
CSE 331: Software Design & Implementation Spring 2025

Quiz Section 5: Reasoning – Solutions

The problems that follow make use of the following inductive type, representing lists of integers

type List :“ nil | consphd : Z, tl : Listq

Below, we will also use the function sum, which returns the sum of the integers in the list:

sum : List Ñ Z

sumpnilq :“ 0

sumpa :: Lq :“ a ` sumpLq

the function twice, which doubles each number in the list:

twice : List Ñ List

twicepnilq :“ nil

twicepa :: Lq :“ 2a :: twice(L)

the functions twice-evens and twice-odds, which double the integers at even and odd indexes in the list:

twice-evens : List Ñ List

twice-evenspnilq :“ nil

twice-evenspa :: Lq :“ 2a :: twice-oddspLq

twice-odds : List Ñ List

twice-oddspnilq :“ nil

twice-oddspa :: Lq :“ a :: twice-evenspLq

and the function swap, which swaps adjacent integers in the list:

swap : List Ñ List

swappnilq :“ nil

swappa :: nilq :“ a :: nil

swappa :: b :: Lq :“ b :: a :: swappLq

and the function len, which finds the length of the list:

len : List Ñ Z

lenpnilq :“ 0

lenpa :: Lq :“ 1 ` lenpLq

1



Task 1 – Twice Things Up

You see the following snippet in some TypeScript code. It uses cons and nil, which are TypeScript
implementations of “cons” and “nil”, and also equal, which is a TypeScript implementation of ““” on
lists.

if (equal(L, cons(1, cons(2, nil)))) {

const R = cons(2, cons(4, nil)); // = twice(L)

return cons(0, R); // = twice(cons(0, L))

}

The comments show the definition of what should be returned (the specification), but the code is
not a direct translation of those. Below, we will use reasoning to prove that the code is correct.

(a) Using the fact that L “ 1::2::nil, prove by calculation that twicepLq “ R, where R is the constant
list defined in the code. I.e., prove that

twicepLq “ 2::4::nil

twicepLq

“ twicep1::2::nilq Def of L

“ 2::twicep2::nilq Def of twice

“ 2::4::twicepnilq Def of twice

“ 2::4::nil Def of twice

(b) Using the facts that L “ 1::2::nil and R “ 2::4::nil, prove by calculation that the code above
returns the correct value, i.e., prove that

twicep0 :: Lq “ 0 :: R

Feel free to cite part (a) in your calculation.

twicep0 :: Lq

“ 0 :: twicepLq Def of twice

“ 0 :: 2 :: 4 :: nil Part (a)

“ 0 :: R Def of R

2



Task 2 – It’s Raining Len

You see the following snippet in some TypeScript code. It uses twice evens, which is a TypeScript
implementation of twice-evens from the previous problem, as well as len from before.

return 2 + len(twice_evens(L)); // = len(twice-evens(cons(3, cons(4, L))))

The comment shows the definition of what should be returned (the specification), but the code is
not a direct translation of that. Below, we will use reasoning to prove that the code is correct.

(a) Let a and b be any integers. Prove by calculation that

lenptwice-evenspa :: b :: Lqq “ 2 ` lenptwice-evenspLqq

lenptwice-evenspa :: b :: Lqq

“ lenp2a :: twice-oddspb :: Lqq Def of twice-evens

“ lenp2a :: b :: twice-evenspLqq Def of twice-odds

“ 1 ` lenpb :: twice-evenspLqq Def of len

“ 1 ` 1 ` lenptwice-evenspLqq Def of len

“ 2 ` lenptwice-evenspLqq

(b) Explain why the calculation from part (a) shows that the code is correct according to the specification
(written in the comment).

Applying part (a) with a “ 3 and b “ 4 gives us a proof that

lenptwice-evensp3 :: 4 :: Lqq “ 2 ` lenptwice-evenspLqq

which says that the code is correct.

3



Task 3 – Swapaholic

Prove by cases that swappa :: Lq ­“ nil for any integer a : Z and list L.
Let a be any integer and L be any list. We argue by cases on L.

First, suppose that L “ nil. Then, we can see that

swappa :: Lq

“ swappa :: nilq Def of L

“ a :: nil Def of swap

­“ nil

Next, suppose that L ­“ nil. That means that L “ b :: R for some b : Z and R : List. Thus, we
have

swappa :: Lq

“ swappa :: b :: Rq Def of L

“ b :: a :: swappRq Def of swap

­“ nil

We have proven the claim in both cases. Since those cases are exhaustive, we have proven it in
general.

4



Task 4 – Here Comes the Sum

You see following snippet in some TypeScript code:

const s = sum(L);

...

return 2 * s; // = sum(twice(L))

This code claims to calculate the answer sumptwicepLqq, but it actually returns 2 sumpLq. Prove this
code is correct by showing that sumptwicepSqq “ 2 sumpSq holds for any list S by structural induction.

Define P pSq to be the claim that sumptwicepSqq “ 2 sumpSq. We will prove the claim by structural
induction.

Base Case (nil). We can calculate

sumptwicepnilqq

“ sumpnilq Def of twice

“ 0 Def of sum

“ 2 ¨ 0

“ 2 ¨ sumpnilq Def of sum

Inductive Hypothesis. Suppose that P pLq holds for a list L. I.e., suppose that sumptwicepLqq “

2 sumpLq.

Inductive Step. We need to show P pa :: Lq for any integer a : Z.
Let a be any integer. Then, we can calculate

sumptwicepa :: Lqq

“ sump2a :: twicepLqq Def of twice

“ 2a ` sumptwicepLqq Def of sum

“ 2a ` 2 sumpLq Inductive Hypothesis

“ 2pa ` sumpLqq

“ 2 sumpa :: Lq Def of sum

Conclusion. P pSq holds for any list S by structural induction.

5



Task 5 – Can You Sum a Few Bars?

Prove that
sumptwice-evenspLqq ` sumptwice-oddspLqq “ 3 sumpLq

holds for any list S by structural induction.
Define P pSq to be the claim that sumptwice-evenspSqq ` sumptwice-oddspSqq “ 3 sumpSq. We will

prove the claim by structural induction.

Base Case (nil). We can calculate

sumptwice-evenspnilqq ` sumptwice-oddspnilqq

“ sumpnilq ` sumptwice-oddspnilqq Def of twice-evens

“ sumpnilq ` sumpnilq Def of twice-odds

“ sumpnilq ` 0 Def of sum

“ 0 Def of sum

“ 3 ¨ 0

“ 3 sumpnilq Def of sum

Inductive Hypothesis. Suppose that P pLq holds for a list L. I.e., suppose that sumptwice-evenspLqq`

sumptwice-oddspLqq “ 3 sumpLq

Inductive Step. We need to show P pa :: Lq for any integer a : Z.
Let a be any integer. Then, we can calculate

sumptwice-evenspa :: Lqq ` sumptwice-oddspa :: Lqq

“ sump2a :: twice-oddspLqq ` sumptwice-oddspa :: Lqq Def of twice-evens

“ 2a ` sumptwice-oddspLqq ` sumptwice-oddspa :: Lqq Def of sum

“ 2a ` sumptwice-oddspLqq ` sumpa :: twice-evenspLqq Def of twice-odds

“ 2a ` sumptwice-oddspLqq ` a ` sumptwice-evenspLqq Def of sum

“ 3a ` sumptwice-evenspLqq ` sumptwice-oddspLqq

“ 3a ` 3 sumpLq Inductive Hypothesis

“ 3pa ` sumpLqq

“ 3 sumpa :: Lq Def of sum

Conclusion. P pSq holds for any list S by structural induction.

6


