CSE 331
Software Design & Implementation

Spring 2025
Section 5 - Reasoning

UW CSE 331 Spring 2025



Administrivia

« HWS will be released later tonight and is due next

Wednesday, 5/7, @11pm!
« Remember to check the autograder / linter output

when you submit!



Proof By Calculation - Review

*Proving implications is the core step of reasoning
*Uses known facts and definitions (ex: len(nil) = 0)

- Written in our math notation!

 Start from the left side of the inequality to be proved
* Chain of “=" shows first = last

e Chain of “=" and “<” shows first < last

* Directly cite the definition of a function



Proof By Calculation - Example

// Inputs x and y are positive integers
// Returns a positive integer.
const f = (x: bigint, y, bigint): bigint => {
return x * y;
Iy
e Known facts x=1"and “y =2 1”
e Correct if the return value is a positive integer

*

Xx*y 2 x*1 sincey =1
> 1*1 sincex=1

= 1

e (Calculation shows thatx *y = 1



Proof By Calculation - Citing Functions

sum(nil) ;= 0

sum(x :: L) := x+ sum(L)

e Know“a=20" “b=20",and“L=a::b:nil’

e Prove the “sum(L)” is non-negative

sum(L) =sum(a :: b :: nil) sinceL=a: b :nil
= a + sum(b :: nil) def of sum
= a+ b+ sum(nil) def of sum
=a+b def of sum
2 0+Db sinceaz=0
>0 sinceb=20



Question ...

Suppose we have the facts: x =3, y =4, z> 5 and we want to use
proof by calculation to prove x? + y? < z2

What are some fundamental problems with this example proof?

X2 +y? =32+y? since X = 3
=32 + 42 since y = 4
X2 +y?+9=25+9
= 36
= 62

< 7?2 sincez>5



Question ...

Suppose we have the facts: x =3, y =4, z> 5 and we want to use
proof by calculation to prove x? + y? < z2

What are some fundamental problems with this example proof?

X2 +y? =32+y? since X = 3
=32 + 42 since y = 4
X2 +y?+9=25+9
= 36
= 62
< z° sincez>5

e work done on both sides
e not strictly using the previous statement.



Question ...

Corrected version:

X2 +y? =32+y? since x = 3
=32+ 42 since y = 4
=25
=52
< z° since z>5

Here we strictly use the value derived right above, and don't
apply logic to both sides.



Task 1: Twice things up

You see the following snippet in some TypeScript code. It uses cons and nil, which are TypeScript

implementations of “cons” and “nil”, and also equal, which is a TypeScript implementation of “=" on
lists.

if (equal(L, cons(1l, cons(2, nil)))) {
const R = cons(2, cons(4, nil)); //
return cons(0, R); //

twice (L)
twice(cons (0, L))

}

The comments show the definition of what should be returned (the specification), but the code is
not a direct translation of those. Below, we will use reasoning to prove that the code is correct.

(a) Using the fact that L = 1::2::nil, prove by calculation that twice(L) = R, where R is the constant
list defined in the code. l.e., prove that

twice(L) = 2::4::nil

twice : List — List

twice(nil) = nil
twice(a :: L) := 2a:: twice(L)




Task 1: Twice things up

(b) Using the facts that L = 1::2::nil and R = 2::4:nil, prove by calculation that the code above
returns the correct value, i.e., prove that

twice(0:: L) =0: R

Feel free to cite part (a) in your calculation.

twice : List — List

twice(nil) = nil
twice(a :: L) := 2a :: twice(L)




Task 2: It's Raining Len

You see the following snippet in some TypeScript code. It uses twice_evens, which is a TypeScript
implementation of twice-evens from the previous problem, as well as 1en from before.

return 2 + len(twice_evens(L)); // = len(twice-evens(cons(3, cons(4, L))))

The comment shows the definition of what should be returned (the specification), but the code is
not a direct translation of that. Below, we will use reasoning to prove that the code is correct.



Task 2: It's Raining Len

(a) Let a and b be any integers. Prove by calculation that

len(twice-evens(a :: b :: L)) = 2 + len(twice-evens(L))

twice-evens : List — List

twice-evens(nil) = nil len 2 sk —s 7
twice-evens(a :: L) := 2a :: twice-odds(L)
len(nil) = 0

len(a :: L) := 1+ len(L)

twice-odds : List — List

twice-odds(nil) = nil

twice-odds(a :: L) := a :: twice-evens(L)




Task 2: It's Raining Len

(b) Explain why the direct proof from part (a) shows that the code is correct according to the specification
(written in the comment).



Defining Function By Cases — Review

« Sometimes we want to define functions by cases
— Ex: define f(n) wheren : Z

func f(n) :=2n+1 ifn=>0
f(n) ;=0 ifn<O0

— To use the definition f(m), we need to know if m > 0 or not
— This new code structure requires a new proof structure



Proof By Cases — Review

« Split a proof into cases:
— Ex:a = Trueanda = Falseorn >= 0 andn < 0
— These cases needs to be exhaustive

« Ex: func f(n) :=2n+1 ifn>0
f(n) ;=0 ifn<O0
Prove that f(n) = n forany n : Z

Casen > 0: .
fn)=2n+1 defof f (sincen = 0) | Snce these 2
>n sincen =0 cases a'fe
exhaustive,
Case n < 0: f(n) >= n
f(m)=10 def of f (since n < 0) | holds in general
> n sincen< 0




Task 3: Swapaholic

Prove by cases that swap(a :: L) =+ nil for any integer a : Z and list L.

How many cases do we have?

What are the cases?



Task 3: Swapaholic

Prove by cases that swap(a :: L) =+ nil for any integer a : Z and list L.

swap(a :: L)
= swap(a :: nil) Def of L
=@ 3 hil Def of swap
%+ nil

= b: a::swap(R) Defofswap



Structural Induction — Review

* Let P(S) be the claim

« To Prove P(S) holds for any list S, we need to prove two
implications: base case and inductive case

— Base Case: prove P(nil)
» Use any known facts and definitions

— Inductive Hypothesis: assume P(L) is true for a L: List
« Use this in the inductive step ONLY [2]]

— Inductive Step: prove P(x :: L) forany x : Z, L : List
* Direct proof
« Use known facts and definitions and Inductive Hypothesis

« Assuming we know P(L), if we prove P(x :: L), we then prove
recursively that P(S) holds for any List



Structural Induction - 331 Format

The following is the structural induction format we recommend for
using in your homework (the staff solution also follows this format)

1)
2)
3)
4)
o)

Introduction - define P(S) to be what we are trying to prove
Base Case - show P(nil) holds

Inductive Hypothesis - assume P(L) is true for an arbitrary list
Inductive Step - show P(x :: L) holds

Conclusion - “We have shown that P(S) holds for any list”



Task 4: Here Comes The Sum

You see following snippet in some TypeScript code:

const s = sum(L);

return 2 * s; // = sum(twice(L))

This code claims to calculate the answer sum(twice(L)), but it actually returns 2sum(L). Prove this
code is correct by showing that sum(twice(S)) = 2sum(.S) holds for any list S by structural induction.

sum : List — Z

sum(nil) = 0
sum(a:: L) := a-+sum(L)
twice : List — List

twice(nil) = nil
twice(a :: L) := 2a:: twice(L)




1) What's the claim?

Prove that sum(twice(S) = 2sum(S) holds for any list S by
structural induction.

1) Introduction - define P(S) to be what we are trying to prove




2) What is the base case?

Prove that sum(twice(S) = 2sum(S) holds for any list S by
structural induction.

2) Base Case - show P(nil) holds




2) Let's solve it!

structural induction.

Prove that sum(twice(S) = 2sum(S) holds for any list S by

2) Base Case - show P(nil) holds

sum : List — Z

sum(nil) = {
sum(a:: L) := a+sum(L)
twice : List — List

twice(nil) = nil
twice(a :: L) := 2a :: twice(L)




3) What's the Inductive Hypothesis

Prove that sum(twice(S) = 2sum(S) holds for any list S by
structural induction.

3) Inductive Hypothesis - assume P(L) is true for an arbitrary list




4) What is our inductive step showing?

Prove that sum(twice(S) = 2sum(S) holds for any list S by
structural induction.

4) Inductive Step - show P(x :: L) holds




4) Let's solve it!

Prove that sum(twice(S) = 2sum(S) holds for any list S by
structural induction.

4) Inductive Step - show P(x :: L) holds

sum : List —» Z

sum(nil) = 0
sum(a:: L) := a-+sum(L)
twice : List — List

twice(nil) = nil
twice(a :: L) := 2a :: twice(L)




Conclusion

Prove that sum(twice(S) = 2sum(S) holds for any list S by
structural induction.

4) Inductive Step - show P(x :: L) holds




Extra practice

We have an extra practice problem 5 on the section worksheet!

— link to extra examples:

https://courses.cs.washington.edu/courses/cse331/25sp/topics/#5-re
asoning



https://courses.cs.washington.edu/courses/cse331/25sp/topics/#5-reasoning
https://courses.cs.washington.edu/courses/cse331/25sp/topics/#5-reasoning

