
“Bottom Up” Recursion With Loops

James Wilcox and Kevin Zatloukal

August 2024

Consider the following function twice : List〈N〉 → List〈N〉, which returns a list with each value doubled:

twice(nil) := nil

twice(x :: L) := (2x) :: twice(L)

This function is not tail recursive, so it is not obvious how to implement it with a loop.
Nonetheless, suppose that we naively tried to implement with a loop as follows:

const twiceLoop = (L: List<bigint>): List<bigint> => {

let S = nil;

while (L.kind !== "nil") {

S = cons(2 * L.hd, S);

L = L.tl;

}

return S;

};

Like any loop, this is equivalent to some tail recursion. In this case, it implements the following:

twice-acc(nil, S) := S

twice-acc(x :: L, S) := twice-accc(L, 2x :: S)

as the reader can easily check. Thus, the function twiceLoop calculates twice-acc(L, nil).
Let’s look at what that function does on an example list. This loop calculates

twice-acc(1 :: 2 :: 3 :: nil, nil) = twice-acc(2 :: 3 :: nil, 2 :: nil)

= twice-acc(3 :: nil, 4 :: 2 :: nil)

= twice-acc(nil, 6 :: 4 :: 2 :: nil)

= 6 :: 4 :: 2 :: nil

whereas we were hoping to compute

twice(1 :: 2 :: 3 :: nil) = 2 :: twice(2 :: 3 :: nil)

= 2 :: 4 :: twice(3 :: nil)

= 2 :: 4 :: 6 :: twice(nil)

= 2 :: 4 :: 6 :: nil

In this case, we can see that

twice-acc(1 :: 2 :: 3 :: nil) = rev(twice(1 :: 2 :: 3 :: nil))

and indeed this is true in general, as we will see below. Thus, if we changed the last line from return S to
return rev(S), then it would be correct!

1



More generally, consider any function of the form

f(nil) := nil

f(x :: L) := g(x) :: f(L)

where g is just simple expressions like “2x”.
We can try to implement this with the following tail recursion:

f-acc(nil, S) := S

f-acc(x :: L, S) := f-acc(L, g(x) :: S)

To do so, we must explain the relationship between f and f-acc. From our example of twice-acc, we might
guess that f and f-acc are related as follows:

f-acc(L, S) = rev(f(L)) ++ S (1)

We can prove this holds by induction:

Base Case: We can see that

f-acc(nil, S) = S def of f-acc

= nil++ S

= rev(nil) ++ S def of rev

Inductive Hyp: Suppose that f-acc(L, S) = rev(f(L)) ++ S for some L and any S.

Inductive Step: Let x be arbitrary. Then, we can see that

f-acc(x :: L, S) = f-acc(L, g(x) :: S) def of f-acc

= rev(f(L)) ++ (g(x) :: S) Inductive Hyp.

= rev(f(L)) ++ [g(x)] ++ S)

= rev(g(x) :: f(L)) ++ S) def of rev

= rev(f(x :: L)) ++ S) def of f

Applying equation (1) to the usual tail recursion invariant f-acc(L0, S0) = f-acc(L, S) gives us:

rev(f(L0)) = rev(f(L0)) ++ S0 since S0 = nil

= f-acc(L0, S0) by (1)

= f-acc(L, S) Inv

= rev(f(L)) ++ S by (1)

which is a version of the invariant with no reference to f-acc.

2



The following loop calculates f-acc(L0, nil) by tail recursion. Its invariant has been rewritten, as described
on the previous page, so that it longer mentions f-acc and instead talks just about f :

const fLoop = (L: List<T>): List<T> => {

let S: List<T> = nil;

// Inv: rev(f(L_0)) = rev(f(L)) ++ S

while (L.kind !== "nil") {

S = cons(g(L.hd), S);

L = L.tl;

}

return rev(S); // = f(L_0)

};

When we exit the loop, we have L = nil, so the invariant tells us that

rev(f(L0)) = rev(f(L)) ++ S Inv

= rev(f(nil)) ++ S since L = nil

= rev(nil) ++ S def of f

= nil++ S def of rev

= S

So we return rev(S) = rev(rev(f(L0))) = f(L0).
This completes the proof of correctness, and demonstrates how all “bottom up” recursive functions can

be implemented with loops by reversing the answer at the end.

3


