
Intro to the Browser

Matt Wang
& Ali, Alice, Andrew, Anmol, Antonio, Connor,

Edison, Helena, Jonathan, Katherine, Lauren,

Lawrence, Mayee, Omar, Riva, Saan, and Yusong

CSE 331

Spring 2025

xkcd #1118

Notes on HW1

• HW1 out!

– HW is mostly about debugging, not just coding

– so: we are mostly assessing you on debugging,

and not really on correctness (see: spec!)

– but, you do need to attempt all functions

• advice:

– read spec carefully – app is complex, but you

are implementing a small subset

– you probably have questions about JS, node,

NPM, and express. That’s expected – ask them!

– start early! & take advantage of office hours!
2

The 123 Programming Model

3

Run code from front-to-back, once.*

.java

file

output

(usually System.out)

(optionally)

user input

(optionally)

loop until a condition is met

The 331 Server Programming Model

Server Code runs forever!

4

.js

file

infinite loop!

for each

incoming request…

GET: /hi

server calls the route function,

and sends a response

response: {

 msg: "see saylaufey.com”

}

The 331 Programming Model, Zooming Out

5

request

response

(e.g., HTML)
client server

Client-Server programming has two programs

HW1HW2

HW3

The Browser, HTML, and CSS

Recall: Browser Operation

• Browser reads the URL to find what HTML to load

server name path

• Contacts the given server and asks for the given path

request

response

(e.g., HTML)
client server

7

Browsers: JavaScript and HTML

• Browser natively knows how to display HTML

• Page can also include JavaScript to execute

– but it is not required

– if present, the JavaScript can change the HTML displayed

8

request

response

(e.g., HTML)
client server

HTML

• HTML = Hyper Text Markup Language

– text format for describing a document / UI

– HTML describes the structure of the content,

and (partially) what you want drawn in the browser

• HTML text consists primarily of “tags” and text

9

HTML Tags

Tag Name Content

Closing Tag

Element

<p> Some Text </p>

<p id="firstParagraph"> Some Text </p>

Tag Name

Attribute Name

Attribute Value Content

Closing Tag

Element

10

HTML as a Tree

• Elements can have children (text or elements)

– text is always a leaf in the tree

<div>

 <p id="firstParagraph"> Some Text </p>

 <div>

 <p>Hello</p>

 </div>

</div>

div

p br div

p

11

Parsing HTML

• HTML is a text format that describes a tree

– nodes are elements or text

<div>

 <p>Some text</p>

 <p>More text</p>

</div>

div

p p

HTML text
HTML tree

parse

– HTML text is parsed into a tree (“DOM”)

– JS can access the tree in the variable “document”

our code lives in the world on the right side
12

Displaying HTML

• Browser window displays an HTML document

– tree is turned into drawing in the page

 Some text

 More text

div

p p

HTML display

draw

HTML tree

– browser displays the HTML in the window

browsers parse and draw very quickly

– JS has limited access to display information
13

Developer Tools show the HTML

• Click on any HTML element and choose "Inspect"

– can see exact size in pixels, colors, etc.

14

Styling

• The “style” attribute controls appearance details

– margins, padding, width, fonts, etc.

– see an HTML reference for details (when necessary)

• Attribute value can include many properties

– each is “name: value”

– separate multiple using “;”

<p>Hi,

 Bob!

</p>

– we will generally not worry much about looks in this class…

15

https://developer.mozilla.org/en-US/docs/Web/HTML/Reference

Cascading Style Sheets (CSS)

• Commonly used styles can be named

– association of names to styles goes in a .css file

// foo.css

span.fancy { color: red; margin-left: 15px }

// foo.html

… <p>Hi, Bob</p> …

• Useful to avoid repetition of styling

– makes it easier to change

16

Old School Web UI

Including JavaScript in HTML

• Server usually sends back HTML to the browser

• Include code to execute inside of script tag:

<script>

 console.log("Hi, browser");

</script>

• Can also put the script into another file:

<script src="mycode.js"></script>

18

Events in the Browser

• Client applications are event-driven

– register "handlers" for various events

• Can do so like this in HTML (but don't!)

<button onClick="handleClick(event)">Click Me</button>

<script>

 const handleClick = (evt) => {

 console.log("ouch");

 };

</script>

19

Changing the HTML

• Change the HTML displayed like this (but don't!)

<p>Add 2 to <input type="text" id="num"></input></p>

<p><button onClick="doAdd(event)">Submit</button></p>

<div id="answer"></div>

<script>

 const doAdd = (evt) => {

 const numElem = document.getElementById("num");

 const num = Number(numElem.value);

 const ansElem = document.getElementById("answer");

 ansElem.innerHTML = `The answer is ${num+2}`;

 };

</script>

20

Updating the DOM: Adding Nodes

ul

li li li

LectureWash DogLaundry

21

<h3>To-Do List</h3>

<ul id="items">

 Laundry

 Wash Dog

Updating the DOM: Removing Nodes

ul

li li li

LectureWash DogLaundry

22

<h3>To-Do List</h3>

<ul id="items">

 Laundry

 Wash Dog

 Lecture

Updating the DOM: Editing Nodes

ul

li li

LectureLaundry input

23

Problems with Old School UI

• Write code for every way the UI could change

– many, many cases

– particularly tricky when working in teams/groups

• Not specific to HTML

– same issue exists in Windows, on the iPhone, Xbox, etc.

– if you write code to put things on screen,

then you write code to change where they are on screen

24

New School UI

• New approach: what should it look like now?

– write function that maps current state to desired HTML

– compare desired HTML to what is on the screen now

– make any changes needed to turn former into latter

• Huge improvement in productivity

– introduced in Meta's "React" library

– library performs the "compare" and "change" parts

• Faster to write HTML UI than anything else

– many similar libraries exist for the web

– same approach also used in mobile apps, games, …

25

React

• we will use React in this class
– goal is not to make you React experts

– teach you just enough React to understand “New School UI” ideas

– these ideas will apply everywhere

• similar to JS & Express, only using small subset of

the library

• practical note: React is a library installed with npm

26

React Components

HTML Literals in JSX

• JSX: extension of JS that allows HTML expressions

– file extension must be .jsx

const x = <p>Hi there!</p>;

28

Substitution in JSX

• Supports substitution like `..` string literals,

– but uses {..} not ${..}

const name = "Fred";

return <p>Hi {name}</p>;

• Can also substitute the value of an attribute:

const rows = 3;

return <textarea rows={rows} cols="25">

 initial text here

 </textarea>;

29

JSX Gotchas

• Must have a single root tag (i.e., must be a tree)

– e.g., cannot do this

return <p>one</p><p>two</p>;

– instead, wrap in a <div> or just <>..</> (“fragment”)

• Replacements for attributes matching keywords

– use “className=” instead of “class=”

– use “htmlFor=” instead of “for=”

30

CSS in JSX

• CSS styling can be used in JSX

// foo.css

span.fancy { color: red; margin-left: 15px }

// foo.jsx

import './foo.css'; // another weird import

…

return <p>Hi, Bob!</p>;

• Nice to get this out of the source code

31

Anatomy of a React Component

• split up large web pages into individual components

• React components are classes

– class “extends” React’s Component class

– has a constructor that takes in one argument

(more on this in a moment)

– has a field called state (that holds the app’s … data/state)

• components should have a render method

– goal: convert app’s state to JSX (which it returns)

– method should have be “pure” and have no “side effects”;

in other words, it should not change state

– we never call the render method – React does for us

32

Simplest React Component

• Component that prints a Hello message:

class HiElem extends Component {

 constructor(props) {

 super(props);

 this.state = {lang: "en"};

 }

 render = () => {

 if (this.state.lang === "es") {

 return <p>Hola, Matt!</p>;

 } else {

 return <p>Hi, Matt!</p>;

 }

 };

}

How do we change "lang"?

33

Simplest React Component (rendered)

34

Hello Matt!

Hola Matt!

Changing State in our Component

35

render = () => {

 if (this.state.lang === "es") {

 return <p>Hola, Matt!

 <button onClick={this.doEngClick}>Eng</button>

 </p>;

 } else {

 return <p>Hi, Matt!

 <button onClick={this.doEspClick}>Esp</button>

 </p>;

 }

};

doEspClick = (evt) => {

 this.setState({lang: "es"};

};

React and Component State Changes

• Must call setState to change the state

– directly modifying this.state is a (painful) bug

• React will automatically re-render when state changes

– but this does not happen instantly

36

<button onClick={this.doEspClick}>Esp</button>

doEspClick = (evt) => {

 this.setState({lang: "es"};

};

React Responds to setState calls

 HTML on screen = render(this.state)

t = 10

Component React

this.state = s1 doc = HTML1 = render(s1)

this.setState(s2)

doc HTML2 = render(s2)

t = 20

t = 30 this.state = s2

React updates this.state to s2 and doc to HTML2 simultaneously

37

React Component with an Event Handler

• Pass method to be called as argument (a “callback”):

 <button onClick={this.doEspClick}>Esp</button>

• Be careful not to do this:

 <button onClick={this.doEspClick()}>Esp</button>

• Including parentheses here is a bug!

– that would call the method inside render

passing its return value as the value of the onClick attribute

– we want to pass the method to the button, and

have it called when the click occurs

38

Putting the UI in the Page

• Initial page has a placeholder in the HTML:

<div id="main"></div> (empty DIV in index.html)

• Put HTML into it from code like this:

const elem = document.getElementById("main");

const root = createRoot(elem);

root.render(<HiElem />);

– createRoot is a function provided by the React library

tells React that it should keep the HTML in the page matching what render returns

39

Putting the UI in the Page: Props

• Initial page has a placeholder in the HTML:

<div id="main"></div> (empty DIV in index.html)

• Put HTML into it from code like this:

const elem = document.getElementById("main");

const root = createRoot(elem);

root.render(<HiElem name={"Matt"} size={3}/>);

– in HiElem, this.props will be {name: "Matt", size: 3}

– each component is a custom tag with its own attributes ("properties")

40

Props and State, Together

render = () => {

 if (this.state.lang === "es") {

 return <p>Hola, {this.props.name}!

 <button onClick={this.doEngClick}>Eng</button>

 </p>;

 …

 }

};

• render can use both this.props and this.state

– difference 1: caller give us props, but we set our state

– difference 2: we can change our state

41

More React

Matt Wang
& Ali, Alice, Andrew, Anmol, Antonio, Connor,

Edison, Helena, Jonathan, Katherine, Lauren,

Lawrence, Mayee, Omar, Riva, Saan, and Yusong

CSE 331

Spring 2025

xkcd #1118

The “Old School UI” model (1/2)

43

Hello Matt

Español

The “Old School UI” model (2/2)

44

State is stored in

the DOM / HTML.

Works for small

examples, breaks

with complex apps

Hola Matt

English

The React Model (1/3)

45

Hello Matt

Español

{ lang: "en" }

button click triggers

an event…

The React Model (2/3)

46

Hello Matt

Español

{ lang: "es" }

eventually, React

re-renders

button click triggers

an event…

state is

updated

The React Model (3/3)

47

{ lang: "es" }

eventually, React

re-renders

button click triggers

an event…

state is

updated

Hola Matt

English

Reactive UIs, more generally

48

the actual web page

(the DOM, browser,

or “view”)

the app’s state

events

(re-)renders

• you only have to write event handlers & render function

• but, you have to play by the rules, or new bugs!!

• view must be a function of just the app state

• render must be “pure” (no side effects!)

Reminder: React in Practice

• Writing User Interface with React:

– write a class that extends Component

– implement the render method

• Each component becomes a new HTML tag:

root.render(<HiElem name={"Matt"}/>);

– in HiElem, this.props will be {name: "Matt"}

• Can use props and state (and only those!) in render:

render = () => {

 if (this.state.lang === "en") {

 return <p>Hi, {this.props.name}!

 <button onClick={this.doEspClick}>Esp</button>

 </p>;

 … 49

Second React Component: More User Input

• Put name in state and let the user change it:

class HiElem extends Component {

 constructor(props) {

 super(props);

 this.state = {name: "Matt"};

 }

 render = () => {

 return <p>Hi, {this.state.name}</p>;

 };

}

How do we change the name?

Ask the user for their name.

50

Second React Component: The View

Hello Matt!

51

Second React Component: adding <input>

constructor(props) {

 super(props);

 this.state = {showGreeting: false};

}

render = () => {

 if (this.state.showGreeting) {

 return <p>Hi, {this.state.name}!</p>;

 } else {

 return <p>What is your name?

 <input type="text"></input>

 <button …>Done</button>

 </p>

 }

};

52

Second React Component: Updating State?

<input type="text"></input>

 <button onClick={this.doDoneClick}>Done</button>

doDoneClick = (evt) => {

 this.setState({showGreeting: true});

 // what about "name"?

};

How do we get the name text?

Do not reach into document!

(Always a bug. Often a heisenbug.)

53

Text Value of Input Elememts

• These two are different:

<input type="text"></input>

<input type="text" value="abc"></input>

– missing value means value=""

• The render method says what HTML should be now

– bug if calling render would inadvertently change things

particularly if it would delete user data!

– if we want the second picture, we need to set value in render

54

Second React Component: Input Events

<input type="text" value={this.state.name}

 onChange={this.doNameChange}></input>

 <button onClick={this.doDoneClick}>Done</button>

doNameChange = (evt) => {

 this.setState({name: evt.target.value});

};

– evt.target is the input element

– evt.target.value is the current text in the input element

55

Second React Component: Input Event Handler

<input type="text" value={this.state.name}

 onChange={this.doNameChange}></input>

 <button onClick={this.doDoneClick}>Done</button>

doNameChange = (evt) => {

 this.setState({name: evt.target.value});

};

doDoneClick = (evt) => {

 this.setState({showGreeting: true});

};

• Never reach into the document to get state!

– React can re-render at any time

– will be a heisenbug when you forget (usually, it still works!)

56

Second React Component: Mirrored State

<input type="text" value={this.state.name}

 onChange={this.doNameChange}></input>

 <button onClick={this.doDoneClick}>Done</button>

doNameChange = (evt) => {

 this.setState({name: evt.target.value});

};

doDoneClick = (evt) => {

 this.setState({showGreeting: true});

};

• Any state you need should be mirrored in your state

– set value and handle onChange

57

Event Handler Conventions

• We will use this convention for event handlers

doMyCompMyEvent

– e.g., doDoneClick, doNewNameChange

• Reduces the need to explain these methods

– method name is enough to understand what it is for

– method name is the only thing you know they read

• Components should be just rendering & event handlers

component

name

event

name

58

Example: To-Do List

React Payoff

• No need to write code to
– add a new item to the HTML

– remove an item from the HTML

– update an item in the HTML

all of this is code is tricky (especially if state is not mirrored properly)

• Instead, we only write:

1. state: what does our app care about?

2. render method: tell React what it should look like right now

3. event handlers: tell React how to update state when buttons are clicked

• React figures out what to add, remove, and update

60

React Requirements for Lists

• To do this, React needs more from

– needs to distinguish change from add/remove

wash dog wash dog

laundry write lecture

 laundry

– did I insert a new item or change one and add another?

impossible to really know without more information

• React requires each list item to have a key=".."

property that uniquely identifies it

61

React Requirements for Lists: Keys

• To do this, React needs more from

– needs to distinguish change from add/remove

<li key="1">wash dog <li key="1">wash dog

<li key="2">laundry <li key="3">write lecture

 <li key="2">laundry

– can now see that "2" was not changed

– only difference is that "3" was inserted

• React will give you a warning (console) if you forget

– will try its best to figure out what happened

– always fix these to be safe

62

Typescript &

Modular Code

(with React)

CSE 331

Spring 2025

Matt Wang
& Ali, Alice, Andrew, Anmol, Antonio, Connor,

Edison, Helena, Jonathan, Katherine, Lauren,

Lawrence, Mayee, Omar, Riva, Saan, and Yusong

JS Wacky Weekly Wednesday

Why does (in JS):

[98, 100, 99].sort()

evaluate to [100, 98, 99]?

How would JS evaluate:

[
 console.log, -5, -42,
 console.log("hi")
].sort()

Types?

• Many JS shenanigans have to do with types :(

• In HW1, we asked: would a type checker help?

– students reported: 41% fall, 45% winter, spring TBD :)

– industry studies found even higher numbers (over 60%)

• Mega-scale applications use type-checked languages

– problems get even worse with multiple programmers

– basically, unheard of to not use one

• Now: huge shift to “bolt-on” types to dynamically-typed

languages (JS, Python, Ruby, …)

64

TypeScript

TypeScript Adds Declared Types to JavaScript

• TypeScript includes declared types for variables
– file names end with .ts or .tsx (not .js or .jsx)

– one extra config file tsconfig.json

• Compiler checks that the types are valid
– produces JS just by removing the types

• Critical to understand how the type system works
– know which bugs it catches and which it misses

– you can then focus your attention on the second group

66

TypeScript Adds Declared Types

• Type is declared after the variable name:

const u: bigint = 3n;

const v: bigint = 4n;

const add = (x: bigint, y: bigint): bigint => {

 return x + y;

};

console.log(add(u, v)); // prints 7n

– return type is declared after the argument list (…) and before =>

• “Where types go” is the main syntax difference vs Java

67

Basic Data Types of TypeScript

• JavaScript includes the following types

number

bigint

string

boolean

null

undefined

Object (record types)

Array (e.g., string[] as in Java)

• TypeScript has these and also…

unknown (could be anything)

any (turns off type checking — do not use!)

68

Function Type Notation

• Functions themselves have types. Given:

const add = (x: bigint, y: bigint): bigint => {

 return x + y;

};

• the type of add itself is

(x: bigint, y: bigint) => bigint

• different notion than “what does add return”

• will see this frequently with event handlers

69

Think Pair Share: I’ve Become So Numb(er)

Which of these would compile?

70

// TS
const addTS = (x: number, y: number): number => {
 return x + y;
};

addTS(1n, 2n);

sli.do #cse331

// Java
double addJava(double a, double b) {
return a + b;
}

addJava(1, 2);

Literal Types

• Any literal value is also a type:

let x: "foo" = "foo";

let y: 16n = 16n;

• Variable can only hold that specific value!

– can assign it again, but only with the same value

– seems silly, but turns out to be useful…

71

Creating New Types: Unions

• Union Types string | bigint

– can be either one of these

• Not possible in Java!

– TS can describe types of code that Java cannot

• Unknown type is (essentially) a union

type unknown = number | bigint | string | boolean | …

72

Enumerations

• unions of literals are “enums”

const dist = (dir: "left"|"right", amt: bigint): bigint => {

 if (dir === "right") {

 return amt;

 } else {

 return –amt;

 }

};

• TypeScript ensures that callers will only pass one of

those two strings (“left” or “right”)

– impossible to do this in Java

(must fake it with the enumeration design pattern)

73

Java Enums

• Another design pattern built into Java:

 enum Dir {

 LEFT, RIGHT

 }

• Dir.LEFT and Dir.RIGHT are the only 2 instances

• Cannot pass a Dir where String is expected

– must add methods to convert between them

74

Creating New Types: Records

• Can create compound types in multiple ways

– put multiple types together into one larger type

• Record Types {x: bigint, s: string}

– anything with at least fields “x” and “s”

const p: {x: bigint, s: string} = {x: 1n, s: "hi"};

console.log(p.x); // prints 1n

75

Creating New Types: Tuples

• Can create compound types in multiple ways

– put multiple types together into one larger type

• Tuple Types [bigint, string]

– create them like this

const p: [bigint, string] = [1n, "hi"]; // an array

– give names to the parts (“destructuring”) to use them

const [x, y] = p;

console.log(x); // prints 1n

76

Records vs Tuples

• Records and tuples provide the same functionality

– both allow you to put parts together into one object

– conceptually interchangeable

• They differ in who names the parts and when

– record: creator picks the names

everyone must use the same name

– tuple: user of the tuple picks the names

each user can pick their own names

• 331 convention: destructure tuples (only)

– no reason to destructure records, so we disallow it
77

Optional Fields in TypeScript

• Records can have optional fields

type T = {x: bigint, y?: bigint};

const t: T = {x: 1n};

– type of “ t.y ” is “ bigint | undefined ”

• Functions can have optional arguments

const f = (a: bigint, b?: bigint): bigint => {

 console.log(b);

};

– type of “ b ” is “ bigint | undefined ”
78

Type Aliases

• TypeScript lets you give shorthand names for types

type Point = {x: bigint, y: bigint};

const p: Point = {x: 1n, y: 2n};

console.log(p.x); // prints 1n

• Usually nicer but not necessary

– e.g., this does the same thing

const p: {x: bigint, y: bigint} = {x: 1n, y: 2n};

console.log(x); // prints 1n

79

Structural Typing

• Deep difference between TypeScript and Java types

• TypeScript uses “structural typing”

– sometimes called “duck typing”

“if it walks like a duck and quacks like a duck, it’s a duck”

type T1 = {a: bigint, b: string};

type T2 = {a: bigint, b: string};

const x: T1 = {a: 1n, b: “two”};

– can pass “ x ” to a function expecting a “ T2 ”!

– can pass “ x ” to any function expecting

a record with a bigint a and a string b
80

Nominal Typing

• Java uses “nominal typing”

class T1 { int a; int b; }

class T2 { int a; int b; }

T1 x = new T1();

– cannot pass “ x ” to a function expecting a “ T2 ”

• Libraries do not interoperate unless it was pre-planned

– create “adapters” to work around this

example of a design pattern used to work around language limitations

81

Think Pair Share: Be There, or Be Square

Can we pass to squareArea:

1. any Square?

2. squareOrRects with no height

3. any SquareOrRect?

4. any Rectangle?
82

type Square = { width: number };

type Rectangle = { width: number, height: number };

type SquareOrRect = { width: number, height?: number };

const squareArea = (s: Square) : number => {

 return s.width * s.width;

}

sli.do #cse331

Type Inference

• If you leave off the type, TS will try to guess it

– often, but not always, it guesses correctly

• This will work fine

const p = {x: 1n, y: 2n};

console.log(p.x); // prints 1n

– compiler should correctly guess{x: bigint, y: bigint}

– can see in VS Code by hovering over “p”

83

Type Inference in 331

• If you leave off the type, TS will try to guess it

– often, but not always, it guesses correctly

• 331 convention: type declarations are required on…

– function arguments and return values

– variables declared outside of any function (“top-level”)

these could be exported, so types should be explicit

• We do not require declarations on local variables

– but it is fine to include them

– if TS guesses wrong, you will need to include it

84

React Components and TypeScript

type HiProps = {name: string};

type HiState = {greeting: string};

class HiElem extends Component<HiProps, HiState> {

 constructor(props: HiProps) {

 super(props);

 this.state = {greeting: “Hi”};

 }

• Component is a generic type

– first component is type of this.props (readonly)

– second component is type of this.state

85

Linters

Linters

• Linters are like type checkers

– try to find potential bugs in the program

– as well as poor style / design issues

• In 331, we have our own linter (“comfy-tslint”)

– e.g., types are declared except local vars in functions

– coming in HW3 :)

• They can be overzealous

– can flag issues that aren’t really problems

– (happens with type checkers also, but less frequently)

87

Unused Variables & Linters

• Linter will complain about unused variables

const f = (a: bigint, b: bigint): bigint => {

 return b;

};

– linter will complain that a is unused

this looks suspicious, doesn’t it?

• This ignores variables whose names start with “_”

– the underscore indicates you know it is unused

– change the variable name to get rid of the error

88

	Slide 1: Intro to the Browser
	Slide 2: Notes on HW1
	Slide 3: The 123 Programming Model
	Slide 4: The 331 Server Programming Model
	Slide 5: The 331 Programming Model, Zooming Out
	Slide 6: The Browser, HTML, and CSS
	Slide 7: Recall: Browser Operation
	Slide 8: Browsers: JavaScript and HTML
	Slide 9: HTML
	Slide 10: HTML Tags
	Slide 11: HTML as a Tree
	Slide 12: Parsing HTML
	Slide 13: Displaying HTML
	Slide 14: Developer Tools show the HTML
	Slide 15: Styling
	Slide 16: Cascading Style Sheets (CSS)
	Slide 17: Old School Web UI
	Slide 18: Including JavaScript in HTML
	Slide 19: Events in the Browser
	Slide 20: Changing the HTML
	Slide 21: Updating the DOM: Adding Nodes
	Slide 22: Updating the DOM: Removing Nodes
	Slide 23: Updating the DOM: Editing Nodes
	Slide 24: Problems with Old School UI
	Slide 25: New School UI
	Slide 26: React
	Slide 27: React Components
	Slide 28: HTML Literals in JSX
	Slide 29: Substitution in JSX
	Slide 30: JSX Gotchas
	Slide 31: CSS in JSX
	Slide 32: Anatomy of a React Component
	Slide 33: Simplest React Component
	Slide 34: Simplest React Component (rendered)
	Slide 35: Changing State in our Component
	Slide 36: React and Component State Changes
	Slide 37: React Responds to setState calls
	Slide 38: React Component with an Event Handler
	Slide 39: Putting the UI in the Page
	Slide 40: Putting the UI in the Page: Props
	Slide 41: Props and State, Together
	Slide 42: More React
	Slide 43: The “Old School UI” model (1/2)
	Slide 44: The “Old School UI” model (2/2)
	Slide 45: The React Model (1/3)
	Slide 46: The React Model (2/3)
	Slide 47: The React Model (3/3)
	Slide 48: Reactive UIs, more generally
	Slide 49: Reminder: React in Practice
	Slide 50: Second React Component: More User Input
	Slide 51: Second React Component: The View
	Slide 52: Second React Component: adding <input>
	Slide 53: Second React Component: Updating State?
	Slide 54: Text Value of Input Elememts
	Slide 55: Second React Component: Input Events
	Slide 56: Second React Component: Input Event Handler
	Slide 57: Second React Component: Mirrored State
	Slide 58: Event Handler Conventions
	Slide 59: Example: To-Do List
	Slide 60: React Payoff
	Slide 61: React Requirements for Lists
	Slide 62: React Requirements for Lists: Keys
	Slide 63: Typescript & Modular Code (with React)
	Slide 64: Types?
	Slide 65: TypeScript
	Slide 66: TypeScript Adds Declared Types to JavaScript
	Slide 67: TypeScript Adds Declared Types
	Slide 68: Basic Data Types of TypeScript
	Slide 69: Function Type Notation
	Slide 70: Think Pair Share: I’ve Become So Numb(er)
	Slide 71: Literal Types
	Slide 72: Creating New Types: Unions
	Slide 73: Enumerations
	Slide 74: Java Enums
	Slide 75: Creating New Types: Records
	Slide 76: Creating New Types: Tuples
	Slide 77: Records vs Tuples
	Slide 78: Optional Fields in TypeScript
	Slide 79: Type Aliases
	Slide 80: Structural Typing
	Slide 81: Nominal Typing
	Slide 82: Think Pair Share: Be There, or Be Square
	Slide 83: Type Inference
	Slide 84: Type Inference in 331
	Slide 85: React Components and TypeScript
	Slide 86: Linters
	Slide 87: Linters
	Slide 88: Unused Variables & Linters

