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A Brief Look at HW: Time Spent

• Time spent per bug: ~ 42 min/bug, 25% > 1 hour

• ~ 1 bug per 22 lines of code (harder with JSX)

• Long tail is making itself visible…
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HW2 & Mutation

• Was the bug due to a disallowed mutation?

– students reported 'yes' for 11.5% of bugs

– such bugs took >40% longer to debug on average
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HW2 Debugging via User Report (1/2)

• User reports the following bug:

"Sometimes, I can't click on one of the markers.

  Usually, it it works fine. But occasionally, you can't click on it."

• First step is to figure out how to reproduce it

– can't debug otherwise

wouldn't know that you've fixed the bug

– key reason why event-driven debugging is harder

command-line failure is instantly reproducible

– debugging a crash is easier than a non-crash!

crash comes with a stack trace (line of code with a failure)
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HW2 Debugging via User Report (2/2)

• Eventually, you find a way to reproduce it

– no longer clickable after you move it very far away

• To debug, you must learn how App.tsx works

– markers are stored in some kind of tree

– searches the tree to find markers near the click

• To debug, you must learn how marker_tree.ts works

– internal tree nodes split into NW, NE, SE, SW regions

– marker was inserted into the correct region

– when you search for it, it's no longer in the right region

5



One "Solution" to HW2 (1/2)

type EditorState = {

  newMarker: Marker;

  …

};

doNameChange = (evt: ChangeEvent<…>): void => {

  this.state.newMarker.name = evt.target.value;

  this.setState({newName: evt.target.value});

};

doSaveClick = (evt: MouseEvent<…>): void => {

  this.props.onSaveClick(newMarker.name, …);

};

already suspicious…

mutating this.state directly
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One "Solution" to HW2 (2/2)

constructor(props) {

  super(props);

  this.state = {newMarker: this.props.marker, …};

}

doMoveToChange = (evt: ChangeEvent<…>): void => {

  const bldg = findBuildingByName(evt.target.value);

  newMarker.location = bldg.location;

  this.setState({moveTo: evt.target.value});

};

• Starting to get nervous…

– are we allowed to mutate that marker?

– no! that location is a key in a tree
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Staying Safe in 331

1. Do not use mutable state

– don’t need to think about aliasing at all

– any number of aliases is fine

2. Do not allow aliases to mutable state

a) do not hand out aliases yourself

b) make a copy of anything you want to keep

• For 331, mutable aliasing across files is a bug!

– gives other parts the ability to break your code

– we will stick to these simple strategies for avoiding it

ensures only one reference to the object (no aliases)
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Rules of Thumb: Mutation XOR Aliasing

Client Side

1. Data is small

– anything on screen is O(1)

2. Aliasing is common

– UI design forces modules

– data is widely shared

Rule: avoid mutation

– create new values instead

– performance will be fine

– (local-only mutation can be OK)

Server Side

1. Data is large

– efficiency matters

2. Aliasing is avoidable

– you decide on modules

– data is not widely shared

Rule: avoid aliases

– do not allow aliases to your data

– hand out copies not aliases

– (good enough for us in 331)
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Language Features & Aliasing

• Most recent languages have some answer to this…

• Java chose to make String immutable

– most keys in maps are strings

– hugely controversial at the time, but great decision

• Python chose to only allow immutable keys in maps

– only numbers, strings, and tuples allowed

– surprisingly, not that inconvenient

• Rust has built-in support for “mutation XOR aliasing”

– ownership of value can be “borrowed” and returned

– type system ensures there is only one usable alias
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Readonly in TypeScript (1/2)

• TypeScript can ensure values aren’t modified

– extremely useful!

– but, only a compile-time check (not a runtime guarantee)

• Readonly tuples:

type IntPair = readonly [bigint, bigint];

• Readonly fields of records:

type IntPoint = {readonly x: bigint,

                 readonly y: bigint};
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Readonly in TypeScript (2/2)

• Readonly fields of records:

type IntPoint = {readonly x: bigint,

                 readonly y: bigint};

• Readonly records:

type IntPoint = Readonly<{x: bigint, y: bigint}>;

–  this.props  is  Readonly<MyPropsType>

• More readonly…

ReadonlyArray<bigint>

ReadonlyMap<string, bigint>

ReadonlySet<string>
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comfy-tslint

• we’ve written a TS linter for this class that 

enforces some of our conventions, e.g.

– requiring type annotations for functions

– disallowing the any type

– naming & structure conventions for React methods

• available to you…

– as a VSCode extension

– as an npm module (that you can run yourself)

• please:

– take a careful look at the HW3 spec + autograder

– briefly read the website page on comfy-tslint
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Precise Specifications



Where We Are in the Course

Nine assignments split into these groups:

HW1

HW2

HW3

HW4

HW5

HW6

HW7

HW8

HW9

learn to write more complex apps

practice debugging

learn how to be 100% sure the code is correct

(most of the work done on paper)
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Correctness and Specifications

• Correctness requires a definition of the correct answer

• Description must be precise

– can’t have disagreement about what is correct

• Informal descriptions (English) are usually imprecise

– necessary to “formalize” the English

turn the English into a precise mathematical definition

– professionals are very good at this

usually just give English definitions

important skill to practice

– we will start out completely formal to make it easier
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Kinds of Specifications

•  Imperative specification says how to calculate the answer

– lays out the exact steps to perform to get the answer

•  Declarative specification says what the answer looks like

– does not say how to calculate it

– up to us to ensure that our code satisfies the spec

• Can implement a different imperative specification

– again, up to us to ensure that our code satisfies the spec
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Example: Imperative Specification (abs) 

• Absolute value: |x| = x if x ≥ 0 and –x otherwise

– definition is an “if” statement

 const abs = (x: bigint): bigint => {

   if (x >= 0n) {

     return x;

   } else {

     return –x;

   }

 }
just translating math to TypeScript
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Example: Declarative Specification (sub) 

• Subtraction (a – b): return x such that b + x = a

– can see that b + (a – b) = b + a – b = a

 const sub = (a : bigint, b: bigint): bigint => {

   

      ??

 }

we are left to figure out how to do this…

and convince ourselves it satisfies the spec
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Example: Declarative Specification (sqrt)

• Square root of x is number y such that y2 = x

– not all positive integers have integer square roots,

so… let’s round up

– (y – 1)2 ≤ x ≤ y2

smallest integer y such that x ≤ y2

 const sqrt = (x: bigint): bigint => {

   

      ??

 } we are left to figure out how to do this…

and convince ourselves it satisfies the spec
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Example: Declarative Specification (abs)

• Absolute value |x| is an integer y such that

– y ≥ x 

– y ≥ –x

– y = x or y = –x

 const abs = (x: bigint): bigint => {

   if (x >= 0) {

     return x;

   } else {

     return –x;

   }

 }

requires some thinking to make sure this code

returns a number with the properties above
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Example: Imperative Specification (HW3)

From HW3: Dijkstra's Algorithm
add a 0-step (empty) path from start to itself to active

while active is not empty:
  minPath = active.removeMin()  // shortest active path

  if minPath.end is end:
    return minPath  // shortest path from start to end!

  if minPath.end is in finished:
    continue  // longer path to minPath.end than the one we found before

  add minPath.end to finished  // just found shortest path to here!

  // add all paths that have one step added to this shortest path
  for each edge e in adjacent.get(minPath.end):
    if e.end is not in finished:
      newPath = minPath + e
      add newPath to active

return undefined  // no path from start to end :(

steps are described fully

(just translate to TypeScript)
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"Straight From the Spec"

• If imperative, just translate math into code

– TypeScript here, but could also be Java

– we often call this "straight from the spec"

• if declarative (or implementing different imperative spec), 

then we will need new tools for checking its correctness

24



Examples from Java: Map .replace()

java.util.Map  —  set of (key, value) pairs

Imperative
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Examples from Java: Map .putAll()

java.util.Map  —  set of (key, value) pairs

Imperative
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Examples from Java: Map .containsKey()

java.util.Map  —  set of (key, value) pairs

Declarative (probably)
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Examples from Java: Object .hashCode()

java.util.Object

Declarative 28



This Topic’s Goal: Imperative Specifications

• Toolkit for writing imperative specifications

– define math for data and code

write specifications that are language independent

(don't want a toolkit that only works for TypeScript)

– describe how to translate imperative specs into TypeScript

try to make the translations as straightforward as possible (fewer mistakes)

– mention new TypeScript features when related

critical to understand what bugs the type system catches and which it does not

• Will look at declarative specifications later

29



Math Notation



Basic Data Types in Math

• In math, the basic data types are “sets”

– sets are collections of objects called elements

– write x ∈ S to say that “x” is an element of set “S”,

and x ∉ S to say that it is not.

• Examples:

  x ∈ ℤ    x is an integer

  x ∈ ℕ    x is a non-negative integer (natural)

  x ∈ ℝ    x is a real number

  x ∈ 𝔹    x is T or F (boolean)

  x ∈ 𝕊    x is a character

  x ∈ 𝕊*    x is a string

non-standard names
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Basic Data Types in TypeScript

English Math TypeScript Up to Us

integer x ∈ ℤ bigint

natural x ∈ ℕ bigint non-negative

real x ∈ ℝ number

boolean x ∈ 𝔹 boolean

character x ∈ 𝕊 string length 1

string x ∈ 𝕊* string

we will often write

x : ℤ  instead of  x ∈ ℤ

– only subtraction on non-negative can produce negative
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Creating New Types in Math (Unions)

• Union Types  𝕊*  ∪  ℕ

– contains every object in either (or both) of those sets

– e.g., all strings and natural numbers

• If x ∈ ℕ ∪ 𝕊*, then x could be a natural or string

• Two sets can contain common elements

– in this case, the sets are disjoint
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Creating New Types in TypeScript (Unions)

• Union Types  string | bigint

– can be either one of these

• How do we work with this code?

const x: string | bigint = …;

// can I call isPrime(x)?

• We can check the type of x using “typeof”

– TypeScript understands these expressions

– will “narrow” the type of x to reflect that information
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Type Narrowing With “If” Statements

• Union Types  string | bigint

– can be either one of these

• How do we work with this code?

const x: string | bigint = …;

if (typeof x === "bigint") {

  console.log(isPrime(x))   // okay! x is a bigint

} else {

  …                         // x is a string

}
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Type Narrowing vs Casting

const x: string | bigint = …;

if (typeof x === "bigint") {

  console.log(isPrime(x))   // okay! x is a bigint

} else {

  …                         // x is a string

}

• Note that this does not require a type cast

– TypeScript knows x is a bigint inside the “if” (narrowing)

• 331: there are no type casts (won’t even show syntax)

– unlike Java, TypeScript casts are unchecked at runtime

– seem designed to create extremely painful debugging
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Type Narrowing Gotcha

const f = (x: bigint): string | bigint => …;

if (typeof f(x) === "bigint") {

  console.log(isPrime(f(x)))   // why not allowed?

}

• TypeScript will (properly) reject this

– no guarantee that f(x) returns the same value both times!
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Type Narrowing of Function Calls

const f = (x: bigint): string | bigint => …;

const y = f(x);

if (typeof y === "bigint") {

  console.log(isPrime(y))      // this works now

}

• TypeScript can see that the two values are the same

• Functions that return different values for the same 

inputs are confusing!

– maybe better to avoid that
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Record Types in Math

• Record Types  {x : ℕ,  y : ℕ}

– record with fields “x” and “y” each containing a number

– e.g., {x: 3, y: 5}

• Note that {x: 3, y: 5} = {y: 5, x: 3} in math

– field names matter, not order

– note that these are not "===" in JavaScript

in math, “=“ means same values

in JavaScript, "===" is reference equality
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Record Types in TypeScript

• Record Types  {x: bigint, y: bigint}

– anything with at least fields “x” and “y”

• Retrieve a part by name:

const t: {x: bigint, y: bigint} = … ;

console.log(t.x);
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Optional Fields in TypeScript

• Records can have optional fields

type T = {x: bigint, y?: bigint};

const t: T = {x: 1n};

– type of “ t.y ” is “ bigint | undefined ”

• Functions can have optional arguments

const f = (a: bigint, b?: bigint): bigint => {

  console.log(b);

};

– type of “ b ” is “ bigint | undefined ”
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Tuple Types in Math

• Record Types  {x : ℕ,  y : ℕ}

– record with fields “x” and “y” each containing a number

– e.g., {x: 3, y: 5}

• Tuple Types   ℕ  ⨉  ℕ

– pair of two natural numbers, e.g., (5, 7)

– can do tuples of 3, 4, or more elements also

• Mostly equivalent alternatives

– both let us put parts together into a larger object

– record distinguishes parts by name

– tuple distinguishes parts by order
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Retrieving Part of a Tuple

• To refer to tuple parts, we must give them names

• Tuple Types   ℕ  ⨉  ℕ

Let (a, b) := t.    Suppose we know that t = (5, 7)

       Then, we have a = 5 and b = 7

• Tuple Types  [bigint, bigint]

const t: [bigint, bigint] = …;

const [a, b] = t;

console.log(a);  // first part of t

“:=” means a definition
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Simple Functions in Math

• Simplest function definitions are single expressions

• Will write them in math like this:

 double : ℕ → ℕ

 double(n) := 2n

– first line declares the type of double function

takes a natural number input to a natural number output

– second line shows the calculation

know that "n" is a natural number from the first line

– will often put the type in the text before the definition, e.g.,

The function double : ℕ → ℕ is defined by…

 double(n) := 2n
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Simple Functions in Math (and shorthands)

• Another example:

 dist : {x: ℝ, y: ℝ} → ℝ

 dist(p) := (p.x2 + p.y2)1/2

– first line tells us that "p" is a record and "p.x" is a real number

• Can define short-hand for types in math also

 type Point := {x: ℝ, y: ℝ}

 dist : Point → ℝ

 dist(p) := (p.x2 + p.y2)1/2
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Complex Functions in Math

• Most interesting functions are not simple expressions

– need to use different expressions in different cases

• Can use side-conditions to split into cases

         abs : ℝ → ℝ

  abs(x) := x   if x ≥ 0

  abs(x) := –x   if x < 0

– conditions must be exclusive and exhaustive

we do not want to require on order to determine which applies

– there is a better way to do this in many cases…
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Pattern Matching

• Can also define functions by “pattern matching”

  double : ℕ → ℕ

  double(0) := 0

  double(n+1) := double(n) + 2

– first case matches only 0

– second case matches numbers 1 more than some n : ℕ …
double(6) = double(5+1) so it matches with n = 5

since n ≥ 0, we have n+1 ≥ 1, so it matches 1, 2, 3, …

– pattern “n+2” would match 2, 3, 4, …

• Simplifies the math in multiple ways…
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Pattern Matching on Natural Numbers

• Pattern matching definition

       double(0) := 0

  double(n+1) := double(n) + 2

 is simpler than using side conditions

  double(n) := 0     if n = 0

  double(n) := double(n-1) + 2 if n > 0

– e.g., need to explain why double(n-1) is legal

easy in this case, but it gets harder

• We will prefer pattern matching whenever possible
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Pattern Matching on Booleans

• Booleans have only two legal values: T and F

• Can pattern match just by listing the values:

– the function not : 𝔹 → 𝔹 is defined as follows:

  not(T) := F

  not(F) := T

– negates a boolean value

– no simpler way to define this function!
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Pattern Matching on Records

• Can pattern match on individual fields of a record

       type Steps := {n : ℕ, fwd : 𝔹}

 change : Steps → ℤ

 change({n: m, fwd: T}) := m

 change({n: m, fwd: F}) := –m

– clear that the rules are exclusive and exhaustive

• Can match on multiple parameters

– e.g., change({n: m+5, fwd: T}) := 2m

– just make sure the rules are exclusive and exhaustive
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Pattern Matching in TypeScript

• TypeScript does not provide pattern matching

– some other languages do! (see 341)

• We must translate into “if”s on our own

type Steps = {n: number, fwd: boolean};

const change = (s: Steps) => {

  if (s.fwd) {

    return s.n;

  } else {

    return –s.n;

  }

};

still straight from the spec

but easy to make mistakes
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Pattern Matching in TypeScript: Gotcha

 double(0) := 0

  double(n+1) := double(n) + 2

• Also need to be careful with natural numbers

// m is non-negative

const double = (m: bigint) => {

  if (m === 0n) {

    return 0n;

  } else {

    return double(m – 1n) + 2n;

  }

};

– pattern matching uses “n+1” but the code uses “m” (or “n”)

sadly, TypeScript will not let “n+1” be the argument value

spec says double(n)

but code says double(m – 1)
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Code Without Mutation

• Saw all types of code without mutation:

– straight-line code

– conditionals

– recursion

• This is all that there is!

– can write anything computable with just these

• Saw TypeScript syntax for these already…
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Code Without Mutation Example

Example function with all three types

    // n must be a non-negative integer

    const f = (m: bigint): bigint => {

      if (m === 0n) {

        return 1n;

      } else {

        const n = m – 1n;

        return 2n * f(n);

      }

    };

What does this compute?

f(m) = 2m

f : ℕ → ℕ

f(0)  := 1
f(n+1) := 2 · f(n)
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