
UW CSE 331 Spring 2025

CSE 331
Software Design & Implementation

Spring 2025
Section 4 - Specifications

1

Worksheet up front or on the website!!

Administrivia

• HW 4 released later today, due Wednesday April 30th.

3

Review – Specifications

• Imperative specification says how to calculate the
answer

- lays out the exact steps to perform to get the answer
- just have to translate math to typescript
- ex: Absolute value: |x| = x if x ≥ 0 and –x otherwise

• Declarative specification says what the answer looks
like

- does not say how to calculate it
- up to us to ensure that our code satisfies the spec
- ex: Subtraction (a – b): return x such that b + x = a

Review – Math Notation

Made up for
this class

Standard
notations

Review – Math Notation

● Side Conditions: limiting / specifying input in right column
- ex: abs : ℝ → ℝ

 abs(x) := x if x ≥ 0
 abs(x) := –x if x < 0

- conditions must be exclusive and exhaustive
● Pattern Matching: defining function based on input cases

- Exactly one rule for every valid input
ex: f : ℕ → ℕ

 func f (0) := 0
 f (n+1) := n

- “n + 1” signifies that input must be > 0 since smallest ℕ would be 0
- Preferred over side conditions in most cases

● Course Website > Topics > Math Notation Notes

https://courses.cs.washington.edu/courses/cse331/24au/topics/notes/math-notation.pdf

Question ….

Is this a Valid Example of using side conditions? Talk with the
person next to you

- Func : ℝ → ℝ
 Func(x) := x if x < -10
 Func(x) := –x if x > -10

Func(x) := x*x if x > 0

● yes (why?)
● no (why?)

Question ….

Is this a valid example of using side conditions? Talk with the
person next to you

- Func : ℝ → ℝ
 Func(x) := x if x < -10
 Func(x) := –x if x > -10

Func(x) := x*x if x > 0

● yes (why?)
● no (why?)

- The conditions are not exhaustive or exclusive. What happens
if the input is equal to -10? What about when it is greater than
0?

Question ….

What type is each of these specs?:

- Steps to calculate the square of a number n: multiply n by itself, n * n.
● Declarative
● Imperative

- Return a number, such that this number is the same value as the square
of n
● Declarative
● Imperative

Question ….

What type is each of these specs?:

- Steps to calculate the square of a number n: multiply n by itself, n * n.
● Declarative
● Imperative

- Return a number, such that this number is the same value as the square
of n
● Declarative
● Imperative

Question ….

What type is each of these specs?:

- Steps to calculate the square of a number n: multiply n by itself, n * n.
● Declarative
● Imperative

- Return a number, such that this number is the same value as the square
of n
● Declarative
● Imperative

Question 1

Question 1

Question 1

const half = (n: undefined | bigint): bigint => {
 if (_______________) {

 } else if (____________) {

 } else {

 }
};

Question 1

const half = (n: undefined | bigint): bigint => {
 if (n === undefined) {

 } else if (____________) {

 } else {

 }
};

Question 1

const half = (n: undefined | bigint): bigint => {
 if (n === undefined) {
 return 0n;
 } else if (____________) {

 } else {

 }
};

Question 1

const half = (n: undefined | bigint): bigint => {
 if (n === undefined) {
 return 0n;
 } else if (n % 2n === 0n) {

 } else {

 }
};

Question 1

const half = (n: undefined | bigint): bigint => {
 if (n === undefined) {
 return 0n;
 } else if (n % 2n === 0n) {
 return n / 2n;
 } else {

 }
};

Question 1

const half = (n: undefined | bigint): bigint => {
 if (n === undefined) {
 return 0n;
 } else if (n % 2n === 0n) {
 return n / 2n;
 } else {
 return -(n + 1n)/2n;
 }
};

Question 2

How many cases will we have?

Question 2

How many cases will we have?
We will have 3!

Question 2

How can we declare the function in math notation?

Question 2

How can we declare the function in math notation?

maybeDouble : {b : 𝔹, v : 𝔹 × ℤ} → ℤ

Question 2

maybeDouble : {b : 𝔹, v : 𝔹 × ℤ} → ℤ

What are the conditions for the 3 cases?

{b: T, v: (T, n)} {b: F, v: (d, n)} {b: F, v: (F, n)}

{b: F, v: (T, n)} {b: T, v: (F, n)} {b: d, v: (F, n)}

Question 2

maybeDouble : {b : 𝔹, v : 𝔹 × ℤ} → ℤ

What are the conditions for the 3 cases?

{b: T, v: (T, n)} {b: F, v: (d, n)} {b: F, v: (F, n)}

{b: F, v: (T, n)} {b: T, v: (F, n)} {b: d, v: (F, n)}

Question 2

maybeDouble : {b : 𝔹, v : 𝔹 × ℤ} → ℤ

What is the result of each condition?

maybeDouble({b: T, v: (T, n)}) :=
maybeDouble({b: T, v: (F, n)}) :=
maybeDouble({b: F, v: (d, n)}) :=

Question 2

maybeDouble : {b : 𝔹, v : 𝔹 × ℤ} → ℤ

What is the result of each condition?

maybeDouble({b: T, v: (T, n)}) := 2n
maybeDouble({b: T, v: (F, n)}) :=
maybeDouble({b: F, v: (d, n)}) :=

Question 2

maybeDouble : {b : 𝔹, v : 𝔹 × ℤ} → ℤ

What is the result of each condition?

maybeDouble({b: T, v: (T, n)}) := 2n
maybeDouble({b: T, v: (F, n)}) := n
maybeDouble({b: F, v: (d, n)}) :=

Question 2

maybeDouble : {b : 𝔹, v : 𝔹 × ℤ} → ℤ

What is the result of each condition?

maybeDouble({b: T, v: (T, n)}) := 2n
maybeDouble({b: T, v: (F, n)}) := n
maybeDouble({b: F, v: (d, n)}) := 0

Review – Inductive Data Types
• Describe a set by ways of creating an element of the type

– Each is a “constructor”
– Second constructor is recursive
– Can have any number of parameters

Ex: base case recursive case

1 2 3nil
3 :: nil
2 :: 3 :: nil
1 :: 2 :: 3 :: nil

Alternative
notation:

Review – Structural Recursion

• Inductive types: builds new values from existing ones
• Structural recursion: recurse on smaller parts

– Call on n recurses on n.val
– Guarantees no infinite loops
– Note: only kind of recursion used for this class

Ex:

– Any List is either nil or of the form “cons(x, L)” for some
number x and List L (also written as “x:: L”)

– Cases of function are exclusive and exhaustive based on ⤴

Question ….

Which of the following is an example of an Inductive Data Type?

● type Bool := true | false

● type Tree := nil | bigint | node(left: Tree, val: ℤ, right: Tree)

● type Point := { x: ℝ, y: ℝ, z: ℝ}

● type ABC := 'a' | 'b' | 'c'

Question ….

Which of the following is an example of an Inductive Data Type?

● type Bool := true | false

● type Tree := nil | bigint | node(left: Tree, val: ℤ, right: Tree)

● type Point := { x: ℝ, y: ℝ, z: ℝ}

● type ABC := 'a' | 'b' | 'c'

Question ….

Which of the following is an example of structural recursion?

1)
sum : List → ℕ

sum(nil) := 0
sum(x::L) := x + sum(L)

2)
total: (List, x: ℤ) → ℕ

total(nil, 10) := 10
total(x::L, 5) := x * 5

Question ….

Which of the following is an example of structural recursion?

1)
sum : List → ℕ

sum(nil) := 0
sum(x::L) := x + sum(L)

2)
total: (List, x: ℤ) → ℕ

total(nil, 10) := 10
total(x::L, 5) := x * 5

Question 3

Question 3

nil

6 :: nil

4 :: 6 :: nil

2 :: 4 :: 6 :: nil

Question 3

Question 3

Testing

If a function has more than 10 allowed inputs, the tests must meet these requirements:

- At least two tests

- Statement Coverage: every statement reachable by some allowed input is
reached by some test

- Branch Coverage: every conditional with two reachable branches has both
branches tested

- Loop/Recursion Coverage: every loop/Recursion must be tested to execute:
● 0 times
● 1 time
● Many times/calls

- Boundary test when possible(optional)

Notes on Testing Requirements

https://courses.cs.washington.edu/courses/cse331/25sp/topics/notes/testing.pdf

Question 3

How can we ensure statement coverage?

Question 3

How can we ensure statement coverage?
- [] executes first return statement.

Question 3

How can we ensure statement coverage?
- [] executes first return statement.
- [3] executes second return statement.

Question 3

How can we ensure branch coverage?

Question 3

How can we ensure branch coverage?
- The code has an if-else statement. we need all of its branches to be

executed.

Question 3

How can we ensure branch coverage?
- The code has an if-else statement. we need all of its branches to be

executed.
- The 2 inputs [], [3] already execute both branches, so we already

have branch coverage

Question 3

How can we ensure loop/recursive coverage?

Question 3

How can we ensure loop/recursive coverage?
- This function is recursive, so we must consider this heuristic

Question 3

How can we ensure loop/recursive coverage?
- This function is recursive, so we must consider this heuristic
- we need to to cover 0 calls, 1 call, and many calls.

Question 3

How can we ensure loop/recursive coverage?
- This function is recursive, so we must consider this heuristic
- we need to to cover 0 calls, 1 call, and many calls.
- [] makes 0 calls. [3] makes 1 call.

Question 3

How can we ensure loop/recursive coverage?
- This function is recursive, so we must consider this heuristic
- we need to to cover 0 calls, 1 call, and many calls.
- [] makes 0 calls. [3] makes 1 call.

Question:
● What's an example input that can satisfy “many” recursive

calls?

Question 3

How can we ensure loop/recursive coverage?
- This function is recursive, so we must consider this heuristic
- we need to to cover 0 calls, 1 call, and many calls.
- [] makes 0 calls. [3] makes 1 call.

Question:
● What's an example input that can satisfy “many” recursive

calls?

Example answer: [1,2,3]
- this triggers 3 calls. (FYI, there can be more than one answer)

Question 3

Hence, one acceptable set of tests inputs is: [], [3], and [1, 2, 3].

Testing Notation
describe(‘example’, function() {
 it(‘testBar’ function() {

 /* assert statements */
 })
})

• Use assertions to compare expected and actual output for each
test case
– assert.deepStrictEqual(expected, actual);

should be used generally

• Keep your tests simple! Don’t want to have to write tests for your
tests

• Note: Please do not submit commented out test cases to
gradescope. The course staff will not count those as valid test
cases. It is better to submit failing test cases than commented out
test cases.

Testing – Documenting
• Document which subdomain you are testing. A justification:

heuristic used, part of code it tests.

Ex:
describe(‘example’, function() {

 it(‘testBar’ function() {
 /* comment describing subdomain being tested */
 assert...

 })
})

Name of class being tested

Name of test (can be function being tested)

Testing – Strict vs Deep
Assertion Failure Condition
assert.strictEqual(expected, actual) expected !== actual
assert.deepStrictEqual(expected, actual) values/types of child objects are not equal

this will fail

this will pass

two different objects,
but same record values

Question 4

Question 4

Question 4

Question 4

Question 4

Question 4

Question 5

Question 5

nil

8 :: nil

6 :: 4 :: nil

4 :: 3 :: 8 :: nil

2 :: 2 :: 6 :: 4 :: nil

Question 5

Question 5

Question 5

Question 5

