
CSE 331: Software Design & Implementation Spring 2025

Quiz Section 4: Functional Programming – Solutions

Task 1 – A Barrel of Halfs

Consider the following function, which calculates half when given an even number but also accepts
other inputs (though it doesn’t perform the same behavior in those cases):

half : pundefined Y Zq Ñ Z

halfpundefinedq :“ 0

halfpnq :“ n{2 if n is even

halfpnq :“ ´pn ` 1q{2 if n is odd

a) What would the declaration of this function look like in TypeScript based on the type?

const half = (n : undefined | bigint): bigint => { .. };

b) What would the implementation of the body of this function look like in TypeScript?

const half = (n : undefined | bigint): bigint => {

if (n === undefined) {

return 0n;

} else if (n % 2n === 0n) {

return n / 2n;

} else {

return -(n + 1n) / 2n;

}

};

1

Task 2 – The Rings of Pattern

Consider the following TypeScript code:

const maybeDouble = (t: {b: boolean, v: [boolean, bigint]}): bigint => {

const [bool, num] = t.v;

if (t.b) {

if (bool) {

return 2n * num;

} else {

return num;

}

} else {

return 0n;

}

};

How would you translate this into our math notation using pattern matching?

maybeDouble : tb : B, v : B ˆ Zu Ñ Z

maybeDoubleptb : T, v : pT, nquq :“ 2n

maybeDoubleptb : T, v : pF, nquq :“ n

maybeDoubleptb : F, v : pd, nquq :“ 0

Task 3 – Sugar and Spice and Everything Twice

We are asked to write a function “twice” that takes a list as an argument and “returns a list of the
same length but with every number in the list multiplied by 2“.

a) This is an English definition of the problem, so our first step is to formalize it. Let’s start by looking
at examples. Fill in the blanks showing the result of applying twice to lists of different lengths.

nil

3 :: nil

2 :: 3 :: nil

1 :: 2 :: 3 :: nil

These should be nil, 6 :: nil, 4 :: 6 :: nil, 2 :: 4 :: 6 :: nil.

2

b) Now, let’s write a formal definition that gives the correct output for all lists.

Write a formal definition of twice using recursion. The recursion can be identified by looking
for a pattern in the answers to part (a).

twice : List Ñ List

twicepnilq :“ nil

twicepa :: Lq :“ 2a :: twice(L)

c) What would the implementation of the body of this function look like in TypeScript?

const twice = (L: List): List => {

if (L.kind === "nil") {

return nil;

} else {

return cons(2 * L.hd, twice(L.tl));

}

};

d) What is a set of test inputs that would meet all of our requirements?

First, we need to ensure statement coverage. The input rs will execute the first return
statement. The input r3s will execute the second return statement.

Next, we must consider branch coverage. The code also has one if statement, both
of whose branches can be executed. In fact, the two example inputs above already execute
both branches, so those two inputs give us branch overage as well.

Finally, since this function is recursive, the “loop coverage” heuristic requires that we
pick tests that cause 0, 1, and many recursive calls. The list rs makes 0 recursive calls and
the list r3s makes 1 recursive call. If we add the r1, 2, 3s, which makes many (3) recursive
calls, then we have loop coverage.

Hence, one acceptable set of tests inputs is: rs, r3s, and r1, 2, 3s.

3

Task 4 – Put Your Mind To Test

a) For the following function, what is a set of test inputs that would meet all of our requirements?

const s = (x: bigint, y: bigint): bigint => {

if (x >= 0n) {

if (y >= 0n) {

return x + y;

} else {

return x - y;

}

} else {

return y;

}

}

Statement coverage requires at least three cases. The input p0, 0q executes the first return
statement, the input p0,´1q executes the second return statement, and the input p´1, 0q

executes the third return statement. Thus, the three inputs p0, 0q, p0,´1q and p´1, 0q

give us statement coverage.

Since there are two if statements, we also need to ensure branch coverage. The first
and third tests, together, execute both branches of the first if statement, and the first
and second tests, together, exercise both branches of the second (inner) if statement.
Thus, these three tests already have branch overage.

Finally, this code has no loops or recursion, so loop coverage is (vacuously) satisfied.

b) The following function allows only non-negative inputs. What is a set of test inputs that would meet
all of our requirements?

const f = (n: bigint): bigint => { // Note: requires n >= 0

if (n === 0n) {

return 0n;

} else if (n === 1n) {

return 1n;

} else if (n % 2n === 1n) { // n is > 1 and odd

return f(n - 2n) + 1n;

} else { // n is > 1 and even

return f(n - 2n) + 3n;

}

};

The input 0 exercises the first return statement, the input 1 exercises the second return
statement, the input 3 exercises the third return statement, and the input 2 exercises the
fourth return statement. Thus, the test inputs 0, 1, 2, 3 give us statement coverage.

4

The code above has an if statement with 4 branches1. The four inputs above execute
all four branches, so they give us branch coverage as well.

Finally, this function is recursive, so we also need to consider loop coverage. The
inputs 0 and 1 make 0 recursive calls and the inputs 2 and 3 make 1 recursive call. If
we add the input 4, which makes 2 recursive calls, then we would achieve loop coverage.
Thus, the five tests 0, 1, 2, 3, 4 meet all of our requirements.

Alternatively, we could change one of the inputs to give us loop coverage as well. For
example, we could change 2 to 4. The latter executes the same return statement, so we
would retain statement and branch coverage, but now we have an input that makes many
recursive calls as well. Thus, 0, 1, 3, 4 also meets our requirements, with only four tests.
(That said, This is not a contest to write the fewest tests! Five test inputs is fine.)

c) The following function claims to calculate |x|:

const abs_value = (x: bigint): bigint => {

if (x > 1n) {

return x;

} else {

return -x;

}

};

Testing it on the inputs 2 and ´2 would meet our requirements, but it would not identify the bug.

Which input do we need to test to see the bug? Which if our non-required (but recommended)
heuristics would have found this?

The bug appears only on input 1. The function returns ´1 instead of |1| “ 1.

The boundary testing heuristic would have told us to test 1.

1We can also think of this as 3 nested if statements. The branch coverage constraint would be the same.

5

Task 5 – Miami Twice

We are asked to write a function that takes a list as an argument and “returns a list of the same length
but with every other number in the list, starting with the first number, multiplied by 2“.

The first number in the list is at index 0, which is even; the second number in the list is at index 1,
which is odd; the third number in the list is at index 2, which is even; and so on. Hence, we will call
this function twice-evens because it multiples the numbers at even indexes by two and leaves those at
odd indexes unchanged.

a) The definition of the problem was in English, so our first step is to formalize it. Let’s start by writing
this out in more detail. Fill in the blanks showing the result of applying twice-even to lists of different
lengths.

nil

4 :: nil

3 :: 4 :: nil

2 :: 3 :: 4 :: nil

1 :: 2 :: 3 :: 4 :: nil

These should be nil, 8 :: nil, 6 :: 4 :: nil, 4 :: 3 :: 8 :: nil, 2 :: 2 :: 6 :: 4 :: nil.

b) Now, let’s write a formal definition that gives the correct output for all lists.

Write a formal definition of twice-evens using recursion. The recursion can be identified by
looking for a pattern in the answers to part (a). If the answer for one input does not appear related
to and the one immediately before it, it could be related to an even earlier answer.

twice-evens : List Ñ List

twice-evenspnilq :“ nil

twice-evenspx :: nilq :“ 2x :: nil

twice-evenspx :: y :: Lq :“ 2x :: y :: twice-evenspLq

c) What would the implementation of the body of this function look like in TypeScript?

const twice_evens = (L: List): List => {

if (L.kind === "nil") {

return nil;

} else if (L.tl.kind === "nil") {

return cons(2 * L.hd, nil);

} else {

return cons(2 * L.hd, cons(L.tl.hd, twice_evens(L.tl.tl)));

}

};

6

d) What is a set of test inputs that would meet all of our requirements?

The three inputs rs, r1s, r1, 2s would execute all statements and branches. However,
since there is recursion, we must also consider loop coverage. The first two inputs make
0 recursive calls and the last input makes 1 recursive call. Adding the input r1, 2, 3, 4s,
which makes 2 recursive calls, gives us a total of 4 test inputs and meets our requirements.

7

