
Intro to JavaScript

CSE 331

Spring 2025

Software Design

& Implementation

Matt Wang
& Ali, Alice, Andrew, Anmol, Antonio, Connor,

Edison, Helena, Jonathan, Katherine, Lauren,

Lawrence, Mayee, Omar, Riva, Saan, and Yusong
xkcd #3062

Hello, World!

• I’m Matt (he/him),

teaching professor in Allen School

– have been in intro-adjacent for a bit,

teaching 331 for the first time

– small research background in

programming languages, large

professional background in web dev

– one spin: have written code used by

thousands -- millions of devs, daily*

– but: have written bugs that have

affected millions of devs*

– goal: don’t make my mistakes!

2

Hello, TAs!

• 17 lovely TAs this quarter

– ~ 1:15 ratio – which is amazing

– better perspective than me on student

experience in the class, tips & tricks, …

– lets us have ~ 19 hours of office hours / week

• quiz sections are co-taught

• meet your TAs on Thursday!

3

Shoulders of Giants

• Materials designed over

many iterations of 331

• These folks (& others)

deserve the flowers

– 50+ years of professional

programming experience

– 30+ years of research in

creating correct software

– course is their (+ our)

collective wisdom

• all mistakes are Matt’s :)

4

You & Computer Science (approximately)

• You already know Java

– some basic data structures and algorithms

• Working on expanding your knowledge

Data

Structures

Algorithms

Programming

Languages

Databases

Java

5

Learning More Computer Science

Data

Structures

Algorithms

Programming

Languages

Databases

Compilers

Operating Systems

Networking

Distributed Systems

Machine

Learning

AI
Graphics

Java

6

Traits of Learning Computer Science

1. First time solving this kind of problem

2. Given lots of help
will often tell you if it’s right

3. Expected to make mistakes
90% is an “A”!

All of these are

different in industry

Skills

7

Traits of Practicing Computer Science

1. Not the first time solving this kind of problem
normal to hire someone with prior experience

learn new skills in class or in spare time

2. No one to tell you if your code is right
That’s your job!

(senior engineers will double check your work, but they expect it to be right)

you will almost never be given tests

Skills

8

Least “Real World” Setting Possible

Would give you a button to click to see if it’s right…

Someone else already solved this problem.

They only need you for new problems. 9

Practicing Computer Science: Mistakes

1. Not the first time solving this kind of problem
normal to hire someone with prior experience

learn new skills in class or in spare time

2. No one to tell you if your code is right
That’s your job!

(senior engineers will double check your work, but they expect it to be right)

you will almost never be given tests

3. Mistakes are not acceptable (to users)
90% is not an “A”

10% of 1m users is 100k users calling customer service

1% of 1m users is 10k users calling customer service

Skills

10

What This Class is About

• Learning what engineers do to make sure their

code is correct before sending it to users

• Learn a toolkit for being 100% sure it is right

– any “computer scientist” must know this

• Learn when to use the toolkit

– not every problem requires it

11

We Will Ask You to Write Code Differently

• Our goal is not to teach you to write code that

looks exactly like what you will see in industry

– nor is it to use the libraries most common in industry

the most popular languages and libraries change all the time

• Our goal is to teach you to think through your code and

to understand how all the parts work

• That is best served by writing slowly and carefully

• We will force that by

1. changing programming languages to something unfamiliar

2. having unusual coding conventions at times

12

Homework

• CSE 331 is a hard class

– because coding & debugging are hard!

• Most of the work is done outside of class

– university policy is 2 hours per hour of class time

– plan for 8 hours per week, but…

• Wide variation in time required

– some students will average 10-15 hours

but this is not expected!
be sure to get help if you are averaging over 15 hours
(~ “debug” your approach to 331)

13

Homework Assignments

Nine assignments split into these groups:

HW1

HW2

HW3

HW4

HW5

HW6

HW7

HW8

HW9

learn to write more complex apps

practice debugging

learn how to be 100% sure the code is correct

(most of the work done on paper)

learn to use the tools productively

(when to use then and when not to)

14

The “Cadence” of the Course

• ~ 1 topic per week, usually “ending” on Wed

• Thu quiz section: practice & ramp-in to HW

• HW released Thu night, due following Wed

– assumes you’ve gone to section!

– section worksheet is HW warmup

– by release, know all content needed to do HW

– “capstone” of topic (and great exam studying)

15

Syllabus Pause

(and, answering your questions)

Learning a New Language

• We’re going to learn some JavaScript

• The second language can be the hardest to learn!

– some things you took for granted no longer hold

– must slow down think about think about every step

• We will move slowly

– we won’t use all the language this quarter

will not learn every feature of the language

– comparison with Java will be useful

17

Running JavaScript

• Can be run in different environments

– command line (like Java)

instead of "java MyClass", it is "node mycode.js"

– inside the browser

• Primarily interesting because of the browser

– likely would not be used much otherwise

– command line provided so you can use one language for both

• In both environments, print output with console.log(..)

– prints to command line or “Developer Console” in the browser

18

JavaScript

History of JavaScript

• Incredibly simple language

– created in 10 days by Brendan Eich in 1995

– often difficult to use because it is so simple

• Features added later to fix problem areas

– imports (ES6)

– classes (ES6)

– integers (ES2020)

21

Relationship to Java

• Initially had no relation to Java

– picked the name because Java was popular then

– added Java’s Math library to JS also

e.g., Math.sqrt is available in JS, just like Java

– copied some of Java’s String functions to JS string

• Both are in the “C family” of languages
– much of the syntax is the same

– more differences in data types

• We will discuss syntax (code) first and then data…

22

JavaScript Syntax

• Both are in the “C family” of languages

• Much of the syntax is the same

– most expressions (+, -, *, /, ?:, function calls, etc.)

– if, for , while , break , continue , return

– comments with // or /* .. */

• Different syntax for a few things

– declaring variables

– declaring functions

– equality (===)

23

Java vs JavaScript Syntax

• The following code is legal in both languages:
– assume “s” and “j” are already declared

s = 0;

j = 0;

while (j < 10) {

 s += j;

 j++;

}

// Now s == 45

OR for (j = 0; j < 10; j++)

24

Differences from Java: Type Declarations

• JavaScript variables have no declared types
– this is a problem… (we will get them back later)

• Declare variables in one of these ways:

const x = 1;

let y = "foo";

– “const” cannot be changed; “let” can be changed

– use “const” whenever possible!

25

Basic Data Types of JavaScript

• JavaScript includes the following runtime types

number

bigint

string

boolean

undefined

null (another undefined)

Object

Array (special subtype of Object)

26

Differences from Java: “===” operator

• JavaScript’s “==” is problematic

– tries to convert objects to the same type

e.g., 3 == "3" and even 0 == "" are… true?!?

• We will use “===” (and “!==”) instead:

– no type conversion will be performed

e.g., 3 === "3" is false

• Mostly same as Java

– compares values on primitives, references on objects

– but strings are primitive in JS (no .equals needed)

== on strings common source of bugs in Java
27

Checking Types at Run Time

Condition Code

x is undefined x === undefined

x is null x === null

x is a number typeof x === "number"

x is an integer typeof x === "bigint"

x is a string typeof x === "string"

x is an object or array (or null) typeof x === "object"

x is an array Array.isArray(x)

28

Numbers

bigint integers

number floating point (like Java double)

• By default, JS uses number not bigint

– 0, 1, 2 are numbers not integers

– add an “n” at the end for integers (e.g., 2n)

• All the usual operators: + - * / ++ -- += …

– division is different with number and bigint

– we will prefer bigint because correctness is more important

• Math library largely copied from Java

– e.g., Math.sqrt returns the square root

29

Strings

• Mostly the same as Java

– immutable

– string concatenation with “+”

• A few improvements

– string comparison with “===” and “<”

no need for s.equals(t)… just write s === t

– use either ’..’ or ”..” (single or double quotes)

– new string literals that support variable substitution:

const name = "Fred";

console.log(`Hi, ${name}!`); // prints “Hi, Fred!”

30

Boolean

• All the usual operators: && || !

• “if” can be used with any value

– “falsey” things: false, 0, NaN, "", null, undefined

– “truthy” things: everything else

• A common source of bugs…

– stick to boolean values for all conditions

31

Record Types

• JavaScript “Object” is something with “fields”

• JavaScript has special syntax for creating them

const p = {x: 1n, y: 2n};

console.log(p.x); // prints 1n

• The term “object” is potentially confusing

– used for many things

– I prefer it as shorthand for “mathematical object”

• Will refer to things with fields as “records”

– normal name in programming languages

32

Record Types: Field Names

• Quotes are optional around field names

const p = {x: 1n, y: 2n};

console.log(p.x); // prints 1n

const q = {"x": 1n, "y": 2n};

console.log(q.x); // also prints 1n

• Field names are literal strings, not expressions!

const x = "foo";

console.log({x: x}); // prints {”x”: ”foo”}

33

Record Types: Checking Presence

• Retrieving a non-existent field returns “undefined”

const p = {x: 1n, y: 2n};

console.log(p.z); // prints undefined

• Can also check for presence with “in”

console.log("x" in p); // prints true

console.log("z" in p); // prints false

• Be careful: all records have hidden properties

console.log("toString" in p); // prints true!

34

Maps

• Do not try to use a record as a map!

– usually why reason people use “in” and p["name"]

• Just use Map instead:

const M = new Map([["a", 1], ["b", 5]]);

console.log(M.get("a")); // prints 1

console.log(M.get("a")); // prints 5

console.log(M.get("toString")); // prints undefined

M.set("a", 2);

M.set("c", 3);

console.log(M.get("a")); // prints 2

console.log(M.get("c")); // prints 3

35

Sets

• JavaScript also provides Set:

const S = new Set(["a", "b"]);

console.log(S.has("a")); // prints true

console.log(S.has("c")); // prints false

S.add("c");

console.log(S.has("c")); // prints true

• Constructor takes an (optional) list of initial values

– constructor of Map takes a list of pairs

36

Arrays (like Java ArrayLists)

• Simpler syntax for literals:

const A = [1, 2, "foo"]; // no type restriction!

console.log(A[2]); // prints “foo”

• Add and remove using push and pop:

A.pop();

console.log(A); // prints [1, 2]

A.push(3);

console.log(A); // prints [1, 2, 3]

37

Arrays as Objects

• Length field stores the length of the array

const A = [1, 2, "foo"];

console.log(A.length); // prints 3

A.pop();

console.log(A.length); // prints 2

• Arrays are a special type of object:

console.log(typeof A); // prints ”object”

console.log(Array.isArray(A)); // prints true

console.log(Array.isArray({x: 1})); // prints false

38

Functions

• Functions are first class objects

– “arrow” expressions creates functions

– store these into a variable to use it later

const add2 = (x, y) => x + y;

console.log(add2(1n, 2n)); // prints 3n

const add3 = (x, y, z) => {

 return x + y + z;

};

console.log(add3(1n, 2n, 3n)); // prints 6n

39

Declaring and Using Functions

• We will declare functions like this

const add = (x, y) => {

 return x + y;

};

// add(2n, 3n) == 5n

• Functions can be passed around

– “functional” programming language

– but we won’t do that (much) this quarter

we will pass functions to buttons to tell them what to do when clicked

see CSE 341 for more on that topic

40

Classes

• Class syntax is similar to Java but no types:

class Pair {

 constructor(x, y) {

 this.x = x;

 this.y = y;

 }

}

const p = new Pair(1, 2);

const q = new Pair(2, 2);

– fields are not declared (because there are no types)

– constructor is called “constructor” not class name

41

Declaring Classes

• We will declare classes like this:

class Pair {

 …

 distTo = (p) => {

 const dx = this.x – p.x;

 const dy = this.y – p.y;

 return Math.sqrt(dx*dx + dy*dy);

 };

}

console.log(p.distTo(q)); // prints 1

– this assignment is executed as part of the constructor

– there is another syntax for method declarations but avoid it

leads to big problems when we are writing UI shortly
42

JavaScript Summary (1/2)

• Most of the syntax is the same

– even has Map and Set like Java

• Main difference is no declared types

• That means new syntax for

– declaring variables, functions, and classes

– checking type a runtime with typeof

• That means you can mix types in expressions

– but you don't want to! avoid this!

– use explicit type conversions (e.g. Number(..)) if necc.

43

JavaScript Summary (2/2)

• A few new features that are useful…

• Strings are primitive types

– can use "===" and "<" on them

– simpler syntax for accessing characters: "s[1]"

• Integers have their own type

– literals use an "n" suffix, e.g., "3n"

– "/" is then integer division

• New syntax for string literals: `Hi, ${name}`

44

HTTP Basics

CSE 331

Spring 2025

Software Design

& Implementation

Matt Wang
& Ali, Alice, Andrew, Anmol, Antonio, Connor,

Edison, Helena, Jonathan, Katherine, Lauren,

Lawrence, Mayee, Omar, Riva, Saan, and Yusong

JS Weekly Wednesday

Why does

5 + - '2'

evaluate to 3 in JS?

How would JS evaluate:

'5' + - + + - + - - '2'

Modules

Imports

• Originally, all JavaScript lived in the same "namespace"

– problems if two programmers use the same function name

– tools would rename functions to avoid conflicts (e.g., webpack)

• Now, by default, declarations are hidden outside the file

• Add the keyword “export” to make it visible

export const MAX_NUMBER = 15; // in src/foo.js

• Use the “import” statement to bring into another file

import { MAX_NUMBER } from './foo.js'; // in src/bar.js

– ‘./foo.js’ is relative path from this file to foo.js

47

Imports in (and out) of this class

export const MAX_NUMBER = 15; // in src/foo.js

import { MAX_NUMBER } from ‘./foo.js’; // in src/bar.js

• For code you write, you will only need this syntax

• JS includes other ways of importing things

– full explanation is very complicated

– don’t worry about it…

• Starter code will include some that look different, e.g.:

import express from 'express';

import './foo.png'; // include a file along with the code

48

Put Code in Multiple Files

• Each file is a separate namespace ("module")

– names can be shared (exported) or kept private

• Use npm (package manager) to enable this behavior

– file called package.json contains project setup

– scripts run node with module system enabled

{

 "name": "my-project",

 "type": "module",

 "scripts": {

 "exec": "node src/index.js"

 }

}

49

Packages

import express from 'express';

• This imports from a package called "express"

– use package name not a relative path (like "./foo.js")

• Use npm to download libraries

– in package.json:

 "dependencies": {

 "express": "^4.2.1"

 }

– second part is the version number we want to use

getting the wrong version can make things break, so be specific

– "npm install" downloads all libraries listed here

50

HTTP Servers

Browser Operation

• Browser reads the URL to find what HTML to load

server name path

• Contacts the given server and asks for the given path

request

response

(e.g., HTML)
client server

52

URL Parts

• URLs have more parts than just server and path:

server name path search fragment

• Server name identifies the computer to talk to

– uses the HTTP(S) protocol

• Conceptually:

– path identifies code to execute on the server

– search string is input passed to that file when run

– (fragment will not be important for us)

53

Query Parameters

• Search string can pass multiple values at once

– we call these “query parameters”

• Each parameter is of the form “name=value”

– no spaces around the “=“

• Multiple values are placed together with “&”s in between

?a=3&b=foo&c=Matt

– encodes three query parameters: a is “3”, b is “foo”, c is “Matt”

54

Query Parameter Types

?a=3&b=foo&c=Matt%20W

• All values are strings

• Special characters (like spaces) are encoded

– the encodeURIComponent function does this for us

• Will not need to write code to parse query params

– have libraries that do this for us

55

Custom Server with Express

• Use "express" library to write a custom server:

const F = (req, res) => {

 …

}

const app = express();

app.get(“/foo”, F);

app.listen(8080);

– request for http://localhost:8080/foo will call F

– mapping from “/foo” to F is called a “route”

– can have as many routes as we want (with different URLs)

56

http://localhost:8080/foo

HTTP Terminology: Requests

• HTTP request includes

– URL: path and query parameters

– method: GET or POST

GET is used to read data stored on the server (cacheable)

POST is used to change data stored on the server

– body (for POST only)

useful for sending large or non-string data with the request

• Browser issues a GET request when you type URL

57

HTTP Terminology: Responses

• HTTP response includes

– status code: 200 (ok), 400-99 (client error),

 or 500-99 (server error)

was the server able to respond

– content type: text/HTML or application/JSON (for us)

what sort of data did the server send back

– content

in format described by the Content Type

• Browser expects HTML to display in the page

– we will always send JSON or text to the browser

58

Custom Server: Responding to a Request

• Query parameters (e.g., ?name=Matt) in req

const F = (req, res) => {

 if (req.query.name === undefined) {

 res.status(400).send(“Missing ‘name’”);

 return;

 }

 … // name was provided

};

– set status to 400 to indicate a client error (Bad Request)

– set status to 500 to indicate a server error

– default status is 200 (OK)

59

Custom Server: Content Type

• Query parameters (e.g., ?name=Matt) in req

const F = (req, res) => {

 if (req.query.name === undefined) {

 res.status(400).send(“Missing ‘name’”);

 return;

 }

 res.send(`Hi, ${req.query.name}`); // sent as text

};

• Content type will be set automatically:

– send of string returned as text/HTML

– send of record returned as application/JSON

– use this coding convention rather than explicit content type

60

Example App: Interface

User types “blue” and presses “Submit”…

61

Example App: Requests and Responses

Apps will make sequence of requests to server

our server

GET /new

{text: “Your fav color is?”}

GET /check?answer=blue

{correct: false}

GET /check?answer=yellow

{correct: true}
62

“Network” Tab Shows Requests

• Shows every request to the server

– first request loads the app (as usual)

– “new” is a request to get a question

– “check?index=0&answer=blue” is a request to check answer

• Click on a request to see details…

63

“Network” Tab Shows Request & Response

64

JSON

• JavaScript Object Notation

– text description of JavaScript object

– allows strings, numbers, null, arrays, and records

no undefined and no instances of classes

no ‘..’ (single quotes), only “..”

requires quotes around keys in records

• Translation into string done automatically by send

res.send({index: 0, text: ’What is your …?’});

65

POST Body

• Sent in request as JSON

– parsed into a JS object by express library

• POST body available in req.body

– e.g., if POST body is {"a": 3, "b": 5}

const getAvg = (req, res) => {

 const avg = (req.body.a + req.body.b) / 2;

 res.send({avg: avg}); // sent as JSON

};

– note that req.body.a is a number, not a string

66

Servers

app.get("/foo", F);

app.listen(8080);

• Program does not exit at the end of the file

– call to listen tells it to run forever

– runs until forcibly stopped (Ctrl-C)

• Does work only when request "events" occur

– called "event-driven" programs

• This is how most real-world programs work

– client applications wait for user interaction

– servers wait for new requests from clients

67

Debugging Event-Driven Programs

• When command-line program fails…

– know the exact inputs that caused it

– can re-run it over and over until you understand the cause

• When event-driven program fails…

– might know the last event that occurred (e.g., that request)

– don't know the full sequence of events

– don't know the state of all the variables in the program

– usually unclear how to reproduce the failure

• Debugging real-world programs is hard

– in some settings, it is nearly impossible

68

	Slide 1: Intro to JavaScript
	Slide 2: Hello, World!
	Slide 3: Hello, TAs!
	Slide 4: Shoulders of Giants
	Slide 5: You & Computer Science (approximately)
	Slide 6: Learning More Computer Science
	Slide 7: Traits of Learning Computer Science
	Slide 8: Traits of Practicing Computer Science
	Slide 9: Least “Real World” Setting Possible
	Slide 10: Practicing Computer Science: Mistakes
	Slide 11: What This Class is About
	Slide 12: We Will Ask You to Write Code Differently
	Slide 13: Homework
	Slide 14: Homework Assignments
	Slide 15: The “Cadence” of the Course
	Slide 16: Syllabus Pause (and, answering your questions)
	Slide 17: Learning a New Language
	Slide 18: Running JavaScript
	Slide 20: JavaScript
	Slide 21: History of JavaScript
	Slide 22: Relationship to Java
	Slide 23: JavaScript Syntax
	Slide 24: Java vs JavaScript Syntax
	Slide 25: Differences from Java: Type Declarations
	Slide 26: Basic Data Types of JavaScript
	Slide 27: Differences from Java: “===” operator
	Slide 28: Checking Types at Run Time
	Slide 29: Numbers
	Slide 30: Strings
	Slide 31: Boolean
	Slide 32: Record Types
	Slide 33: Record Types: Field Names
	Slide 34: Record Types: Checking Presence
	Slide 35: Maps
	Slide 36: Sets
	Slide 37: Arrays (like Java ArrayLists)
	Slide 38: Arrays as Objects
	Slide 39: Functions
	Slide 40: Declaring and Using Functions
	Slide 41: Classes
	Slide 42: Declaring Classes
	Slide 43: JavaScript Summary (1/2)
	Slide 44: JavaScript Summary (2/2)
	Slide 45: HTTP Basics
	Slide 46: Modules
	Slide 47: Imports
	Slide 48: Imports in (and out) of this class
	Slide 49: Put Code in Multiple Files
	Slide 50: Packages
	Slide 51: HTTP Servers
	Slide 52: Browser Operation
	Slide 53: URL Parts
	Slide 54: Query Parameters
	Slide 55: Query Parameter Types
	Slide 56: Custom Server with Express
	Slide 57: HTTP Terminology: Requests
	Slide 58: HTTP Terminology: Responses
	Slide 59: Custom Server: Responding to a Request
	Slide 60: Custom Server: Content Type
	Slide 61: Example App: Interface
	Slide 62: Example App: Requests and Responses
	Slide 63: “Network” Tab Shows Requests
	Slide 64: “Network” Tab Shows Request & Response
	Slide 65: JSON
	Slide 66: POST Body
	Slide 67: Servers
	Slide 68: Debugging Event-Driven Programs

