
CSE 331: Software Design & Implementation Spring 2025

Quiz Section 6: Imperative Programming – Solutions

Task 1 – It’s Forward Against Mine

In this problem, we will practice using forward reasoning to check the correctness of assignments. Assume
that all variables are bigints. Do not use subscripts for this problem unless otherwise specified, instead
write assertions in terms of the current values of variables.

(a) Use forward reasoning to fill in the missing assertions (strongest postconditions) in the following
code. Then prove that the stated postcondition holds.

ttx ě 4 uu

y = x - 2n;

tt uu

z = 2n * y;

tt uu

z = z - 2n;

tt uu

tt z ě 0 uu

ttx ě 4 uu

y = x - 2n;

ttx ě 4 and y “ x ´ 2 uu

z = 2n * y;

ttx ě 4 and y “ x ´ 2 and z “ 2y uu

z = z - 2n;

ttx ě 4 and y “ x ´ 2 and z ` 2 “ 2y uu

We can see that this last assertion implies the stated postcondition z ě 0 as follows:

z “ 2y ´ 2 since z ` 2 “ 2y

“ 2px ´ 2q ´ 2 since y “ x ´ 2

“ 2x ´ 6

ě 2 ¨ 4 ´ 6 since x ě 4

“ 2

Thus, we know z ě 2 which implies z ě 0.

1



(b) Use forward reasoning to fill in the missing assertions (strongest postconditions) in the following
code. Then prove that the stated postcondition holds. (Reminder that with bigint, division is
truncating division.) You may use subscripts for this part.

ttx ď 4 uu

y = x + 4n;

tt uu

x = x / 2n;

tt uu

y = y + 2n * x;

tt uu

tt y ă 14 uu

ttx ď 4 uu

y = x + 4n;

ttx ď 4 and y “ x ` 4 uu

x = x / 2n;

ttx0 ď 4 and x “ x0{2 and y “ x0 ` 4 uu

y = y + 2n * x;

ttx0 ď 4 and x “ x0{2 and y ´ 2x “ x0 ` 4 uu

tt y ă 14 uu

We can see that this last assertion implies the stated postcondition y ă 14 as follows:

y “ 2x ` x0 ` 4 since y ´ 2x “ x0 ` 4

“ 2px0{2q ` x0 ` 4 since x “ x0{2

ď 2p4{2q ` 4 ` 4 since x0 ď 4

“ 12

ă 14

2



Task 2 – Not For a Back of Trying

In this problem, we will practice using backward reasoning to check the correctness of assignments.
Assume that all variables are bigints. Do not use subscripts for this problem unless otherwise specified,
instead write assertions in terms of the current values of variables.

(a) Use backward reasoning to fill in the missing assertions (weakest preconditions) in the following
code. Then prove that the stated precondition implies what is required for the code to be correct.

Feel free to simplify the intermediate assertions (i.e., rewrite them in an equivalent, but sim-
pler, way). However, the assertions you write must be equivalent to still be weakest preconditions.

ttx ă w ` 1 uu

tt uu

y = 3n * w;

tt uu

x = x * 3n;

tt uu

z = x - 9n;

tt z ă y uu

ttx ă w ` 1 uu

tt 3x ´ 9 ă 3w uu Ñ tt 3x ă 3w ` 9 uu Ñ ttx ă w ` 3 uu

y = 3n * w;

tt 3x ´ 9 ă y uu

x = x * 3n;

ttx ´ 9 ă y uu

z = x - 9n;

tt z ă y uu

We can see that x ă w ` 1 implies the condition we need since

x ă w ` 1

ă pw ` 1q ` 2 adding 2 to w ` 1 is bigger than w ` 1

“ w ` 3

(b) Use backward reasoning to fill in the missing assertions (weakest preconditions) in the following
code. Then prove that the stated precondition implies what is required for the code to be correct.

3



Feel free to simplify the intermediate assertions (i.e., rewrite them in an equivalent, but sim-
pler, way). However, the assertions you write must be equivalent to still be weakest preconditions.

ttx ą 1 uu

tt uu

y = x - 4n;

tt uu

z = 3n * y;

tt uu

z = z + 6n;

tt z ě y uu

ttx ą 1 uu

ttx ´ 4 ě ´3 uu Ñ ttx ě 1 uu

y = x - 4n;

tt 3y ` 6 ě y uu Ñ tt 2y ě ´6 uu Ñ tt y ě ´3 uu

z = 3n * y;

tt z ` 6 ě y uu

z = z + 6n;

tt z ě y uu

We can see immediately from the simplifications above that x ą 1 implies ě 1.

4



Task 3 – Nothing to Be If-ed At

In this problem, we will practice using forward reasoning to check correctness of if statements. Assume
that all variables are bigints. Do not use subscripts for this problem unless otherwise specified, instead
write assertions in terms of the current values of variables.

(a) Use forward reasoning to fill in the assertions. Then, combine the branches to assert the invariant
we know at the end of the conditional and complete an argument by cases that this invariant
implies tty ě 2uu.

Assume that x and y are both integers.

ttx ě 0 uu

if (x >= 6n) {
tt uu

y = 2n * x - 10n;

tt uu

} else {
tt uu

y = 20n - 3n * x;

tt uu

}
tt or uu

tt y ě 2 uu

ttx ě 0 uu

if (x >= 6n) {
ttx ě 6 uu

y = 2n * x - 10n;

ttx ě 6 and y “ 2x ´ 10 uu

} else {
ttx ě 0 and x ă 6 uu

y = 20n - 3n * x;

ttx ě 0 and x ă 6 and y “ 20 ´ 3x uu

}
tt px ě 6 and y “ 2x ´ 10q or px ě 0 and x ă 6 and y “ 20 ´ 3xquu

tt y ě 2 uu

We’ll prove by cases that tt px ě 6 and y “ 2x ´ 10q or px ě 0 and x ă 6 and y “ 20 ´ 3xquu

implies the post condition tty ě 2 uu:

5



Assuming px ě 6 and y “ 2x ´ 10q, we have y “ 2x ´ 10. We can show:

y “ 2x ´ 10

ě 2 ¨ 6 ´ 10 since x ě 6

“ 2

Assuming px ě 0 and x ă 6 and y “ 20´ 3xq, first note that x ă 6 means ´x ą ´6, which
means that ´3x ą ´18. Then, we can calculate:

y “ 20 ´ 3x

ą 20 ´ 18 since ´3x ą ´18

“ 2

6



(b) Use forward reasoning to fill in the assertions. Then, combine the branches to assert the invariant
we know at the end of the conditional and complete an argument by cases that this invariant
implies tts ě 1uu. You may use subscripts for this part.

Assume that s and t are both integers.

tt s ­“ t and t ą 0 uu

if (s > t) {
tt uu

s = s / t;

tt uu

} else {
tt uu

s = t - s;

tt uu

}
tt or uu

tt s ě 1 uu

tt s ­“ t and t ą 0 uu

if (s > t) {
tt t ą 0 and s ą t uu

s = s / t;

tt t ą 0 and s0 ą t and s “ s0{t uu

} else {
tt t ą 0 and s ă t uu

s = t - s;

tt t ą 0 and t ´ s ă t uu

}
tt pt ą 0 and s0 ą t and s “ s0{tq or pt ą 0 and t ´ s ă tq uu

tt s ě 1 uu

We’ll prove by cases that tt pt ą 0 and ts ą tq or pt ą 0 and t ´ s ă tq uu implies the post condi-
tion tts ě 1 uu:

Assuming pt ą 0 and s0 ą t and s “ s0{tq, we can show:

s “ s0{t

ě t{t since s0 ą t

“ 1

Assuming pt ą 0 and t ´ s ă tq, we can rearrange t ´ s ă t (by adding s to both sides
and then adding ´t to both sides) to get 0 ă s. Since s is an integer, this means 1 ď s, or
equivalently, s ě 1.

7



Task 4 – The Only Game in Down

The function “countdown” takes an integer argument “n” and returns a list containing the numbers
n, . . . , 1. It can be defined recursively as follows:

countdown : N Ñ List

countdownp0q :“ nil

countdownpn ` 1q :“ pn ` 1q :: countdownpnq

This function is defined recursively on a natural number so it fits the natural number template from
lecture. In this problem, we will prove the following code correctly calculates countdownpnq. The
invariant for the loop is already provided.

let i: bigint = 0;

let L: List = nil;

tt Inv: L “ countdownpiq uu

while (i !== n) {
i = i+1;

L = cons(i, L);

}
ttL “ countdownpnq uu

(a) Prove that the invariant is true when we get to the top of the loop the first time.

At the top of the loop initially, we can see that L “ nil and that i “ 0, so we have

L “ nil

“ countdownp0q def of countdown

“ countdownpiq since i “ 0

(b) Prove that, when we exit the loop, the postcondition holds.

After the loop we know that i “ n and that L “ countdownpiq. Thus, we can see

L “ countdownpiq as noted above

“ countdownpnq since i “ n

(c) Prove that the invariant is preserved by the body of the loop. To do this, use backward reasoning to
reason until the statement “i = i + 1;”. Then complete the correctness check by verifying that
the invariant with the loop condition implies the assertion you produced with backward reasoning.

8



We can start by filling in the assertions as follows:

ttL “ countdownpiq and i ­“ n uu

tt pi ` 1q :: L “ countdownpi ` 1q uu

i = i + 1;

tt i :: L “ countdownpiq uu

L = cons(i, L);

ttL “ countdownpiq uu

To prove that L “ countdownpiq implies pi ` 1q :: L “ countdownpi ` 1q, we can calculate:

pi ` 1q :: L “ pi ` 1q :: countdownpiq since L “ countdownpiq

“ countdownpi ` 1q def of countdown

9



Task 5 – Chicken Noodle Loop

The function sum-abs calculates the sum of the absolute values of the numbers in a list. We can give
it a formal definition as follows:

sum-abs : List Ñ Z

sum-abspnilq :“ 0

sum-abspx :: Lq :“ ´x ` sum-abspLq if x ă 0

sum-abspx :: Lq :“ x ` sum-abspLq if x ě 0

In this problem, we will prove that the following code correctly calculates sum-abspLq. The
invariant for the loop is already provided. It references L0, which is the initial value of L when the
function starts.

let s: bigint = 0;

tt Inv: s ` sum-abspLq “ sum-abspL0q uu

while (L.kind !== ’’nil’’) {
if (L.hd < 0n) {

s = s + -L.hd;

} else {
s = s + L.hd;

}
L = L.tl;

}
tt s “ sum-abspL0q uu

(a) Prove that the invariant is true when we get to the top of the loop the first time.

At the top of the loop initially, we can see that L “ L0 and s “ 0, so we have

s ` sum-abspLq “ 0 ` sum-abspLq since s “ 0

“ sum-abspL0q since L “ L0

(b) Prove that, when we exit the loop, the postcondition holds.

After the loop we know that L “ nil and that s ` sum-abspLq “ sum-abspL0q. Thus, we can see

sum-abspL0q “ s ` sum-abspLq as noted above

“ s ` sum-abspnilq since L “ nil

“ s ` 0 Def of sum-abs

“ s

10



(c) Prove that the invariant is preserved by the body of the loop. To do this, use backward reasoning
to reason through the last assignment statement “L = L.tl;”. Then, use forward reasoning for
each branch of the “if” statement (as in Problem 3). Finally, complete the correctness check
by verifying that each of the assertions you produced with forward reasoning implies the assertion
produced by backward reasoning immediately above the last assignment statement.

We have previously used the fact that, when L ­“ nil, we know that L “ conspx,Rq for some
x : Z and R : List. However, in the code, we know exactly what x and R are, namely, x “ L.hd
and R “ L.tl. Hence, when L ­“ nil, we actually have L “ conspL.hd, L.tlq. Feel free to use that
in your proof.

We can start by filling in the assertions as follows:

tt s ` sum-abspLq “ sum-abspL0q and L ­“ nil uu

if (L.hd < 0n) {
tt s ` sum-abspLq “ sum-abspL0q and L ­“ nil and L.hd ă 0 uu

s = s + -L.hd;

tt s ` L.hd ` sum-abspLq “ sum-abspL0q and L ­“ nil and L.hd ă 0 uu

} else {
tt s ` sum-abspLq “ sum-abspL0q and L ­“ nil and L.hd ě 0 uu

s = s + L.hd;

tt s ´ L.hd ` sum-abspLq “ sum-abspL0q and L ­“ nil and L.hd ě 0 uu

}
tt ps ` L.hd ` sum-abspLq “ sum-abspL0q and L ­“ nil and L.hd ă 0q uu

tt or ps ´ L.hd ` sum-abspLq “ sum-abspL0q and L ­“ nil and L.hd ě 0q uu

tt s ` sum-abspL.tlq “ sum-abspL0q uu

L = L.tl;

tt s ` sum-abspLq “ sum-abspL0q uu

We’ll prove by cases that tt ps ` L.hd ` sum-abspLq “ sum-abspL0q and L ­“ nil and L.hd ă

0q or ps ´ L.hd ` sum-abspLq “ sum-abspL0q and L ­“ nil and L.hd ě 0q uu implies the post
condition tts ` sum-abspL.tlq “ sum-abspL0q uu:

Assuming ps ` L.hd ` sum-abspLq “ sum-abspL0q and L ­“ nil and L.hd ă 0q, we can
calculate:

sum-abspL0q “ s ` L.hd ` sum-abspLq

“ s ` L.hd ` sum-abspL.hd :: L.tlq since L ­“ nil

“ s ` L.hd ´ L.hd ` sum-abspL.tlq Def of sum-abs since L.hd ă 0

“ s ` sum-abspL.tlq

Assuming ps ´ L.hd ` sum-abspLq “ sum-abspL0q and L ­“ nil and L.hd ě 0q, we can
calculate:

11



sum-abspL0q “ s ´ L.hd ` sum-abspLq

“ s ´ L.hd ` sum-abspL.hd :: L.tlq since L ­“ nil

“ s ´ L.hd ` L.hd ` sum-abspL.tlq Def of sum-abs since L.hd ě 0

“ s ` sum-abspL.tlq

12


