
CSE 331
Software Design & Implementation

Spring 2025
Section 7 – Tail Recursion

Administrivia

• HW 7 written released tonight, due Wed. May 20th

2

Postfix vs Infix Notation

When writing mathematical expressions, there are 2 different ways
that we can express a math operation (ex: x * y + z)

Infix Notation - operators are placed between the operands they
act upon

x * y + z

By order of operation, here we know to multiply x and y first, then
add z to the product

Postfix Notation - operator comes after the operands
x y * z +

By order of operation, we take the first 2 operands (x and y) and
apply the operator (*). We then take that product and the next
operand (z) and apply the operator (+)

Loops vs Tail Recursion

• Tail-call optimization turns tail recursion into a loop

 Loops ≤ Tail Recursion (with tail-call optimization)

•Tail recursion can solve all problems loop can
–any loop can be translated to tail recursion
–both use O(1) memory with tail-call optimization

•Translation is simple and important to understand
•Tells us that Loops ≪ Recursion
–correspond to the special case of tail recursion

my-acc(x :: L, s) := my-acc(L, g(s, x))

Loop to Tail Recursion

const myLoop = (R: List): T => {

 let s = f(R);

 while (R.kind !== "nil") {

s = g(s, R.hd);

R = R.tl;

 }

 return h(s);

};

Translate loop to tail recursive helper function and main function:

1. Loop body → recursive case of accumulator function

my-func(R) := my-acc(R, f(R))

2. After loop body → base case of accumulator function

3. Before loop body → variable set up

my-acc(nil, s) := h(s)

Loop to Tail Recursion
const myLoop = (R: List): T => {

 let s = f(R);

 while (R.kind !== "nil") {

s = g(s, R.hd);

R = R.tl;

 }

 return h(s);

};

● Final result: tail-recursive function that does same calculation:
my-func(R) := my-acc(R, f(R)) Main func to call

my-acc(nil, s) := h(s) Helper accumulator func
my-acc(x :: L, s) := my-acc(L, g(s, x))

Tail Recursion to Loop

f(...p1…, r) := …
f(...pn…, r) := …
f(...q1…, r) := f(...)
f(...qn…, r) := f(...)

• Tail recursive function becomes a loop
// Inv: f(args

0
) = f(args)

while (args /* match some q pattern */) {
args = /* right-side of appropriate q pattern

*/;
}
return /* right-side of appropriate p pattern */;

Base Cases

Recursive Cases

Quick check in!
const fakehash = (L: List): bigint => {

 let s = 1;

 let r = 17;

 while (L.kind !== "nil") {

r = r + s * L.hd;

 s = s*31;

L = L.tl;

 }

 return r;

};

● What would the declaration of the accumulator function fakehash-acc look like?
○ What should the arguments of fakehash-acc be?
○ What does fakehash-acc return?

const fakehash-acc(???) : ??? => {...}

Quick check in!
const fakehash = (L: List): bigint => {

 let s = 1n;

 let r = 17n;

 while (L.kind !== "nil") {

r = r + s * L.hd;

 s = s*31n;

L = L.tl;

 }

 return r;

};

const fakehash-acc(L: List, s: bigint, r: bigint) : bigint => {...}

● L is the list from the original
function fakehash

● s helps compute the value
stored into r

● r is the return value

Digit representations: List<Z>
Example, 120 in Base-10:
“Big endian”:

- higher order digits at the front

“Little endian”:

- higher order digits at the end We’re using this one

Defining value of a base-b digit as:

Question 1

Write a function that calculates value-acc(digits, b, 1, 0) with a
loop. Your function should have the following signature:

const value = (digits: List<number>, base: number): number => { ... };

What variables do we need to initialize within the function? What
should those initial values be?

● c = 1
● s = 0

Question 1

Write a function that calculates value-acc(digits, b, 1, 0) with a
loop. Your function should have the following signature:

const value = (digits: List<number>, base: number): number => { ... };

What is the base case? What should the while condition be?

● Base case: L.kind === “nil”
● while (L.kind !== “nil”)

Question 1

Write a function that calculates value-acc(digits, b, 1, 0) with a
loop. Your function should have the following signature:

const value = (digits: List<number>, base: number): number => { ... };

Look at the method definition. Which variables are modified inside
the loop? How are they modified?

● s = s + c * digits.hd
● c = base * c
● digits = digits.tl

Question 1

Write a function that calculates value-acc(digits, b, 1, 0) with a
loop. Your function should have the following signature:

const value = (digits: List<number>, base: number): number => { ... };

Now put it all together! Be sure to include the invariant of the loop!

Question 1

let c: number = 1;

let s: number = 0;

// Inv: value-acc(digits_0, base, 1, 0) = value-acc(digits,
base, c, s)

while (digits.kind !== "nil") {

s = s + c * digits.hd;

c = base * c;

digits = digits.tl;

}

return s;

};

Write a function that calculates value-acc(digits, b, 1, 0) with a
loop.

const value = (digits: List<number>, base: number): number => {

Question 2

1) Define: Let P(ds) to be the claim that value-acc(ds, b, c, s) = s +
c * value(ds, b) for all integers b, c, s. We will prove that this
holds for all lists ds by structural induction

2) Base Case:
value-acc(nil, b, c, s) = s def of value-acc

 = s + c * 0
 = s + c * value(nil, b) def of value

3) IH: Suppose P(xs) holds for some List<Z>, xs

Prove that value-acc(ds, b, c, s) = s + c * value(ds, b)

Question 2

4) Inductive Step: Prove P(d::xs) holds
value-acc(d::xs, b, c, s) = value-acc(xs, b, b*c, s+c * d) def value-acc

= s + c * d + b * c * value(xs, b) IH
= s + c(d + b * value(xs, b))
= s + c * value(d::xs, b) def of value

5) Conclusion: P(ds) holds for all lists by Structural Induction

Prove that value-acc(ds, b, c, s) = s + c * value(ds, b)

Rewriting the Invariant

Question 3

Use equation value-acc(ds, b, c, s) = s + c * value(ds, b)
to rewrite the invariant so that it no longer mentions “value-acc”.

We can see that
value(digits0, base) = 0 + 1 * value(digits0, base)

 = value-acc(digits0, base, 1, 0) by previous fact
 = value-acc(digits, base, c, s) Inv
 = s + c * value(digits, base) by previous fact

So we get the invariant, value(digits0, base) = s + c * value(digits, base)

Question 4a: Back to Floyd Logic

Invariant: value(digits_0, base) = s + c * value(digits, base)

Prove that the invariant holds at the top of the loop

let c: number = 1;

let s: number = 0;

// Inv:value(digits
0
, base) = s + c * value(digits, base)

while (digits.kind !== "nil") {

s = s + c * digits.hd;

c = base * c;

digits = digits.tl;

}

return s;

};

const value = (digits: List<number>, base: number): number => {

Question 4a

Invariant: value(digits_0, base) = s + c * value(digits, base)

Prove that the invariant holds at the top of the loop

At the top, we see that s=0, c=1, and digits = digits0
s + c * value(digits, base) = c * value(digits, base) since s = 0

= value(digits, base) since c = 1
= value(digits0, base) since digits = digits0

Question 4b

Invariant: value(digits_0, base) = s + c * value(digits, base)

Prove that, when we exit, the function returns value(digits_0, base)

let c: number = 1;

let s: number = 0;

// Inv:value(digits
0
, base) = s + c * value(digits, base)

while (digits.kind !== "nil") {

s = s + c * digits.hd;

c = base * c;

digits = digits.tl;

}

return s;

};

const value = (digits: List<number>, base: number): number => {

Question 4b

Invariant: value(digits_0, base) = s + c * value(digits, base)

Prove that, when we exit, the function returns value(digits_0, base)

When we exit, we know the invariant is true and digits = nil. We can calculate:
value(digits0, base) = s + c * value(digits, base) Inv

 = s + c * value(nil, base) since digits = nil
 = s + c * 0 def of value
 = s

so we know returning s is correct

Question 4c

Invariant: value(digits0, base) = s + c * value(digits, base)
Prove that the invariant is preserved when we execute the loop
body.

let c: number = 1;

let s: number = 0;

// Inv: value(digits
0
, base) = s + c * value(digits, base)

while (digits.kind !== "nil") {

s = s + c * digits.hd;

c = base * c;

digits = digits.tl;

}

return s;

};

const value = (digits: List<number>, base: number): number => {

Question 4c

Invariant: value(digits0, base) = s + c * value(digits, base)
Prove that the invariant is preserved when we execute the loop
body.

Reasoning backwards through the loop, we get:
value(digits0, base) = (s + c * digits.hd) + (base * c) * value(digits.tl, base)

We can prove that this follows from the invariant and the fact that digits != nil:
s + c * digits.hd + base * c * value(digits.tl, base)

= s + c (digits.hd + base * value(digits.tl, base))
= s + c * value(digits.hd::digits.tl, base)) def of value
= s + c * value(digits, base) since digits != nil
= value(digits0, base) Inv

Attendance Form

 https://tinyurl.com/sp331secBD7

https://tinyurl.com/sp331secBD7

Question 5

Define a mathematical definition for a tail-recursive function,
factorial-acc, that has identical behavior to the loop body.

Question 5

What are the parameters to factorial-acc?

● n - from the original function factorial
● s - defined inside factorial

Question 5

What is the base case to factorial-acc?

● n === 0

Question 5

Now put it all together!

factorial-acc: (Z, Z) → Z
factorial-acc (0, s) := s
factorial-acc (n+1, s) := factorial-acc(n, s*(n+1))

Question 5

Redefine factorial to call factorial-acc:

factorial: Z → Z
factorial(n) := factorial-acc(n, 1)

