
UW CSE 331 Spring 2025

CSE 331
Software Design & Implementation

Spring 2025
Section 2 – HW2 and Browser Operations

1

Administrivia

• Homework 2:

– Due Wednesday, April 16th @ 11pm

– Released this evening

2

Browser Operation (Review)

• Browser reads the URL to find the server to talk to

• Contact the given server and request the given path:

request

response
(HTML)

server
name

path

25sp

Browser Operation (Review)

• HTML page can load JavaScript
• starter code’s index.html includes index.tsx

• Each time the page loads, browser executes index.tsx

request

response
(HTML)

React

• UI library with syntax called JSX:
const x = <p>Hi there!</p>;

• Breaks interface into components
class HiElem extends Component {
 constructor(props) {

super(props);
 }
 render = () => {
 return <p>Hola, Kevin!</p>;
 };
}

• Must have a single root tag (must be a tree)
e.g., cannot do this: return <p>one</p><p>two</p>;

React - Event Handler (Review)

• Passing method to be called as argument:
 <button onClick={this.doEspClick}>Esp</button>

• Creating event handler:
doEspClick = (evt) => {

 this.setState({lang: "es"};

};

• Must call setState to change the state (do not
directly modify this.state)

TypeScript Review

• TypeScript includes declared types for variables

• Compiler checks that the types are valid
– extremely useful!
– produces JS just by removing the types

• If you leave off the type, TS will try to guess it

Basic Data Types (Review)

number

bigint

string

boolean

null

undefined

Object (record types)
Array (e.g., string[] as in Java)
unknown (could be anything)
any (turns off type checking — do not use!)
literal values (ex “foo” or “foo” | “bar”)

Creating New Types (Review)
• Union Types string | bigint

– can be either one of these

• Record Types (creator picks the names) :
– anything with at least fields “x” and “s” (could have more fields)

const p: {x: bigint, s: string} = {x: 1n, s: ’hi’};
console.log(p.x); // prints 1n

• Tuple Types (user picks the names): [bigint, string]
const p: [bigint, string] = [1n, ‘hi’];

– give names to the parts (“destructuring”) to use them
const [x, y] = p;
console.log(x); // prints 1n

Small Note On <select>

<select value={color} onChange={handleColorChange}>
 <option value="red">Red</option>
 <option value="blue">Blue</option>
 <option value="green">Green</option>
</select>

• Controlled Component:
– the “value” attribute, which is the color in this example, determines

the current selected option.
• Event Handler:

– The onChange function, in this case handleColorChange updates the
color value when a new option is chosen.

• Options:
– Each <option> tag provides a selectable item with a specific value.
– When you select one of the <option> tags, the value of that tag is

then set to the value in the <select>, and is used by the event
handler

Bug Journaling

• https://comfy.cs.washington.edu/service/hw2-practice

• Make sure to save and wait for website to say “Saved” before
closing

• Copy entire line of code into bug journal (not just line number)

https://comfy.cs.washington.edu/service/hw2-practice

Bug Journal Clarifications

• Experiments: Any steps taken to find the bug

– be sure to document entire debugging process (can and

most likely will include dead end experiments)

– experiments should typically help inform you about the

next experiment until you find the actual bug

• Mutation: This means mutating something that should not

have been mutated (this does not mean mutating something

incorrectly)

