
CSE 331
Software Design & Implementation

Spring 2025
Section 9 – HW 9 Prep

Administrivia

● HW 9 released tonight, due 6/6 (but try to do it earlier
because the code is really2 hard)

2

● FINAL EXAM 6/10 12:30 pm - 2:20 pm in Kane 130
○ (next section will be primarily exam prep)

Prep for HW 9 / Locations

We will be interested in finding all Location points within a given
rectangle.

To keep track, we will use trees that recursively split areas on the map
until each region only contains a single point

In HW 9, we will be working with Location objects again:

HW 9 Prep & Tips

• HW 9 will be adding functionality to Campus Maps from HW 3

• Section slides and ws designed to introduce you to HW 9
concepts & data structures

• Please take a look at the starter code BEFORE starting the
assignment
– This will allow you to better understand the specifications of

the assignments
– We also give you many helper functions and definitions so

this will also prevent you from reinventing the wheel (i.e.
calculating the length of a list)

LocTree
- To represent the points in the image on

the left, we would start by keeping track of
one rectangle that represents the entire
map

- We would then split that rectangle into 4
rectangles at m1

- And then split the lower right rectangles
into 4 rectangles at m2.

m1 is the average location of all 4 points, m2 is the average location of points c and d.
We call this average point the “centroid” !

Tree Type

This is the inductive type we will use to represent the location tree:

Note that nw, ne, sw, and se are lowercase! Uppercase relates to a different function.

Regions
We will keep track of the corners for regions we are interested in.
The Region object will be as follows:

The region R contains the location l if and only if R.x1 <= l.x <= R.x2
and R.y1 <= l.y <= R.y2. Thus, the following region includes every
point in the plane:

Looking only at x and y, we can see for point P that:

For the x values: 0 <= 2 <= 5
For the y values: 2 <= 4 <= 6
So we know the region R contains the point P

Contains point

region R

 x1(0) x2(5)

y1(2)

P (2,4)

y2(6)

R.x1 = 0
R.x2 = 5

R.y1 = 2
R.y2 = 6

So region R = {x1: 0, x2: 5, y1: 2, y2: 6}

A(3, 2)

B(5,4)D(0,4)

Looking only at x and y, we can see for point A that:

For the x values: 0 <= 3 <= 5
For the y values: 2 <= 2 <= 6
So we know the region R contains the point A

Looking only at x and y, we can see for point D that:

For the x values: 0 <= 0 <= 5
For the y values: 2 <= 4 <= 6
So we know the region R contains the point D

Looking only at x and y, we can see for point B that:

For the x values: 0 <= 5 <= 5
For the y values: 2 <= 4 <= 6
So we know the region R contains the point B

Meaning, if the point is
on any border, then it is
also in the region.

Location, Region, LocTree

- Go over how NW(m, R), NE(m, R), etc. work (picture shown
below for reference of what the definition is)

Region functions
 Functions NW… SW : (Location, Region) → Region

- take a location point and a region rectangle
- return the subregion of parameter that is split at the location

point and the in indicated direction

S

p

R

 NW(m2, SE(m1, EVERYWHERE))EX: SE(p, R) = S

Region:
EVERYWHERE

Question 1

 and (R1.y2 >= R2.y1)

R2.x1

R1.x1

R2.x2

(R1.x1 <= R2.x2)

R1.x2

and (R1.x2 >= R2.x1)

R1.y1

R2.y2

and (R1.y1 <= R2.y2)

R1.y2

R2.y1

Quick note:
- Remember, x grows to

the right, y grows
downwards

- Also, this is an arbitrary
example. Overlap can
happen from any side,
the rules here still
apply though.

R1

R2

(R1.x1,R1.y1)

(R1.x1,R1.y2) (R1.x2,R1.y2)

(R1.x2,R1.y1)

(R2.x1,R2.y2)

(R2.x1,R2.y1) (R2.x2,R2.y1)

(R2.x2,R2.y2)

Draw out an example!

Question …

How can we make a function call that would return us the shaded
area?

p

R

k

NW(k, SW(p, R))

- We can see that the area we
want is in the SW region of
point P

- We can then see that it’s in the
NW portion of point k

- Putting this all together we get
the SW portion at point p of
region R, then the NW portion
at point k, to get to the
highlighted region.

Question 2a

FindAll(empty, R) := []
FindAll(single(s), R) := [s] if contains(R, s)
FindAll(single(s), R) := [] if not contains(R,s)
FindAll(split(m, nw, ne, sw, se), R) :=

FindAll(nw, R) ++ FindAll(ne, R) ++ FindAll(sw, R) ++ FindAll(se, R)

Question 2b

Question 2b

fa(empty, S, R) := []

fa(single(s), S, R) := [s] if contains(R, s)

fa(single(s), S, R) := [] if not contains(R, s)

fa(split(m, nw, ne, sw, se), S, R) := [] if not overlap(R, S)

fa(split(m, nw, ne, sw, se), S, R) :=
fa(nw, NW(m, S), R) ++ fa(ne, NE(m, S), R) ++ fa(sw, SW(m, S), R)

++ fa(se, SE(m, S), R) if overlap(R, S)

- We can see that our split(m, nw, ne, sw, se) is inside of region S, so if S
shares no overlap with region R, then region S contains none of the
points in R. Since we only want the points in R, we ignore this region S,
and therefore this split node as well.

Question 2c

Question 2c
Introduction: Define P(T) to be the claim that, if region S contains
all locations in tree T, then fa(T, S, R) = FindAll(T, R). We will prove
this holds by structural induction
Base Cases (T is empty or single):
Note that if S does not contain s, the P is vacuously true

fa(empty, S, R) = [] def fa
= FindAll(empty, R) def of FindAll

case contains(R,s) is true
fa(single(s), S, R) = [s] def fa

= FindAll(single(s), R) def FindAll
case contains(R, s) is false
fa(single(s), S, R) = [] def fa

= FindAll(single(s), R) def FindAll

Question 2c

Inductive Hypothesis: Suppose that P(nw), P(ne), P(sw), P(se)
holds for some tree nw, ne, sw, se

Inductive Step (P(R), R = split(m, nw, ne, sw, se)):
Note that if S does not contain m, then P is vacuously true

If overlap(S, R) is false, then we know that no location in the tree
can be in region R. Since S contains all the locations in the tree, we
know that FindAll(T, R) = [], which is the definition of fa(T, S, R)

We know that NE(m, S) contains all locations in the tree ne. Thus we
can see that:

fa(ne, NE(m, S), R) = FindAll(ne, R) IH (since NE)

Question 2c

Applying the same logic to NW, SW, SE we get:
fa(nw, NW(m, S), R) = FindAll(nw, R) IH (since NW)
fa(sw, SW(m, S), R) = FindAll(sw, R) IH (since SW)
fa(se, SE(m, S), R) = FindAll(se, R) IH (since SE)

Question 2c

Substituting these definitions, we can calculate:
fa(split(m, nw, ne, sw, se), S, R)

= fa(nw, NW(m, S), R) ++ fa(ne, NE(m, S), R)
++ fa(sw, SW(m, S), R) ++ fa(se, SE(m, S), R) Def of fa

= FindAll(nw, R) ++ FindAll(ne, R)
++ FindAll(sw, R) ++ FindAll(se, R) Substituting from above

= FindAll(split(m, nw, ne, sw, se), R) Def FindAll
Thus we have proven the claim
Conclusion: P(T) holds for all Trees by structural induction

We know that NE(m, S) contains all locations in the tree ne. Thus we can see that:
fa(ne, NE(m, S), R) = FindAll(ne, R) IH (since NE)

Applying the same logic to NW, SW, SE we get:
fa(nw, NW(m, S), R) = FindAll(nw, R) IH (since NW)
fa(sw, SW(m, S), R) = FindAll(sw, R) IH (since SW)
fa(se, SE(m, S), R) = FindAll(se, R) IH (since SE)

