
CSE 331
Software Design & Implementation

Spring 2025
Section 8 – Trees and ADTs



Administrivia

● HW 8 released tonight, due Wed. May 28 
○ Longer code section than recent weeks, so start 

doing it early and come to office hours
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Proof By Calculation (Review)
• The goal of proof by calculation is to show that an assertion is 

true given facts that you already know

• You should start the proof with either the left or the right side of 
the assertion and end the proof with the other side of the 
assertion. 

• Every symbol (=, >, <, etc.) connecting each line of the proof is 
the current line’s relationship to the previous line in the proof 
(not any other lines)

• Only modify one side

• Every line requires justification (except for algebraic 
manipulations)



Proof By Calculation Bug 1

Suppose we have the facts: x = 3, y = 4, z > 5 and we want to use proof 
by calculation to prove x2 + y2 < z2. Our proof by calculation would look 
like this:

x2 + y2   < z2                    beginning of a backwards proof
0           < z2 - x2 - y2        
0       < z2 - 32 - y2        since x = 3
0           < z2 - 32 - 42        since y = 4
0           < z2 - 25
25         < z2

5           < |z|
Since z > 5, we know x2+y2<z2 by above.

What is wrong with this proof?

Manipulates 
both sides of the 
equation

doesn’t end with right 
side of the assertion (z2)

Not a single 
chain of 
equalities



Proof by Calculation Bug 1: Explanation

The previous proof is an example of Circular Reasoning. We begin 
the proof with the conclusion manipulating both sides until we reach 
one of the given facts.

Just because we can prove one direction does not mean the other 
direction necessarily holds.

We must always start from what we know and end with what we 
want to prove.



Proof By Calculation Bug 2

Suppose we have the facts: x = 3, y = 4, z > 5 and we want to use 
proof by calculation to prove x2 + y2 < z2. Our proof by calculation 
would look like this:

x2 + y2   = 32 + y2 since x = 3
< 25
< 52

< z2

Not every non-algebraic 
step has justification and 
some non-algebraic 
steps are skipped

Inequalities/equalities on 
lines not exclusively 
referring to relationship 
between current and 
previous line This is not correct 

because while x2 + y2 < z2, 
x2 + y2 !< 25 it should be 
‘=’



Proof By Calculation Example Correct

Suppose we have the facts: x = 3, y = 4, z > 5 and we want to use 
proof by calculation to prove x2 + y2 < z2. Our proof by calculation 
would look like this:

x2 + y2   = 32 + y2 since x = 3
= 32 + 42 since y = 4
= 25
= 52

< z2 since z > 5
start with left side of 
assertion

note that each line 
shows the
relationship only to 
the previous line

end with right side of 
assertion

note that every line 
has
justification (except for 
algebraic 
manipulations)



Forward & Backward Reasoning Review

Forward Reasoning:
● After each line of code update variables in assertions based 

how they they were changed by the line of code

Backward Reasoning:
● As you work your way up the code directly substitute how 

variables are modified in the code into your assertions

General:
● Do not drop or simplify assertions
● Do not use subscripts for invertible operations (addition and 

subtraction are always invertible)



Forward Reasoning Error Example 1

{{ x > 1 }}
x = x + 1;
{{ x = x0 + 1 and x > 1 }}
y = 3 * x;
{{ x = x0 + 1 and y = 3 * x }}
z = y + 1;
{{ x = x0 + 1 and y = 3 * x and z = (3 * x) + 1 }}

What’s wrong with these assertions?
Uses subscripts 
for an invertible 
operation

Drops this 
assertion

Simplifies 
assertions too 
early



Correct Forward Reasoning Example

{{ x > 1 }}
x = x + 1;
{{ x - 1 > 0 }}
y = 3 * x;
{{ x - 1 > 0 and y = 3 * x }}
z = y + 1
{{ x - 1 > 0 and y = 3 * x and z = y + 1 }} 

updates x for this operation rather than 
introducing subscripts

does not simplify 
assertions early



Trees

● Trees are inductive data types with a constructor  
that has 2+ recursive arguments

● These come up all the time…
○ no constructors with recursive arguments = “generalized 

enums”
○ constructor with 1 recursive arguments = “generalized lists”
○ constructor with 2+ recursive arguments = “generalized 

trees”



Height of a tree

● Binary Tree: a tree in which each node has at most 
2 children
○ Not to be confused with Binary Search Tree, which also has the 

ordering property that (nodes in L) < x and (nodes in R) > x

●  type Tree :=  empty |  node(x: ℤ, L: Tree, R: Tree)
  



Tree Height Check-in

What is the height of empty? -1

What is the height of node(1, empty, empty)?  0

What is the height of
node(

1,
node(2, empty, node(4, empty, empty),
node(5, node(6, empty, empty), empty)

)
hint: draw it out :)

 2



Using Definitions in Calculations (example)

Suppose “T = node(1, empty, node(2, empty, empty))”
Prove that height(T) = 1

height(T)  = height(node(1, empty, node(2, empty, empty))    since T = …
  = 1 + max(height(empty), height(node(2, empty, empty)))   def of height
  = 1 + max(-1, height(node(2, empty, empty)))     def of height
  = 1 + max(-1, 1+ max(height(empty), height(empty)))          def of height
  = 1 + max(-1, 1+ max(-1, -1))     def of height (x 2)
  = 1 + max(-1, 1+ -1)     def of max
  = 1 + max(-1, 0)  
  = 1 + 0      def of max
  = 1



Task 1: One, Two, Tree…

Since height(S) >= height(T)

Prove by structural induction that, for any left-leaning tree T we have



Task 2: How do I Love Tree



Task 2: How do I Love Tree

“undefined” sidebar
● If the end of the path cannot be reached within the tree (hit a 

dead-end before end of Path) → function should result in 
undefined
○ undefined just indicates invalid inputs
○ If an expression includes a call that results in undefined, 

then the entire expression is undefined
■ Similar to how an Error in code does not “return” 

but bubbles up to callers of the function with the 
error



Specifications for ADTs – Review
● New Terminology for specifying ADTs:

○ Abstract State / Representation (Math)
■ How clients should understand the object
■ Ex: List(nil or cons)

○ Concrete State / Representation (Code)
■ Actual fields of the record and the data stored
■ Ex: { list: List, last: bigint | undefined }

● We’ve had different abstract and concrete types all along!
○ in our math, List is an inductive type (abstract)
○ in our code, List is a string or a record (concrete)

● Term “object” (or “obj”) will refer to abstract state
○ “object” means mathematical object
○ “obj” is the mathematical value that the record represents



Documenting ADTs – Review
Abstract Function (AF) – defines what abstract state the field 
values represent

– Maps field values → the object they represent
– Output is math, this is a mathematical function

Representation Invariants (RI) – facts about the field values that 
must always be true

– Constructor must always make sure RI is true at runtime
– Can assume RI is true when reasoning about methods
– AF only needs to make sense when RI holds
– Must ensure that RI always holds

 



// A list of integers that can retrieve the last element in O(1) 
export interface FastList {
/**
* Returns the object as a regular list
* @returns obj
*/
toList: () => List<bigint>
}

Documenting ADTs – Example

class FastLastList implements FastList {
  // RI: this.last = last(this.list);
  // AF: obj = this.list;
  
  // @ returns last(obj)
  getLast = (): bigint | undefined => {
    return this.last;
  };
}

Hide the representation 
details (i.e. real fields) from 
the client

Talk about functions in 
terms of the abstract state 
(obj)



Task 3: Ready, Set, Go!

contains(obj, value) = 

contains(this.list, value) by AF



Task 3: Ready, Set, Go!



Task 3: Ready, Set, Go!

Case 1: has(value) = true

obj = obj0 from the code

= this.list by AF

has(value) is true from the given condition

isSetEqual(cons(value, obj0), obj) = true because has(value) = true

The RI holds because obj is not modified



Task 3: Ready, Set, Go!

Case 2: has(value) = false

obj = cons(value, this.list) from the code
has(value) = contains(obj, value) def of has

isSetEqual(cons(value, obj0), obj) = true because the new object is 
the old object with value at the front

= contains(value::this.list, value) from above

= true def of contains

The RI holds because has(value) for the old object is false and 
noDuplicates(obj0) is true, so noDuplicates(obj) = 
noDuplicates(cons(value, this.list)) holds. 



Task 3: Ready, Set, Go!



Task 3: Ready, Set, Go!

When the while loop exits, we know 
● this.list = rev(removed) ++ this.rest and contains(removed, value) = 

false from the Invaraint
and 
● rest.kind === ‘nil’ or rest.hd === value from the while condition

Case rest.kind === ‘nil’
● Since contains(removed, value) and contains(rest, value) are false, 

we know that has(value) for the new object is false

Case rest.hd === value
● Since noDuplicates(this.list) = true by the RI, contains(removed, 

value) = false by the invariant, and contains(rest.tl, value) = false, 
has(value) for the new object is false.



Task 3: Let’s Blow This Point
Suppose we had the following interface for a Point class that represents a point in R2 (2D 
space):

(a) Define the representation invariant (RI) in the form r = “...” and abstraction function (AF) in
the form obj = “...” for the SimplePoint class.



Task 3: Let’s Blow This Point
RI: r = Math.sqrt(this.x * this.x + this.y * this.y)

AF: obj = (this.x, this.y)



Task 3: Let’s Blow This Point

RI: r = Math.sqrt(this.x * this.x + this.y * this.y)
AF: obj = (this.x, this.y)


