
Client-Server

Interaction

Matt Wang
& Ali, Alice, Andrew, Anmol, Antonio, Connor,

Edison, Helena, Jonathan, Katherine, Lauren,

Lawrence, Mayee, Omar, Riva, Saan, and Yusong

CSE 331

Spring 2025

xkcd #1537

Summary of HW1: Number of Bugs

• Number of bugs logged:

– average of 4.1 (median of just 4, but barely)

• Average solution was ~72 lines of code

– 1 bug every ~18 lines of code

– 1 bug every 20–30 lines in industry

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10

%
 o

f
st

u
d

e
n

ts

Bugs

Bugs per Student

2

Summary of HW1: Time Spent Debugging

• Time spent per bug:

– average min per bug: 38 (37 fall, 52 winter)

– 23% took more than 1 hour to find (22% in winter)

• Every 10–20 lines you lose this much time

– worthwhile to see what we can do to reduce debugging

0

5

10

15

20

25

0 10 20 30 40 50 60 70

%
 o

f
st

u
d

e
n

ts

Minutes Debugging (for 1 bug)

Time Spent Debugging (per bug)

3

Summary of HW1: Bottom Line

• In HW1, we asked: would a type checker help?

– students reported: 41% fall, 45% winter, 39% spring

– industry studies found even higher numbers (over 60%)

• Programming (and thinking) is a time trade-off

– “waste” ~ 2-5 minutes adding type annotations, fighting

compiler errors, handling “impossible” cases

– spend one hour debugging a long-tail types bug

• at mega-scale, the long-tail is inevitable;

good programmers plan around this

4

Multiple Components

Client-Server Interaction

Steps to Writing a Full Stack App

• Data stored only in the client is generally ephemeral

– closing the window means you lose it forever

– to store it permanently, we need a server

• We recommend writing in the following order:

1. Write the client UI with local data

– no client/server interaction at the start

2. Write the server

– official store of the data (client state is ephemeral)

3. Connect the client to the server

– use fetch to update data on the server before doing same to client

7

Steps to Writing a Full Stack App: Server

• We recommend writing in the following order:

1. Write the client UI with local data

– no client/server interaction at the start

2. Write the server

– official store of the data (client state is ephemeral)

3. Connect the client to the server

– use fetch to update data on the server before doing same to client

8

Designing the Server

• Decide what state you want to be permanent

– e.g., items on the To-Do list

• Decide what operations the client needs

– e.g., add/remove from the list, mark an item completed

look at the client code to see how the list changes

each way of changing the list becomes an operation

– also need a way to get the list initially

– only provide those operations

can always add more operations later

9

Example: To-Do List Server

Steps to Writing a Full Stack App: Connect

• We recommend writing in the following order:

1. Write the client UI with local data

– no client/server interaction at the start

2. Write the server

– official store of the data (client state is ephemeral)

3. Connect the client to the server

– use fetch to update data on the server before doing same to client

11

Recall: Client-Server Interaction

• Clients need to talk to server & update UI in response

GET /api/list

current to-do list

our server

Client will make requests to the server to

– get the list

– add, remove, and complete items

12

Development Setup

• Two servers: ours and webpack-dev-server

webpack-dev-server

will forward all requests

to /api/… to our server

our server

8088

GET /api/list

response

webpack-dev-server

8080

Only one server can

run on each port

(Attempting to start

a second will see a

EADDRINUSE error)

13

Client-Server Interaction: Making Requests?

• Clients need to talk to server & update UI in response

GET /api/list

current to-do list

our server

Components give us the ability to update the UI

when we get new data from the server (an event)

How does the client make requests to the server?

14

Fetch Requests Are Complicated (1/2)

• Four different methods involved in each fetch:

1. method that makes the fetch

2. handler for fetch Response

3. handler for fetched JSON

4. handler for errors

fetch status code

response data

error message
doListResp

doListError

doListJsonconnect

200

400

15

Making HTTP Requests: Using Fetch

• Send & receive data from the server with “fetch”

fetch("/api/list")

 .then(this.doListResp)

 .catch(() => this.doListError("failed to connect"))

• Fetch returns a “promise” object

– has .then & .catch methods

– both methods return the object again

– above is equivalent to:

const p = fetch("/api/list");

p.then(this.doListResp);

p.catch(() => this.doListError("failed to connect"));

16

Making HTTP Requests: After Fetch

• Send & receive data from the server with “fetch”

fetch("/api/list")

 .then(this.doListResp)

 .catch(() => this.doListError("failed to connect"))

– then handler is called if the request can be made

– catch handler is called if it cannot be

only if it could not connect to the server at all

status 400 still calls then handler

– catch is also called if then handler throws an exception

17

Making HTTP Requests: Query Parameters

• Send & receive data from the server with “fetch”

const url = "/api/list? " +

 "category=" + encodeURIComponent(category);

fetch(url)

 .then(this.doListResp)

 .catch(() => this.doListError("failed to connect"))

• All query parameter values are strings

• Some characters are not allowed in URLs

– the encodeURIComponent function converts to legal chars

– server will automatically decode these (in req.query)

in example above, req.query.name will be “laundry”

18

Making HTTP Requests: Status Codes

• Still need to check for a 200 status code

doListResp = (res: Response): void => {

 if (res.status === 200) {

 console.log("it worked!");

 } else {

 this.doListError(`bad status ${res.status}`);

 }

};

doListError = (msg: string) => {

 console.log(`fetch of /list failed: ${msg} `);

};

– (often need to tell users about errors with some UI…)
19

Handling HTTP Responses

• Response has methods to ask for response data

– our doListResp called once browser has status code

– may be a while before it has all response data (could be GBs)

• With our conventions, status code indicates data type:

– with 200 status code, use res.json() to get record

we always send records for normal responses

– with 400 status code, use res.text() to get error message

we always send strings for error responses

• These methods return a promise of response data

– use .then(..) to add a handler that is called with the data

– handler .catch(..) called if it fails to parse

20

Making HTTP Requests: Error Handling

doListResp = (res: Response): void => {

 if (res.status === 200) {

 res.json().then(this.doListJson);

 .catch(() => this.doListError("not JSON");

 } …

 …

};

• Second promise can also fail

– e.g., fails to parse as valid JSON, fails to download

• Important to catch every error

– painful debugging if an error occurs and you don’t see it!

21

Making HTTP Requests: More Error Handling

doListResp = (res: Response): void => {

 if (res.status === 200) {

 res.json().then(this.doListJson);

 .catch(() => this.doListError("not JSON");

 } else if (res.status === 400) {

 res.text().then(this.doListError);

 .catch(() => this.doListError("not text");

 } else {

 this.doListError(`bad status: ${res.status}`);

 }

};

• We know 400 response comes with an error message

– could also be large, so res.text() also returns a promise

22

Recall: Fetch Requests Are Complicated

• Four different methods involved in each fetch:

1. method that makes the fetch

2. handler for fetch Response

3. handler for fetched JSON

4. handler for errors

23

fetch status code

response data

error message
doListResp

doListError

doListJsonconnect

200

400

Fetch Requests Are Complicated (2/2)

• Four different methods involved in each fetch:

1. method that makes the fetch

2. handler for fetch Response e.g., doListResp

3. handler for fetched JSON e.g., doListJson

4. handler for errors e.g., doListError

• Three different events involved:

– getting status code, parsing JSON, parsing text

– any of those can fail!

important to make all error cases visible

24

Recall: HTTP GET vs POST

• When you type in a URL, browser makes “GET” request

– request to read something from the server

• Clients often want to write to the server also

– this is typically done with a “POST” request

ensure writes don’t happen just by normal browsing

• POST requests also send data to the server in body

– GET only sends data via query parameters

– limited to a few kilobytes of data

– POST requests can send arbitrary amounts of data

25

Making HTTP POST Requests

• Extra parameter to fetch for additional options:

fetch(”/add”, {method: "POST"})

• Arguments then passed in body as JSON

const args = {name: "laundry"};

fetch("/add", {method: "POST",

 body: JSON.stringify(args),

 headers: {"Content-Type”: "application/json"}})

 .then(this.doAddResp)

 .catch(() => this.doAddError("failed to connect"))

– add as many fields as you want in args

– Content-Type tells the server we sent data in JSON format

26

Lifecycle Methods

• React also includes events about its “life cycle”

– componentDidMount: UI is now on the screen

– componentDidUpdate: UI was just changed to match render

– componentWillUnmount: UI is about to go away

• Often use “mount” to get initial data from the server

– constructor shouldn’t do that sort of thing

componentDidMount = (): void => {

 fetch("/api/list")

 .then(this.doListResp)

 .catch(() => this.doListError("connect failed");

};

27

Example: To-Do List 2.0

Client-Server

Interaction++

Matt Wang
& Ali, Alice, Andrew, Anmol, Antonio, Connor,

Edison, Helena, Jonathan, Katherine, Lauren,

Lawrence, Mayee, Omar, Riva, Saan, and Yusong

CSE 331

Spring 2025

xkcd #1537

Quick Notes Re: OH & seeking help

• Alice & Connor’s location is updated

• quick reminder/spiel on OH policy

– goal is not to discourage you from seeking help!

– doing the section worksheet is probably the first

thing you should do when confused

• feeling like you’re not having

“productive struggle”? please reach out!

30

Recall: Fetch Requests Are (Still) Complicated

• Four different methods involved in each fetch:

1. method that makes the fetch

2. handler for fetch Response

3. handler for fetched JSON

4. handler for errors

fetch status code

response data

error message
doListResp

doListError

doListJsonconnect

200

400

31

Recall: Lifecycle Methods

• React also includes events about its “life cycle”

– componentDidMount: UI is now on the screen

– componentDidUpdate: UI was just changed to match render

– componentWillUnmount: UI is about to go away

• Often use “mount” to get initial data from the server

– constructor shouldn’t do that sort of thing

componentDidMount = (): void => {

 const p = fetch("/api/list");

 p.then(this.doListResp);

 p.catch(() => this.doListError("connect failed");

};

32

Lifecycle Events Gotcha: Unmounting

• Warning: React doesn’t unmount when props change

– instead, it calls componentDidUpdate and re-renders

– you can detect a props change there

componentDidUpdate =

 (prevProps: HiProps, prevState: HiState): void => {

 if (this.props.name !== prevProps.name) {

 … // our props were changed!

 }

};

This is used in HW2 in Editor.tsx:

• changes to marker cause an

update to name and color state

33

Recall: Function Literals

• We used function literals for error handlers

componentDidMount = (): void => {

 const p = fetch("/api/list");

 p.then(this.doListResp);

 p.catch(() => this.doListError("connect failed");

};

• Our coding convention:

– one-line functions (no {..}) can be written in place

most often used to fill in or add extra arguments in function calls

– longer functions need to be declared normally

34

Recall: Another JavaScript Feature: for … of

for (const item of val)

• “for .. of” iterates through array elements in order

– ... or the entries of a Map or the values of a Set

entries of a Map are (key, value) pairs

– like Java's "for (… : …)"

– fine to use these

35

One More Change

• Don’t have the items initially…

type TodoState = {

 items: Item[] | undefined; // items or undefined if loading

 newName: string; // mirrors text in name-to-add field

};

renderItems = (): JSX.Element => {

 if (this.state.items === undefined) {

 return <p>Loading To-Do list...</p>;

 } else {

 const items = [];

 // … old code to fill in array with one DIV per item …

 return <div>{items}</div>;

 }

};

36

New TodoApp — Requests

37

Example: To-Do List 2.0++

(refer to completed code)

Client-Server

Interaction+++

(and aliasing)

Matt Wang
& Ali, Alice, Andrew, Anmol, Antonio, Connor,

Edison, Helena, Jonathan, Katherine, Lauren,

Lawrence, Mayee, Omar, Riva, Saan, and Yusong

CSE 331

Spring 2025

JS Wacky Weekly Wednesday

In Node’s REPL, {} + {} is:

[object Object][object
Object]

In Chrome, {} + {} is:

NaN

Why? What is Chrome doing?

Hint: there are two places you

can insert a semicolon to

make this valid JS.

A note on slides

• The slides are almost always not a

comprehensive review of lecture!

• Likely more important resources:

– the lecture recording(s)

– source code from lecture examples

40

Dynamic Type Checking

New TodoApp – Add Json and Types

doAddJson = (data: unknown): void => {

 … // how do we use data?

};

– type of returned data is unknown

– to be safe, we should write code to check that it looks right

check that the expected fields are present

check that the field values have the right types

– only turn off type checking if you love painful debugging!

otherwise, check types at runtime

42

Checking Types of Requests & Response (1/2)

• All our 200 responses are records, so start here

if (!isRecord(data))

 throw new Error(`not a record: ${typeof data}`);

– the isRecord function is provided for you

– like built-in Array.isArray function

still need to check the type of each array element!

• Would be reasonable to log an error instead

– using console.error is probably easier for debugging

43

Checking Types of Requests & Response (2/2)

• Fields of the record can have any types

if (typeof data.name !== "string") {

 throw new Error(

 `name is not a string: ${typeof data.name}`);

}

if (typeof data.amount !== "number") {

 throw new Error(

 `amount is not a number: ${typeof data.amount}`);

}

44

TodoApp: processing /api/list JSON

// Called with the JSON response from /api/list

 doListJson = (data: unknown): void => {

 const items = parseListResponse(data);

 this.setState({items: items});

 };

– often useful to move this type checking to helper functions

we will may provide these for you in future assignments

– not part of the UI logic, so doesn’t belong it that file

45

TodoApp: parseListResponse

// Retrieve the items sent back by /api/list

 const parseListResponse = (data: unknown): Item[] => {

 if (!isRecord(data))

 throw new Error(`not a record: ${typeof data}`);

 return parseItems(data.items);

 };

– can only write "data.items" after we know it's a record

type checker will object otherwise

retrieving a field on undefined or null would crash

46

TodoApp: parseItems – Type Checking the Array

const parseItems = (data: unknown): Item[] => {

 if (!Array.isArray(data))

 throw new Error(`not an array: ${typeof data}`);

 const items: Item[] = [];

 for (const item of data) {

 items.push(parseItem(item));

 }

 return items;

 };

47

TodoApp: parseItems – Type Checking Items

const parseItem = (data: unknown): Item[] => {

 if (!isRecord(data))

 throw new Error(`not an record: ${typeof data}`);

 if (typeof data.name !== "string")

 throw new Error(`name is not a string: ${typeof data.name}`);

 if (typeof data.completed !== "boolean")

 throw new Error(`not a boolean: ${typeof data.completed}`);

 return {name: data.name, completed: data.completed};

 };

48

Use Type Checking to Avoid Debugging (1/2)

• Resist the temptation to skip checking types in JSON

– “easy is the path that leads to debugging”

• Query parameters also require checking:

const url = "/list? " +

 "category=" + encodeURIComponent(category);

– converting from a string back to JS data is also parsing

– can be a bug in encoding or parsing

49

Use Type Checking to Avoid Debugging (2/2)

• Be careful of turning off type checking:

 resp.json().then(this.doAddJson)

 …

doAddJson = (data: TodoItem): void => {

 this.setState(

 {items: this.state.items.concat([data])});

};

– promises use “any” instead of “unknown”, so

TypeScript let you do this

imagine this debugging

when you make a mistake

50

Debugging Client-Server

Writing the Server

• Full-stack apps introduce new ways of failing

– can fail in the client due to a bug in the server

– can fail in the server due to a bug in the client

• Debugging a full-stack app is much harder

– requires understanding client, server, & interactions

– will take more time…

52

Client-Server Communication Complexity

serverclient

doAddClick

– fetch /api/add
express

– find route

doAddJson

– check response
– update state

addItem

– check parameters

– send {
 name: "laundry”,

 added: true

}

54

Client-Server Debugging

• Client-server communication can fail in many ways

– almost always requires debugging

• Include all required .catch handlers

– at least log an error message

• Here are steps you can use when

– the client should have made a request

– but you don’t see the expected result afterward

– (will practice this in section tomorrow!)

55

Client-Server Debugging Tips (1/2)

1. Do you see the request in the Network tab?
– the client didn’t make the request

2. Does the request show a 404 status code?
– the URL is wrong (doesn’t match any app.get / app.post) or

the query parameters were not encoded properly

3. Does the request show a 400 status code?
– your server rejected the request as invalid

– look at the body of the response for the error message or
add console.log’s in the server to see what happened

– the request itself is shown in the Network tab

56

Client-Server Debugging Tips (2/2)

4. Does the request show a 500 status code?
– the server crashed!

– look in the terminal where you started the server for a stack trace

5. Does the request say “pending” forever?
– your server forgot to call res.send to deliver a response

6. Look for an error message in browser Console
– if 1-5 don’t apply, then the client got back a response

– client should print an error message if it doesn’t like the response

– client crashing will show a stack trace

57

Mutation

HW2 – mutation?

• In HW2, we asked you about “mutation bugs”

– we argue: these are not-as-common as type related

errors, but much nastier to debug

– today: let’s establish some shared vocabulary

– our goal: help you build ability to detect “code smells”,

without running code (or seeing all of it)

• (will do some post-HW2 analysis on Friday!)

59

Recall: Binary Search Trees

• Consider the following tree

– searching for "4" proceeds as follows:

• Suppose someone changed "3" into "5"…

6

3

1 4

9

8

60

Binary Search Trees & Mutation

• Suppose someone changed "3" into "5"…

– now this happens when we search for "4":

– It can no longer be found!

Doesn't crash. It's just not found.

– Problem doesn't occur on the line with the change

6

5

1 4

9

8

61

Scary Bugs

• Do not fear crashes

– often no debugging at all

get a stack trace that tells you exactly where it went wrong

• Do fear unexpected mutation

– failure will give you no clue what went wrong

will take a long time to realize the BST invariant was violated by mutation

– bug could be almost anywhere in the code

– could take weeks to track it down

62

Debugging Mutation

• mutation bugs are especially nasty to deal with

once they ship out to users

• typical mutation-related bug report from users:

“uh, sometimes when I enter a todo item, it shows

up, but sometimes I don’t. I tried restarting my

computer and it doesn’t fix the problem. I paid

$4.99 for this app, it shouldn’t have this issue…”

• how do you debug this?

– just reproducing this bug is challenging enough

– no error message (or Exception) to go off of

63

Think Pair Share: M-you-tation

64

sli.do #cse331Consider these functions – which

could break this feature? How?

1. foo(todos)

2. foo(incompleteTodos)

3. foo(todos[0])

4. foo(incompleteTodos[0])

const todos: Array<TodoItem> = /* ... */;
const incompleteTodos: Array<TodoItem> =
 findAllIncompleteTodos(todos);

incompleteTodos.shuffle();
// NASTY foo FUNCTION HERE :))

console.log(`Why not try: ${incompleteTodos[0]}`);

Aliasing

Heap State

• “Heap state” = still used after the call stack finishes

– after current function and those calling it all return

– state could be arrays or records

• Extra references to the objects are called "aliases"

• No different from before when immutable

– we don’t care who reads the data

• Vastly more complex when mutable…

– common with event-driven applications

– creates the potential for failures far from bugs

66

Coupling

• High-quality code needs to be "modular"

– split into pieces that can be understood individually

• When not possible, pieces are "coupled"

– must understand both parts to understand each one

• Mutable heap state creates coupling

– all pieces must know who else has aliases

– all pieces must know who is allowed to mutate

• Coupling creates potential for painful debugging

– bugs in one piece can cause failures in another

67

Mutable Heap State

• “With great power, comes great responsibility”

– from Uncle Ben (1972, 2002-*)

• With aliases to mutable heap state:

– gain efficiency in some cases

– must keep track of every alias that could mutate that state

any alias, anywhere in the entire program could cause a bug

68

Easy Ways to Stay Safe

1. Do not mutate heap state

– don’t need to think about aliasing at all

– any number of aliases is fine

2. Do not allow aliases…

– create the state in your constructor and don’t share it

class MyClass {

 vals: Array<string>;

 constructor() {

 this.vals = new Array(0); // only alias

 }

 …

70

Easy Ways to Stay Safe: Copy-on-Write

2. Do not allow aliases

 (a) do not hand out aliases yourself

– return copies instead

class MyClass {

 // RI: vals is sorted

 vals: Array<string>;

 …

 values: (): Array<string> => {

 return this.vals; // unsafe!

 return this.vals.slice(0); // make a copy

 };

 …

71

Easy Ways to Stay Safe: Copy-on-Read

2. Do not allow aliases

 (b) make a copy of anything you want to keep

– does not matter if the caller mutates the original

class MyClass {

 // RI: vals is sorted

 vals: Array<string>;

 …

 // @requires A is sorted

 constructor(A: Array<string>) {

 this.vals = A; // unsafe!

 this.vals = A.slice(0); // make a copy

 };

 …

72

Staying Safe in 331

1. Do not use mutable state

– don’t need to think about aliasing at all

– any number of aliases is fine

2. Do not allow aliases to mutable state

a) do not hand out aliases yourself

b) make a copy of anything you want to keep

• For 331, mutable aliasing across files is a bug!

– gives other parts the ability to break your code

– we will stick to these simple strategies for avoiding it

ensures only one reference to the object (no aliases)

73

Rules of Thumb: Mutation XOR Aliasing

Client Side

1. Data is small

– anything on screen is O(1)

2. Aliasing is common

– UI design forces modules

– data is widely shared

Rule: avoid mutation

– create new values instead

– performance will be fine

– (local-only mutation can be OK)

Server Side

1. Data is large

– efficiency matters

2. Aliasing is avoidable

– you decide on modules

– data is not widely shared

Rule: avoid aliases

– do not allow aliases to your data

– hand out copies not aliases

– (good enough for us in 331)
75

Language Features & Aliasing

• Most recent languages have some answer to this…

• Java chose to make String immutable

– most keys in maps are strings

– hugely controversial at the time, but great decision

• Python chose to only allow immutable keys in maps

– only numbers, strings, and tuples allowed

– surprisingly, not that inconvenient

• Rust has built-in support for “mutation XOR aliasing”

– ownership of value can be “borrowed” and returned

– type system ensures there is only one usable alias
76

Readonly in TypeScript (1/2)

• TypeScript can ensure values aren’t modified

– extremely useful!

– but, only a compile-time check (not a runtime guarantee)

• Readonly tuples:

type IntPair = readonly [bigint, bigint];

• Readonly fields of records:

type IntPoint = {readonly x: bigint,

 readonly y: bigint};

77

Readonly in TypeScript (2/2)

• Readonly fields of records:

type IntPoint = {readonly x: bigint,

 readonly y: bigint};

• Readonly records:

type IntPoint = Readonly<{x: bigint, y: bigint}>;

– this.props is Readonly<MyPropsType>

• More readonly…

ReadonlyArray<bigint>

ReadonlyMap<string, bigint>

ReadonlySet<string>

78

comfy-tslint

comfy-tslint

• we’ve written a TS linter for this class that

enforces some of our conventions, e.g.

– requiring type annotations for functions

– disallowing the any type

– naming & structure conventions for React methods

• available to you…

– as a VSCode extension

– as an npm module (that you can run yourself)

• please:

– keep an eye out for an Ed post from Matt

– take a careful look at the HW3 spec + autograder

80

	Slide 1: Client-Server Interaction
	Slide 2: Summary of HW1: Number of Bugs
	Slide 3: Summary of HW1: Time Spent Debugging
	Slide 4: Summary of HW1: Bottom Line
	Slide 5: Multiple Components
	Slide 6: Client-Server Interaction
	Slide 7: Steps to Writing a Full Stack App
	Slide 8: Steps to Writing a Full Stack App: Server
	Slide 9: Designing the Server
	Slide 10: Example: To-Do List Server
	Slide 11: Steps to Writing a Full Stack App: Connect
	Slide 12: Recall: Client-Server Interaction
	Slide 13: Development Setup
	Slide 14: Client-Server Interaction: Making Requests?
	Slide 15: Fetch Requests Are Complicated (1/2)
	Slide 16: Making HTTP Requests: Using Fetch
	Slide 17: Making HTTP Requests: After Fetch
	Slide 18: Making HTTP Requests: Query Parameters
	Slide 19: Making HTTP Requests: Status Codes
	Slide 20: Handling HTTP Responses
	Slide 21: Making HTTP Requests: Error Handling
	Slide 22: Making HTTP Requests: More Error Handling
	Slide 23: Recall: Fetch Requests Are Complicated
	Slide 24: Fetch Requests Are Complicated (2/2)
	Slide 25: Recall: HTTP GET vs POST
	Slide 26: Making HTTP POST Requests
	Slide 27: Lifecycle Methods
	Slide 28: Example: To-Do List 2.0
	Slide 29: Client-Server Interaction++
	Slide 30: Quick Notes Re: OH & seeking help
	Slide 31: Recall: Fetch Requests Are (Still) Complicated
	Slide 32: Recall: Lifecycle Methods
	Slide 33: Lifecycle Events Gotcha: Unmounting
	Slide 34: Recall: Function Literals
	Slide 35: Recall: Another JavaScript Feature: for … of
	Slide 36: One More Change
	Slide 37: New TodoApp — Requests
	Slide 38: Example: To-Do List 2.0++ (refer to completed code)
	Slide 39: Client-Server Interaction+++ (and aliasing)
	Slide 40: A note on slides
	Slide 41: Dynamic Type Checking
	Slide 42: New TodoApp – Add Json and Types
	Slide 43: Checking Types of Requests & Response (1/2)
	Slide 44: Checking Types of Requests & Response (2/2)
	Slide 45: TodoApp: processing /api/list JSON
	Slide 46: TodoApp: parseListResponse
	Slide 47: TodoApp: parseItems – Type Checking the Array
	Slide 48: TodoApp: parseItems – Type Checking Items
	Slide 49: Use Type Checking to Avoid Debugging (1/2)
	Slide 50: Use Type Checking to Avoid Debugging (2/2)
	Slide 51: Debugging Client-Server
	Slide 52: Writing the Server
	Slide 54: Client-Server Communication Complexity
	Slide 55: Client-Server Debugging
	Slide 56: Client-Server Debugging Tips (1/2)
	Slide 57: Client-Server Debugging Tips (2/2)
	Slide 58: Mutation
	Slide 59: HW2 – mutation?
	Slide 60: Recall: Binary Search Trees
	Slide 61: Binary Search Trees & Mutation
	Slide 62: Scary Bugs
	Slide 63: Debugging Mutation
	Slide 64: Think Pair Share: M-you-tation
	Slide 65: Aliasing
	Slide 66: Heap State
	Slide 67: Coupling
	Slide 68: Mutable Heap State
	Slide 70: Easy Ways to Stay Safe
	Slide 71: Easy Ways to Stay Safe: Copy-on-Write
	Slide 72: Easy Ways to Stay Safe: Copy-on-Read
	Slide 73: Staying Safe in 331
	Slide 75: Rules of Thumb: Mutation XOR Aliasing
	Slide 76: Language Features & Aliasing
	Slide 77: Readonly in TypeScript (1/2)
	Slide 78: Readonly in TypeScript (2/2)
	Slide 79: comfy-tslint
	Slide 80: comfy-tslint

