mutable aliasing across files is a bug!

— gives other parts the ability to break your code
— we will stick to these simple strategies for avoiding it

Rules of Thumb: Mutation XOR Aliasing

Client Side Server Side
1. Datais small 1. Datais large
— anything on screen is O(1) — efficiency matters
2. Aliasing is common 2. Aliasing is avoidable
— Ul design forces modules — you decide on modules
— data is widely shared — data is not widely shared
Rule: avoid mutation Rule: avoid aliases
— create new values instead — do not allow aliases to your data
— performance will be fine — hand out copies not aliases

— (local-only mutation can be OK) — (good enough for us in 331)
10

Language Features & Aliasing

Most recent languages have some answer to this...

Java chose to make string immutable

— most keys in maps are strings
— hugely controversial at the time, but great decision

Python chose to only allow immutable keys in maps

— ohly numbers, strings, and tuples allowed
— surprisingly, not that inconvenient

Rust has built-in support for “mutation XOR aliasing”
— ownership of value can be “borrowed” and returned

— type system ensures there is only one usable alias
11

Readonly in TypeScript (1/2)

* TypeScript can ensure values aren’t modified

— extremely useful!
— but, only a compile-time check (nhot a runtime guarantee)

 Readonly tuples:

type IntPair = readonly [bigint, bigint];

 Readonly fields of records:

type IntPoint = {readonly x: bigint,
readonly y: bigint};

12

Readonly in TypeScript (2/2)

 Readonly fields of records:

type IntPoint = {readonly x: bigint,
readonly y: bigint};

* Readonly records:
type IntPoint = Readonly<{x: bigint, y: bigint}>;

— this.props iS Readonly<MyPropsType>

* More readonly...

ReadonlyArray<bigint>
ReadonlyMap<string, bigint>
ReadonlySet<string>

13

comfy-tslint

* we've written a TS linter for this class that
enforces some of our conventions, e.g.
— requiring type annotations for functions
— disallowing the any type
— naming & structure conventions for React methods

* available to you...

— as a VSCode extension

— as an npm module (that you can run yourself)
* please:

— take a careful look at the HW3 spec + autograder
— briefly read the website page on comfy-tslint

14

https://courses.cs.washington.edu/courses/cse331/25sp/resources/comfy-tslint.html

Precise Specifications

Where We Are in the Course

Nine assighments split into these groups:

HW1

HW2

HW3

HW4

HWS5

HWG6

HW7

HWS8

HW9

learn to write more complex apps
practice debugging

learn how to be 100% sure the code is correct
(most of the work done on paper)

16

Correctness and Specifications

* Correctness requires a definition of the correct answer

* Description must be precise
— can’t have disagreement about what is correct

* |Informal descriptions (English) are usually imprecise
— necessary to “formalize” the English

turn the English into a precise mathematical definition

— professionals are very good at this
usually just give English definitions
important skill to practice

— we will start out completely formal to make it easier

17

Kinds of Specifications

 Imperative specification says how to calculate the answer
— lays out the exact steps to perform to get the answer

 Declarative specification says what the answer looks like
— does not say how to calculate it
— up to us to ensure that our code satisfies the spec

 Can implement a different imperative specification
— again, up to us to ensure that our code satisfies the spec

18

Example: Imperative Specification (abs)

* Absolute value: |x| =x if x = 0 and -x otherwise
— definition is an “if” statement

const abs = (x: bigint): bigint => {
if (x >= 0On) {
return x;
} else {

return —x;

just translating math to TypeScript

19

Example: Declarative Specification (sub)

* Subtraction (a - b): return x such thatb + x=a
— canseethatb+ (a-b)=b+a-b=a

const sub = (a : bigint, b: bigint): bigint => {

?7?

we are left to figure out how to do this...
and convince ourselves it satisfies the spec

20

Example: Declarative Specification (sqrt)

« Square root of x is number y such that y? = x

— nhot all positive integers have integer square roots,
s0... let’s round up

- (y-1)*<x=<y?

smallest integer y such that x < y?

const sgrt = (x: bigint): bigint => ({

?7?

} we are left to figure out how to do this...
and convince ourselves it satisfies the spec

21

Example: Declarative Specification (abs)

* Absolute value |x| is an integer y such that
—y=2X
—y=-X
—y=XOry=-X

const abs = (x: bigint): bigint => {
if (x >= 0) {
return x;
} else {

return —x;

} requires some thinking to make sure this code
} returns a number with the properties above

22

Example: Imperative Specification (HW3)

From HW3: Dijkstra's Algorithm

add a 0-step (empty) path from start to itself to active

while active is not empty:
minPath = active.removeMin() // shortest active path

if minPath.end is end:
return minPath // shortest path from start to end!

if minPath.end is in finished:
continue // longer path to minPath.end than the one we found before

add minPath.end to finished // just found shortest path to here!

// add all paths that have one step added to this shortest path
for each edge e in adjacent.get(minPath.end):

if e.end is not in finished: _
newPath = minPath + e steps are described fully

add newPath to active (just translate to TypeScript)

return undefined // no path from start to end :(

23

"Straight From the Spec"

If imperative, just translate math into code

— TypeScript here, but could also be Java
— we often call this "straight from the spec”

if declarative (or implementing different imperative spec),
then we will need new tools for checking its correctness

24

Examples from Java: Map .replace()

java.util .Map — set of (key, value) pairs

replace

default V replace(K key,
V value)

Replaces the entry for the specified key only if it is currently mapped to some value.

Implementation Requirements:

The default implementation is equivalent to, for this map:

1T (map.containsKey(key)) {
return map.put(key, value);
} else
return null;

Imperative

25

Examples from Java: Map .putAll()

java.util .Map — set of (key, value) pairs

putAll

void putAll(Map<? extends K,? extends V> m)

Copies all of the mappings from the specified map to this map (optional operation). The
effect of this call is equivalent to that of calling put(k, v) on this map once for each
mapping from key k to value v in the specified map. The behavior of this operation is
undefined if the specified map is modified while the operation is in progress.

Parameters:

m - mappings to be stored in this map

Imperative

26

Examples from Java: Map .containsKey()

java.util .Map — set of (key, value) pairs

containsKey

boolean containsKey(Object key)

Returns true if this map contains a mapping for the specified key. More formally, returns
true if and only if this map contains a mapping for a key k such that
Objects.equals(key, k). (There can be at most one such mapping.)

Parameters:

key - key whose presence in this map is to be tested

Returns:

true if this map contains a mapping for the specified key

Declarative (probably)

27

Examples from Java: Object .hashCode()

java.util.Object
hashCode

public int hashCode()

Returns a hash code value for the object. This method is supported for the benefit of hash
tables such as those provided by HashMap.

The general contract of hashCode is:

+ Whenever it is invoked on the same object more than once during an execution of a
Java application, the hashCode method must consistently return the same integer,
provided no information used in equals comparisons on the object is modified. This
integer need not remain consistent from one execution of an application to another
execution of the same application.

+ If two objects are equal according to the equals method, then calling the hashCode
method on each of the two objects must produce the same integer result.

« It is not required that if two objects are unequal according to the equals method,
then calling the hashCode method on each of the two objects must produce distinct
integer results. However, the programmer should be aware that producing distinct
integer results for unequal objects may improve the performance of hash tables.

Declarative

28

This Topic’'s Goal: Imperative Specifications

* Toolkit for writing imperative specifications

— define math for data and code
write specifications that are language independent

(don't want a toolkit that only works for TypeScript)

— describe how to translate imperative specs into TypeScript
try to make the translations as straightforward as possible (fewer mistakes)

— mention new TypeScript features when related

critical to understand what bugs the type system catches and which it does not

 Will look at declarative specifications later

29

Math Notation

Basic Data Types in Math

* |n math, the basic data types are “sets”

— sets are collections of objects called elements

— write x € S to say that “x” is an element of set “S”,
and x € S to say that it is not.

« Examples:

X EZ
X€EN
XER
X €EB
XES
XES

X is an integer

X is @ non-negative integer (natural)

X is a real number
X is T or F (boolean)
X is a character

X is a string

= non-standard names

31

Basic Data Types in TypeScript

integer X EZ bigint
natural x€EN bigint non-negative
real xeER number
boolean x EB boolean
character XES string length 1
string XES string

we will often write
X:Z instead of xXE€ Z

— only subtraction on non-negative can produce negative

32

Creating New Types in Math (Unions)

* Union Types SSUN

— contains every object in either (or both) of those sets
— e.g., all strings and natural numbers

« Ifx€NUS’, then x could be a natural or string

 Two sets can contain common elements
— in this case, the sets are disjoint

33

Creating New Types in TypeScript (Unions)

* Union Types string | bigint
— can be either one of these

e How do we work with this code?

const x: string | bigint = . ;

// can I call isPrime (x)?

* We can check the type of x using “typeo£f”

— TypeScript understands these expressions
— will “narrow” the type of x to reflect that information

34

Type Narrowing With “If” Statements

* Union Types string | bigint
— can be either one of these

e How do we work with this code?

const x: string | bigint = .;

if (typeof x === "bigint") {
console.log (isPrime (x)) // okay! x is a bigint
} else {

// x is a string

35

Type Narrowing vs Casting

const x: string | bigint = .;

if (typeof x === "bigint") {
console.log (isPrime (x)) // okay! x is a bigint
} else {

// x is a string

* Note that this does not require a type cast
— TypeScript knows x is a bigint inside the “if” (narrowing)

 331: there are no type casts (won’t even show syntax)
— unlike Java, TypeScript casts are unchecked at runtime

— seem designed to create extremely painful debugging
36

Type Narrowing Gotcha

const f = (x: bigint): string | bigint => .;
if (typeof f(x) === "bigint") {
console.log (isPrime (f (x))) // why not allowed?

* TypeScript will (properly) reject this

— no guarantee that f(x) returns the same value both times!

37

Type Narrowing of Function Calls

const f = (x: bigint): string | bigint => .;
const y = f (x);

if (typeof y === "bigint") {
console.log (isPrime (y)) // this works now

* TypeScript can see that the two values are the same

 Functions that return different values for the same
inputs are confusing!
— maybe better to avoid that

38

Record Types in Math

* RecordTypes {x:N, y:N}
— record with fields “x” and “y” each containing a number
—eg., {x:3,y:5}

* Note that {x: 3, y: 5} ={y: 5, x: 3} in math
— field names matter, not order
— hote that these are not "===" in JavaScript

in math, “=“ means same values
in JavaScript, "==="is reference equality

39

Record Types in TypeScript

* RecordTypes ({x: bigint, y: bigint}
— anything with at least fields “x” and “y”

* Retrieve a part by name:

const t: {x: bigint, y: bigint} = .. ;

console.log (t.x);

40

Optional Fields in TypeScript

* Records can have optional fields
type T = {x: bigint, y?: bigint};

const t: T = {x: 1n};

— typeof “ t.v”7is“bigint | undefined”

* Functions can have optional arguments

const f = (a: bigint, b?: bigint): bigint => {
console.log (b);

Y

— type of “b "is “bigint | undefined”

41

Tuple Types in Math

* RecordTypes {x:N, y:N}

— record with fields “x” and “y” each containing a number
— e.g., {x:3,y:5}

* Tuple Types N X N

— pair of two natural numbers, e.g., (5, 7)
— can do tuples of 3, 4, or more elements also

Mostly equivalent alternatives

— both let us put parts together into a larger object
— record distinguishes parts by name

— tuple distinguishes parts by order

42

Retrieving Part of a Tuple

* To refer to tuple parts, we must give them names

* Tuple Types N X N
Let (a,b) :=t. Suppose we know thatt = (5, 7)
“:=" means a definition Then, we havea=5andb =7
* Tuple Types [bigint, bigint]
const t: [bigint, bigint] = ..;
const [a, b] = t;

console.log(a); // first part of t

43

Simple Functions in Math

* Simplest function definitions are single expressions

 Will write them in math like this:

double: N> N
double(n) := 2n

— first line declares the type of double function
takes a natural number input to a natural number output

— second line shows the calculation

know that "n" is a natural number from the first line

— will often put the type in the text before the definition, e.g.,

The function double : N — N is defined by...
double(n) := 2n

44

Simple Functions in Math (and shorthands)

* Another example:

dist: {x: R, y: R} > R

dist(p) := (p.x% + p.y?)1/2

— first line tells us that "p" is a record and "p.x" is a real number

* Can define short-hand for types in math also

type Point := {x: R, y: R}

dist: Point » R
dist(p) := (p.x% + p.y?)1/?

45

Complex Functions in Math

* Most interesting functions are not simple expressions
— heed to use different expressions in different cases

 (Can use side-conditions to split into cases

abs:R—-> R
abs(x) :=x ifx=>0
abs(x) :=—x ifx<0

— conditions must be exclusive and exhaustive
we do not want to require on order to determine which applies

— there is a better way to do this in many cases...

46

Pattern Matching

 (Can also define functions by “pattern matching’

double: N— N
double(0) =0
double(n+1) := double(n) + 2

— first case matches only 0

— second case matches numbers 1 more than somen: N ...
double(6) = double(5+1) so it matches withn=5

since n = 0, we have n+1 > 1, so it matches 1, 2, 3, ...

— pattern “n+2” would match 2, 3, 4, ...

 Simplifies the math in multiple ways...

47

Pattern Matching on Natural Numbers

* Pattern matching definition

double(0) =0
double(n+1) := double(n) + 2

Is simpler than using side conditions

double(n) =0 ifn=0
double(n) := double(n-1) + 2 ifn>0

— e.g., need to explain why double(n-1) is legal

easy in this case, but it gets harder

* We will prefer pattern matching whenever possible

48

Pattern Matching on Booleans

* Booleans have only two legal values: T and F

 (Can pattern match just by listing the values:
— the function not : B — B is defined as follows:

not(T) :=F
not(F):=T

— hegates a boolean value
— no simpler way to define this function!

49

Pattern Matching on Records

e (Can pattern match on individual fields of a record
type Steps:={n:N, fwd: B}
change : Steps - Z
change({n: m, fwd: T}) :=m

change({n: m, fwd: F}) := -m

— clear that the rules are exclusive and exhaustive

 Can match on multiple parameters
— e.g., change({n: m+5, fwd: T}) := 2m
— just make sure the rules are exclusive and exhaustive

50

Pattern Matching in TypeScript

* TypeScript does not provide pattern matching
— some other languages do! (see 341)

* We must translate into “1 £”s on our own

type Steps = {n: number, fwd: boolean};
const change = (s: Steps) => {
if (s.fwd) {

return s.n;
} else {

return -s.n;
) still straight from the spec

) but easy to make mistakes

51

Pattern Matching in TypeScript: Gotcha

double(0) =0
double(n+1) := double(n) + 2

 Also need to be careful with natural numbers

// m is non-negative

const double = (m: bigint) => {
if (m === 0On) {
return On;
} else { spec says double(n)
return double (m — 1n) + 2n; but code says double(m - 1)

}
b

— pattern matching uses “n+1” but the code uses “m” (or “n”)
sadly, TypeScript will not let “n+1” be the argument value

52

Code Without Mutation

 Saw all types of code without mutation:
— straight-line code
— conditionals
— recursion

* This is all that there is!
— can write anything computable with just these

 Saw TypeScript syntax for these already...

53

Code Without Mutation Example

Example function with all three types

// n must be a non-negative integer
const f = (m: bigint): bigint => {
i1f (m === 0On) {

return 1n;

} else { What does this compute?
const n = m - 1n;
return 2n * f (n); f(m) =27
} f:N->N
Y
f(0) =1

f(n+1) :=2-f(n)

54

	Slide 1: Specifications
	Slide 2: A Brief Look at HW: Time Spent
	Slide 3: HW2 & Mutation
	Slide 4: HW2 Debugging via User Report (1/2)
	Slide 5: HW2 Debugging via User Report (2/2)
	Slide 6: One "Solution" to HW2 (1/2)
	Slide 7: One "Solution" to HW2 (2/2)
	Slide 8: Staying Safe in 331
	Slide 10: Rules of Thumb: Mutation XOR Aliasing
	Slide 11: Language Features & Aliasing
	Slide 12: Readonly in TypeScript (1/2)
	Slide 13: Readonly in TypeScript (2/2)
	Slide 14: comfy-tslint
	Slide 15: Precise Specifications
	Slide 16: Where We Are in the Course
	Slide 17: Correctness and Specifications
	Slide 18: Kinds of Specifications
	Slide 19: Example: Imperative Specification (abs)
	Slide 20: Example: Declarative Specification (sub)
	Slide 21: Example: Declarative Specification (sqrt)
	Slide 22: Example: Declarative Specification (abs)
	Slide 23: Example: Imperative Specification (HW3)
	Slide 24: "Straight From the Spec"
	Slide 25: Examples from Java: Map .replace()
	Slide 26: Examples from Java: Map .putAll()
	Slide 27: Examples from Java: Map .containsKey()
	Slide 28: Examples from Java: Object .hashCode()
	Slide 29: This Topic’s Goal: Imperative Specifications
	Slide 30: Math Notation
	Slide 31: Basic Data Types in Math
	Slide 32: Basic Data Types in TypeScript
	Slide 33: Creating New Types in Math (Unions)
	Slide 34: Creating New Types in TypeScript (Unions)
	Slide 35: Type Narrowing With “If” Statements
	Slide 36: Type Narrowing vs Casting
	Slide 37: Type Narrowing Gotcha
	Slide 38: Type Narrowing of Function Calls
	Slide 39: Record Types in Math
	Slide 40: Record Types in TypeScript
	Slide 41: Optional Fields in TypeScript
	Slide 42: Tuple Types in Math
	Slide 43: Retrieving Part of a Tuple
	Slide 44: Simple Functions in Math
	Slide 45: Simple Functions in Math (and shorthands)
	Slide 46: Complex Functions in Math
	Slide 47: Pattern Matching
	Slide 48: Pattern Matching on Natural Numbers
	Slide 49: Pattern Matching on Booleans
	Slide 50: Pattern Matching on Records
	Slide 51: Pattern Matching in TypeScript
	Slide 52: Pattern Matching in TypeScript: Gotcha
	Slide 53: Code Without Mutation
	Slide 54: Code Without Mutation Example

