
CSE 331
Software Design & Implementation

Spring 2025
Section 8 – Trees and ADTs

Administrivia

● HW 8 released tonight, due Wed. May 28
○ Longer code section than recent weeks, so start

doing it early and come to office hours

2

Proof By Calculation (Review)
• The goal of proof by calculation is to show that an assertion is

true given facts that you already know

• You should start the proof with either the left or the right side of
the assertion and end the proof with the other side of the
assertion.

• Every symbol (=, >, <, etc.) connecting each line of the proof is
the current line’s relationship to the previous line in the proof
(not any other lines)

• Only modify one side

• Every line requires justification (except for algebraic
manipulations)

Proof By Calculation Bug 1

Suppose we have the facts: x = 3, y = 4, z > 5 and we want to use proof
by calculation to prove x2 + y2 < z2. Our proof by calculation would look
like this:

x2 + y2 < z2 beginning of a backwards proof
0 < z2 - x2 - y2
0 < z2 - 32 - y2 since x = 3
0 < z2 - 32 - 42 since y = 4
0 < z2 - 25
25 < z2

5 < |z|
Since z > 5, we know x2+y2<z2 by above.

What is wrong with this proof?

Manipulates
both sides of the
equation

doesn’t end with right
side of the assertion (z2)

Not a single
chain of
equalities

Proof by Calculation Bug 1: Explanation

The previous proof is an example of Circular Reasoning. We begin
the proof with the conclusion manipulating both sides until we reach
one of the given facts.

Just because we can prove one direction does not mean the other
direction necessarily holds.

We must always start from what we know and end with what we
want to prove.

Proof By Calculation Bug 2

Suppose we have the facts: x = 3, y = 4, z > 5 and we want to use
proof by calculation to prove x2 + y2 < z2. Our proof by calculation
would look like this:

x2 + y2 = 32 + y2 since x = 3
< 25
< 52

< z2

Not every non-algebraic
step has justification and
some non-algebraic
steps are skipped

Inequalities/equalities on
lines not exclusively
referring to relationship
between current and
previous line This is not correct

because while x2 + y2 < z2,
x2 + y2 !< 25 it should be
‘=’

Proof By Calculation Example Correct

Suppose we have the facts: x = 3, y = 4, z > 5 and we want to use
proof by calculation to prove x2 + y2 < z2. Our proof by calculation
would look like this:

x2 + y2 = 32 + y2 since x = 3
= 32 + 42 since y = 4
= 25
= 52

< z2 since z > 5
start with left side of
assertion

note that each line
shows the
relationship only to
the previous line

end with right side of
assertion

note that every line
has
justification (except for
algebraic
manipulations)

Forward & Backward Reasoning Review

Forward Reasoning:
● After each line of code update variables in assertions based

how they they were changed by the line of code

Backward Reasoning:
● As you work your way up the code directly substitute how

variables are modified in the code into your assertions

General:
● Do not drop or simplify assertions
● Do not use subscripts for invertible operations (addition and

subtraction are always invertible)

Forward Reasoning Error Example 1

{{ x > 1 }}
x = x + 1;
{{ x = x0 + 1 and x > 1 }}
y = 3 * x;
{{ x = x0 + 1 and y = 3 * x }}
z = y + 1;
{{ x = x0 + 1 and y = 3 * x and z = (3 * x) + 1 }}

What’s wrong with these assertions?
Uses subscripts
for an invertible
operation

Drops this
assertion

Simplifies
assertions too
early

Correct Forward Reasoning Example

{{ x > 1 }}
x = x + 1;
{{ x - 1 > 0 }}
y = 3 * x;
{{ x - 1 > 0 and y = 3 * x }}
z = y + 1
{{ x - 1 > 0 and y = 3 * x and z = y + 1 }}

updates x for this operation rather than
introducing subscripts

does not simplify
assertions early

Trees

● Trees are inductive data types with a constructor
that has 2+ recursive arguments

● These come up all the time…
○ no constructors with recursive arguments = “generalized

enums”
○ constructor with 1 recursive arguments = “generalized lists”
○ constructor with 2+ recursive arguments = “generalized

trees”

Height of a tree

● Binary Tree: a tree in which each node has at most
2 children
○ Not to be confused with Binary Search Tree, which also has the

ordering property that (nodes in L) < x and (nodes in R) > x

● type Tree := empty | node(x: ℤ, L: Tree, R: Tree)

Tree Height Check-in

What is the height of empty? -1

What is the height of node(1, empty, empty)? 0

What is the height of
node(

1,
node(2, empty, node(4, empty, empty),
node(5, node(6, empty, empty), empty)

)
hint: draw it out :)

 2

Using Definitions in Calculations (example)

Suppose “T = node(1, empty, node(2, empty, empty))”
Prove that height(T) = 1

height(T) = height(node(1, empty, node(2, empty, empty)) since T = …
 = 1 + max(height(empty), height(node(2, empty, empty))) def of height
 = 1 + max(-1, height(node(2, empty, empty))) def of height
 = 1 + max(-1, 1+ max(height(empty), height(empty))) def of height
 = 1 + max(-1, 1+ max(-1, -1)) def of height (x 2)
 = 1 + max(-1, 1+ -1) def of max
 = 1 + max(-1, 0)
 = 1 + 0 def of max
 = 1

Task 1: One, Two, Tree…

Since height(S) >= height(T)

Prove by structural induction that, for any left-leaning tree T we have

Task 2: How do I Love Tree

Task 2: How do I Love Tree

“undefined” sidebar
● If the end of the path cannot be reached within the tree (hit a

dead-end before end of Path) → function should result in
undefined
○ undefined just indicates invalid inputs
○ If an expression includes a call that results in undefined,

then the entire expression is undefined
■ Similar to how an Error in code does not “return”

but bubbles up to callers of the function with the
error

Specifications for ADTs – Review
● New Terminology for specifying ADTs:

○ Abstract State / Representation (Math)
■ How clients should understand the object
■ Ex: List(nil or cons)

○ Concrete State / Representation (Code)
■ Actual fields of the record and the data stored
■ Ex: { list: List, last: bigint | undefined }

● We’ve had different abstract and concrete types all along!
○ in our math, List is an inductive type (abstract)
○ in our code, List is a string or a record (concrete)

● Term “object” (or “obj”) will refer to abstract state
○ “object” means mathematical object
○ “obj” is the mathematical value that the record represents

Documenting ADTs – Review
Abstract Function (AF) – defines what abstract state the field
values represent

– Maps field values → the object they represent
– Output is math, this is a mathematical function

Representation Invariants (RI) – facts about the field values that
must always be true

– Constructor must always make sure RI is true at runtime
– Can assume RI is true when reasoning about methods
– AF only needs to make sense when RI holds
– Must ensure that RI always holds

// A list of integers that can retrieve the last element in O(1)
export interface FastList {
/**
* Returns the object as a regular list
* @returns obj
*/
toList: () => List<bigint>
}

Documenting ADTs – Example

class FastLastList implements FastList {
 // RI: this.last = last(this.list);
 // AF: obj = this.list;

 // @ returns last(obj)
 getLast = (): bigint | undefined => {
 return this.last;
 };
}

Hide the representation
details (i.e. real fields) from
the client

Talk about functions in
terms of the abstract state
(obj)

Task 3: Ready, Set, Go!

contains(obj, value) =

contains(this.list, value) by AF

Task 3: Ready, Set, Go!

Task 3: Ready, Set, Go!

Case 1: has(value) = true

obj = obj0 from the code

= this.list by AF

has(value) is true from the given condition

isSetEqual(cons(value, obj0), obj) = true because has(value) = true

The RI holds because obj is not modified

Task 3: Ready, Set, Go!

Case 2: has(value) = false

obj = cons(value, this.list) from the code
has(value) = contains(obj, value) def of has

isSetEqual(cons(value, obj0), obj) = true because the new object is
the old object with value at the front

= contains(value::this.list, value) from above

= true def of contains

The RI holds because has(value) for the old object is false and
noDuplicates(obj0) is true, so noDuplicates(obj) =
noDuplicates(cons(value, this.list)) holds.

Task 3: Ready, Set, Go!

Task 3: Ready, Set, Go!

When the while loop exits, we know
● this.list = rev(removed) ++ this.rest and contains(removed, value) =

false from the Invaraint
and
● rest.kind === ‘nil’ or rest.hd === value from the while condition

Case rest.kind === ‘nil’
● Since contains(removed, value) and contains(rest, value) are false,

we know that has(value) for the new object is false

Case rest.hd === value
● Since noDuplicates(this.list) = true by the RI, contains(removed,

value) = false by the invariant, and contains(rest.tl, value) = false,
has(value) for the new object is false.

Task 3: Let’s Blow This Point
Suppose we had the following interface for a Point class that represents a point in R2 (2D
space):

(a) Define the representation invariant (RI) in the form r = “...” and abstraction function (AF) in
the form obj = “...” for the SimplePoint class.

Task 3: Let’s Blow This Point
RI: r = Math.sqrt(this.x * this.x + this.y * this.y)

AF: obj = (this.x, this.y)

Task 3: Let’s Blow This Point

RI: r = Math.sqrt(this.x * this.x + this.y * this.y)
AF: obj = (this.x, this.y)

