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Notes on HW1

• HW1 out!

– HW is mostly about debugging, not just coding

– so: we are mostly assessing you on debugging, 

and not really on correctness (see: spec!)

– but, you do need to attempt all functions

• advice:

– read spec carefully – app is complex, but you 

are implementing a small subset

– you probably have questions about JS, node, 

NPM, and express. That’s expected – ask them!

– start early! & take advantage of office hours!
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The 123 Programming Model
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Run code from front-to-back, once.*

.java

file

output

(usually System.out)

(optionally)

user input

(optionally)

loop until a condition is met



The 331 Server Programming Model

Server Code runs forever!
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.js

file

infinite loop!

for each

incoming request…

GET: /hi

server calls the route function,

and sends a response

response: {

   msg: "see saylaufey.com”

}



The 331 Programming Model, Zooming Out
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request

response

(e.g., HTML)
client server

Client-Server programming has two programs

HW1HW2

HW3



The Browser, HTML, and CSS



Recall: Browser Operation

• Browser reads the URL to find what HTML to load

server name path

• Contacts the given server and asks for the given path

request

response

(e.g., HTML)
client server
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Browsers: JavaScript and HTML

• Browser natively knows how to display HTML

• Page can also include JavaScript to execute

– but it is not required

– if present, the JavaScript can change the HTML displayed
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request

response

(e.g., HTML)
client server



HTML

• HTML = Hyper Text Markup Language

– text format for describing a document / UI

– HTML describes the structure of the content,

and (partially) what you want drawn in the browser

• HTML text consists primarily of “tags” and text
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HTML Tags

Tag Name Content

Closing Tag

Element

<p> Some Text </p>

<p id="firstParagraph"> Some Text </p>

Tag Name

Attribute Name

Attribute Value Content

Closing Tag

Element
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HTML as a Tree

• Elements can have children (text or elements)

– text is always a leaf in the tree

<div>

   <p id="firstParagraph"> Some Text </p>

   <br>

   <div>

      <p>Hello</p>

   </div>

</div>

div

p br div

p
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Parsing HTML

• HTML is a text format that describes a tree

– nodes are elements or text

<div>

  <p>Some text</p>

  <p>More text</p>

</div>

div

p p

HTML text
HTML tree

parse

– HTML text is parsed into a tree (“DOM”)

– JS can access the tree in the variable “document”

our code lives in the world on the right side
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Displaying HTML

• Browser window displays an HTML document

– tree is turned into drawing in the page

    Some text

    More text

div

p p

HTML display

draw

HTML tree

– browser displays the HTML in the window

browsers parse and draw very quickly

– JS has limited access to display information
13



Developer Tools show the HTML

• Click on any HTML element and choose "Inspect"

– can see exact size in pixels, colors, etc.
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Styling

• The “style” attribute controls appearance details

– margins, padding, width, fonts, etc.

– see an HTML reference for details (when necessary)

• Attribute value can include many properties

– each is “name: value”

– separate multiple using “;”

<p>Hi,

  <span style="color: red; margin-left: 15px">Bob</span>!

</p>

– we will generally not worry much about looks in this class…
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https://developer.mozilla.org/en-US/docs/Web/HTML/Reference


Cascading Style Sheets (CSS)

• Commonly used styles can be named

– association of names to styles goes in a .css file

// foo.css

span.fancy { color: red; margin-left: 15px }

// foo.html

… <p>Hi, <span class="fancy">Bob</span></p> …

• Useful to avoid repetition of styling

– makes it easier to change
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Old School Web UI



Including JavaScript in HTML

• Server usually sends back HTML to the browser

• Include code to execute inside of script tag:

<script>

  console.log("Hi, browser");

</script>

• Can also put the script into another file:

<script src="mycode.js"></script>
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Events in the Browser

• Client applications are event-driven

– register "handlers" for various events

• Can do so like this in HTML (but don't!)

<button onClick="handleClick(event)">Click Me</button>

<script>

  const handleClick = (evt) => {

    console.log("ouch");

  };

</script>
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Changing the HTML

• Change the HTML displayed like this (but don't!)

<p>Add 2 to <input type="text" id="num"></input></p>

<p><button onClick="doAdd(event)">Submit</button></p>

<div id="answer"></div>

<script>

  const doAdd = (evt) => {

    const numElem = document.getElementById("num");

    const num = Number(numElem.value);

    const ansElem = document.getElementById("answer");

    ansElem.innerHTML = `The answer is ${num+2}`;

  };

</script>
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Updating the DOM: Adding Nodes

ul

li li li

LectureWash DogLaundry
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<h3>To-Do List</h3>

<ul id="items">

  <li>Laundry</li>

  <li>Wash Dog</li>

</ul>



Updating the DOM: Removing Nodes

ul

li li li

LectureWash DogLaundry
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<h3>To-Do List</h3>

<ul id="items">

  <li>Laundry</li>

  <li>Wash Dog</li>

  <li>Lecture</li>

</ul>



Updating the DOM: Editing Nodes

ul

li li

LectureLaundry input
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Problems with Old School UI

• Write code for every way the UI could change

– many, many cases

– particularly tricky when working in teams/groups

• Not specific to HTML

– same issue exists in Windows, on the iPhone, Xbox, etc.

– if you write code to put things on screen,

then you write code to change where they are on screen
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New School UI

• New approach: what should it look like now?

– write function that maps current state to desired HTML

– compare desired HTML to what is on the screen now

– make any changes needed to turn former into latter

• Huge improvement in productivity

– introduced in Meta's "React" library

– library performs the "compare" and "change" parts

• Faster to write HTML UI than anything else

– many similar libraries exist for the web

– same approach also used in mobile apps, games, …
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React

• we will use React in this class
– goal is not to make you React experts

– teach you just enough React to understand “New School UI” ideas

– these ideas will apply everywhere

• similar to JS & Express, only using small subset of 

the library

• practical note: React is a library installed with npm

26



React Components



HTML Literals in JSX

• JSX: extension of JS that allows HTML expressions

– file extension must be .jsx

const x = <p>Hi there!</p>;
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Substitution in JSX

• Supports substitution like `..` string literals, 

– but uses {..} not ${..}

const name = "Fred"; 

return <p>Hi {name}</p>;

• Can also substitute the value of an attribute:

const rows = 3;

return <textarea rows={rows} cols="25">

         initial text here

       </textarea>;
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JSX Gotchas

• Must have a single root tag (i.e., must be a tree)

– e.g., cannot do this

return <p>one</p><p>two</p>;

– instead, wrap in a <div> or just <>..</> (“fragment”)

• Replacements for attributes matching keywords

– use “className=” instead of “class=”

– use “htmlFor=” instead of “for=”
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CSS in JSX

• CSS styling can be used in JSX

// foo.css

span.fancy { color: red; margin-left: 15px }

// foo.jsx

import './foo.css';  // another weird import

…

return <p>Hi, <span className="fancy">Bob</span>!</p>;

• Nice to get this out of the source code
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Anatomy of a React Component

• split up large web pages into individual components

• React components are classes

– class “extends” React’s Component class

– has a constructor that takes in one argument

(more on this in a moment)

– has a field called state (that holds the app’s … data/state)

• components should have a render method

– goal: convert app’s state to JSX (which it returns)

– method should have be “pure” and have no “side effects”; 

in other words, it should not change state

– we never call the render method – React does for us
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Simplest React Component

• Component that prints a Hello message:

class HiElem extends Component {

  constructor(props) {

    super(props);

    this.state = {lang: "en"};

  }

  render = () => {

    if (this.state.lang === "es") {

      return <p>Hola, Matt!</p>;

    } else {

      return <p>Hi, Matt!</p>; 

    }

  };

}

How do we change "lang"?
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Simplest React Component (rendered)
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Hello Matt!

Hola Matt!



Changing State in our Component
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render = () => {

  if (this.state.lang === "es") {

    return <p>Hola, Matt!

       <button onClick={this.doEngClick}>Eng</button>

      </p>;

  } else {

    return <p>Hi, Matt!

       <button onClick={this.doEspClick}>Esp</button>

      </p>;

  }

};

doEspClick = (evt) => {

  this.setState({lang: "es"};

};



React and Component State Changes

• Must call setState to change the state

– directly modifying this.state is a (painful) bug

• React will automatically re-render when state changes

– but this does not happen instantly

36

<button onClick={this.doEspClick}>Esp</button>

doEspClick = (evt) => {

  this.setState({lang: "es"};

};



React Responds to setState calls

    HTML on screen = render(this.state)

t = 10

Component React

this.state = s1 doc = HTML1 = render(s1)

this.setState(s2)

doc HTML2 = render(s2)

t = 20

t = 30 this.state = s2

React updates this.state to s2 and doc to HTML2 simultaneously

37



React Component with an Event Handler

• Pass method to be called as argument (a “callback”):

 <button onClick={this.doEspClick}>Esp</button>

• Be careful not to do this:

 <button onClick={this.doEspClick()}>Esp</button>

• Including parentheses here is a bug!

– that would call the method inside render

passing its return value as the value of the onClick attribute

– we want to pass the method to the button, and

have it called when the click occurs

38



Putting the UI in the Page

• Initial page has a placeholder in the HTML:

<div id="main"></div>    (empty DIV in index.html)

• Put HTML into it from code like this:

const elem = document.getElementById("main");

const root = createRoot(elem);

root.render(<HiElem />);

–  createRoot is a function provided by the React library

tells React that it should keep the HTML in the page matching what render returns
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Putting the UI in the Page: Props

• Initial page has a placeholder in the HTML:

<div id="main"></div>    (empty DIV in index.html)

• Put HTML into it from code like this:

const elem = document.getElementById("main");

const root = createRoot(elem);

root.render(<HiElem name={"Matt"} size={3}/>);

– in HiElem, this.props will be {name: "Matt", size: 3}

– each component is a custom tag with its own attributes ("properties")

40



Props and State, Together

render = () => {

  if (this.state.lang === "es") {

    return <p>Hola, {this.props.name}!

        <button onClick={this.doEngClick}>Eng</button>

      </p>;

  …

  }

};

• render can use both this.props and this.state

– difference 1: caller give us props, but we set our state

– difference 2: we can change our state
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More React
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The “Old School UI” model (1/2)
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Hello Matt

Español



The “Old School UI” model (2/2)
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State is stored in

the DOM / HTML.

Works for small

examples, breaks

with complex apps

Hola Matt

English



The React Model (1/3)
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Hello Matt

Español

{ lang: "en" }

button click triggers

an event…



The React Model (2/3)
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Hello Matt

Español

{ lang: "es" }

eventually, React

re-renders

button click triggers

an event…

state is

updated



The React Model (3/3)
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{ lang: "es" }

eventually, React

re-renders

button click triggers

an event…

state is

updated

Hola Matt

English



Reactive UIs, more generally
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the actual web page

(the DOM, browser,

or “view”)

the app’s state

events 

(re-)renders

• you only have to write event handlers & render function

• but, you have to play by the rules, or new bugs!!

• view must be a function of just the app state

• render must be “pure” (no side effects!)



Reminder: React in Practice

• Writing User Interface with React:

– write a class that extends Component

– implement the render method

• Each component becomes a new HTML tag:

root.render(<HiElem name={"Matt"}/>);

– in HiElem, this.props will be {name: "Matt"}

• Can use props and state (and only those!) in render:

render = () => {

  if (this.state.lang === "en") {

    return <p>Hi, {this.props.name}!

        <button onClick={this.doEspClick}>Esp</button>

      </p>;

  … 49



Second React Component: More User Input

• Put name in state and let the user change it:

class HiElem extends Component {

  constructor(props) {

    super(props);

    this.state = {name: "Matt"};

  }

  render = () => {

    return <p>Hi, {this.state.name}</p>;

  };

}

How do we change the name?

Ask the user for their name.

50



Second React Component: The View

Hello Matt!
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Second React Component: adding <input>

constructor(props) {

  super(props);

  this.state = {showGreeting: false};

}

render = () => {

  if (this.state.showGreeting) {

    return <p>Hi, {this.state.name}!</p>;

  } else {

    return <p>What is your name?

        <input type="text"></input>

        <button …>Done</button>

      </p>

  }

};
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Second React Component: Updating State?

<input type="text"></input>

    <button onClick={this.doDoneClick}>Done</button>

doDoneClick = (evt) => {

  this.setState({showGreeting: true});

  // what about "name"?

};

How do we get the name text?

Do not reach into document!

(Always a bug. Often a heisenbug.)
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Text Value of Input Elememts

• These two are different:

<input type="text"></input>

<input type="text" value="abc"></input>

– missing value means value=""

• The render method says what HTML should be now

– bug if calling render would inadvertently change things

particularly if it would delete user data!

– if we want the second picture, we need to set value in render
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Second React Component: Input Events

<input type="text" value={this.state.name}

         onChange={this.doNameChange}></input>

    <button onClick={this.doDoneClick}>Done</button>

doNameChange = (evt) => {

  this.setState({name: evt.target.value});

};

–  evt.target is the input element

–  evt.target.value is the current text in the input element
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Second React Component: Input Event Handler

<input type="text" value={this.state.name}

         onChange={this.doNameChange}></input>

    <button onClick={this.doDoneClick}>Done</button>

doNameChange = (evt) => {

  this.setState({name: evt.target.value});

};

doDoneClick = (evt) => {

  this.setState({showGreeting: true});

};

• Never reach into the document to get state!

– React can re-render at any time

– will be a heisenbug when you forget (usually, it still works!)
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Second React Component: Mirrored State

<input type="text" value={this.state.name}

         onChange={this.doNameChange}></input>

    <button onClick={this.doDoneClick}>Done</button>

doNameChange = (evt) => {

  this.setState({name: evt.target.value});

};

doDoneClick = (evt) => {

  this.setState({showGreeting: true});

};

• Any state you need should be mirrored in your state

– set value and handle onChange

57



Event Handler Conventions

• We will use this convention for event handlers

doMyCompMyEvent

– e.g., doDoneClick, doNewNameChange

• Reduces the need to explain these methods

– method name is enough to understand what it is for

– method name is the only thing you know they read

• Components should be just rendering & event handlers

component

name

event

name

58



Example: To-Do List



React Payoff

• No need to write code to
– add a new item to the HTML

– remove an item from the HTML

– update an item in the HTML

all of this is code is tricky (especially if state is not mirrored properly)

• Instead, we only write:

1. state: what does our app care about?

2. render method: tell React what it should look like right now

3. event handlers: tell React how to update state when buttons are clicked

• React figures out what to add, remove, and update

60



React Requirements for Lists

• To do this, React needs more from

– needs to distinguish change from add/remove

<li>wash dog</li>     <li>wash dog</li>

<li>laundry</li>     <li>write lecture</li>

         <li>laundry</li>

– did I insert a new item or change one and add another?

impossible to really know without more information

• React requires each list item to have a key=".." 

property that uniquely identifies it
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React Requirements for Lists: Keys

• To do this, React needs more from

– needs to distinguish change from add/remove

<li key="1">wash dog</li>  <li key="1">wash dog</li>

<li key="2">laundry</li>  <li key="3">write lecture</li>

        <li key="2">laundry</li>

– can now see that "2" was not changed

– only difference is that "3" was inserted

• React will give you a warning (console) if you forget

– will try its best to figure out what happened

– always fix these to be safe

62



Typescript &

Modular Code

(with React)

CSE 331

Spring 2025

Matt Wang
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JS Wacky Weekly Wednesday

Why does (in JS):

[98, 100, 99].sort()

evaluate to [100, 98, 99]?

How would JS evaluate:

[ 
 console.log, -5, -42, 
 console.log("hi") 
].sort()



Types?

• Many JS shenanigans have to do with types :(

• In HW1, we asked: would a type checker help?

– students reported: 41% fall, 45% winter, spring TBD :)

– industry studies found even higher numbers (over 60%)

• Mega-scale applications use type-checked languages

– problems get even worse with multiple programmers

– basically, unheard of to not use one

• Now: huge shift to “bolt-on” types to dynamically-typed 

languages (JS, Python, Ruby, …)
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TypeScript



TypeScript Adds Declared Types to JavaScript

• TypeScript includes declared types for variables
– file names end with .ts or .tsx (not .js or .jsx)

– one extra config file tsconfig.json

• Compiler checks that the types are valid
– produces JS just by removing the types

• Critical to understand how the type system works
– know which bugs it catches and which it misses

– you can then focus your attention on the second group
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TypeScript Adds Declared Types

• Type is declared after the variable name:

const u: bigint = 3n;

const v: bigint = 4n;

const add = (x: bigint, y: bigint): bigint => {

  return x + y;

};

console.log(add(u, v));  // prints 7n

– return type is declared after the argument list (…) and before =>

• “Where types go” is the main syntax difference vs Java
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Basic Data Types of TypeScript

• JavaScript includes the following types

number

bigint

string

boolean

null

undefined

Object     (record types)

Array     (e.g., string[] as in Java)

• TypeScript has these and also…

unknown    (could be anything)

any     (turns off type checking — do not use!)
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Function Type Notation

• Functions themselves have types. Given:

const add = (x: bigint, y: bigint): bigint => {

  return x + y;

};

• the type of add itself is 

(x: bigint, y: bigint) => bigint

• different notion than “what does add return”

• will see this frequently with event handlers
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Think Pair Share: I’ve Become So Numb(er)

Which of these would compile?

70

// TS
const addTS = (x: number, y: number): number => {
  return x + y;
};

addTS(1n, 2n);

sli.do #cse331

// Java
double addJava(double a, double b) {
return a + b;
}

addJava(1, 2);



Literal Types

• Any literal value is also a type:

let x: "foo" = "foo";

let y: 16n = 16n;

• Variable can only hold that specific value!

– can assign it again, but only with the same value

– seems silly, but turns out to be useful…
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Creating New Types: Unions

• Union Types  string | bigint

– can be either one of these

• Not possible in Java!

– TS can describe types of code that Java cannot

• Unknown type is (essentially) a union

type unknown = number | bigint | string | boolean | …
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Enumerations

• unions of literals are “enums”

const dist = (dir: "left"|"right", amt: bigint): bigint => {

  if (dir === "right") {

    return amt;

  } else {

    return –amt;

  }

};

• TypeScript ensures that callers will only pass one of 

those two strings (“left” or “right”)

– impossible to do this in Java

(must fake it with the enumeration design pattern)
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Java Enums

• Another design pattern built into Java:

    enum Dir {

      LEFT, RIGHT

    }

• Dir.LEFT and Dir.RIGHT are the only 2 instances

• Cannot pass a Dir where String is expected

– must add methods to convert between them
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Creating New Types: Records

• Can create compound types in multiple ways

– put multiple types together into one larger type

• Record Types  {x: bigint, s: string}

– anything with at least fields “x” and “s”

const p: {x: bigint, s: string} = {x: 1n, s: "hi"};

console.log(p.x);  // prints 1n
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Creating New Types: Tuples

• Can create compound types in multiple ways

– put multiple types together into one larger type

• Tuple Types  [bigint, string]

– create them like this

const p: [bigint, string] = [1n, "hi"];  // an array

– give names to the parts (“destructuring”) to use them

const [x, y] = p;

console.log(x);  // prints 1n
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Records vs Tuples

• Records and tuples provide the same functionality

– both allow you to put parts together into one object

– conceptually interchangeable

• They differ in who names the parts and when

–  record: creator picks the names

everyone must use the same name

–  tuple: user of the tuple picks the names

each user can pick their own names

• 331 convention: destructure tuples (only)

– no reason to destructure records, so we disallow it
77



Optional Fields in TypeScript

• Records can have optional fields

type T = {x: bigint, y?: bigint};

const t: T = {x: 1n};

– type of “ t.y ” is “ bigint | undefined ”

• Functions can have optional arguments

const f = (a: bigint, b?: bigint): bigint => {

  console.log(b);

};

– type of “ b ” is “ bigint | undefined ”
78



Type Aliases

• TypeScript lets you give shorthand names for types

type Point = {x: bigint, y: bigint};

const p: Point = {x: 1n, y: 2n};

console.log(p.x);  // prints 1n

• Usually nicer but not necessary

– e.g., this does the same thing

const p: {x: bigint, y: bigint} = {x: 1n, y: 2n};

console.log(x);  // prints 1n
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Structural Typing

• Deep difference between TypeScript and Java types

• TypeScript uses “structural typing”

– sometimes called “duck typing”

“if it walks like a duck and quacks like a duck, it’s a duck”

type T1 = {a: bigint, b: string};

type T2 = {a: bigint, b: string};

const x: T1 = {a: 1n, b: “two”};

– can pass “ x ” to a function expecting a “ T2 ”!

– can pass “ x ” to any function expecting

a record with a bigint a and a string b
80



Nominal Typing

• Java uses “nominal typing”

class T1 { int a; int b; }

class T2 { int a; int b; }

T1 x = new T1();

– cannot pass “ x ” to a function expecting a “ T2 ”

• Libraries do not interoperate unless it was pre-planned

– create “adapters” to work around this

example of a design pattern used to work around language limitations

81



Think Pair Share: Be There, or Be Square

Can we pass to squareArea:

1. any Square?

2. squareOrRects with no height

3. any SquareOrRect?

4. any Rectangle?
82

type Square = { width: number };

type Rectangle = { width: number, height: number };

type SquareOrRect = { width: number, height?: number };

const squareArea = (s: Square) : number => {

  return s.width * s.width;

}

sli.do #cse331



Type Inference

• If you leave off the type, TS will try to guess it

– often, but not always, it guesses correctly

• This will work fine

const p = {x: 1n, y: 2n};

console.log(p.x);  // prints 1n

– compiler should correctly guess{x: bigint, y: bigint}

– can see in VS Code by hovering over “p”
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Type Inference in 331

• If you leave off the type, TS will try to guess it

– often, but not always, it guesses correctly

• 331 convention: type declarations are required on…

– function arguments and return values

– variables declared outside of any function (“top-level”)

these could be exported, so types should be explicit

• We do not require declarations on local variables

– but it is fine to include them

– if TS guesses wrong, you will need to include it

84



React Components and TypeScript

type HiProps = {name: string};

type HiState = {greeting: string};

class HiElem extends Component<HiProps, HiState> {

  constructor(props: HiProps) {

    super(props);

    this.state = {greeting: “Hi”};

  }

• Component is a generic type

– first component is type of this.props (readonly)

– second component is type of this.state
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Linters



Linters

• Linters are like type checkers

– try to find potential bugs in the program

– as well as poor style / design issues

• In 331, we have our own linter (“comfy-tslint”)

– e.g., types are declared except local vars in functions

– coming in HW3 :)

• They can be overzealous

– can flag issues that aren’t really problems

– (happens with type checkers also, but less frequently)
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Unused Variables & Linters

• Linter will complain about unused variables

const f = (a: bigint, b: bigint): bigint => {

  return b;

};

– linter will complain that a is unused

this looks suspicious, doesn’t it?

• This ignores variables whose names start with “_”

– the underscore indicates you know it is unused

– change the variable name to get rid of the error
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