
UW CSE 331 Spring 2025

CSE 331
Software Design & Implementation

Spring 2025
Section 1 – HW1 and Tools

1

Welcome

• Let’s all introduce ourselves:
– Name and pronouns
– Year
– What other classes you are taking this quarter
– How many times would you have to find a seagull in your place

of living before thinking someone was intentionally putting them
there, and why?

2

Administrivia

• Software Setup: Due this morning!

– If you haven’t finished it yet, still submit your screenshot when

you do, don’t worry about late days for this one

• Knowledge Quiz: Due Monday, April 7th @ 11pm

• Homework 1:

– Due Wednesday, April 9th @ 11pm

– Released this evening (usual cycle)

3

Coding Setup

Software we will use
• Bash: command-line shell (built-in on Mac, see course website to

download Windows version)
• Run echo "${BASH_VERSION}" to check for download

• Git: version control system (built-in on Mac, Windows version
comes with Bash, above)

• Node: executes JavaScript code on the command-line (see link
on course website to install)

• Run node –v to check for download
• NPM: package manager (comes with Node, above)
• VS Code or the editor of your choice

Node Demo

• Node: executes JavaScript code on the command-line (see link
on course website to install)

• Run node –v to check for download

• Useful for playing with the JavaScript language

• Try this to see what it does (does it crash?)
• first start node and then type this in:

const x = {a: 1, b: "two"};
console.log(x.c);

Git Demo

• Git: version control system (built-in on Mac, Windows version
comes with Bash, above)

• Almost all professionals use some kind of version control system
• git is probably the most popular today
• git can be tricky to learn / understand

• We will only need it for getting the starter code
• here is the command for sec1 (similar command for HW1)

git clone
https://gitlab.cs.washington.edu/cse331-25sp/materials/sec01.git

NPM Demo

• NPM: package manager (comes with Node)

• Used to
• install all the libraries needed for our code
• compile, test, and run our code

• Use this command to install the libraries needed for sec1

npm install --no-audit

(leaving off --no-audit will generate some bogus error
messages)

VSCode Demo

• VS Code or the editor of your choice

• VS Code is relatively lightweight IDE
• primary support for JavaScript and TypeScript (good for us)

• Extensions provide support for other languages and tools

NPM Start

• NPM: package manager (comes with Node)

• Use this command to start

npm run start

• Then navigate to this URL in Chrome to see it work

http://localhost:8080

Browser Operation

• Browser reads the URL to find the server to talk to

• Contact the given server and request the given path:

server
name

path

24wi

Browser Operation

• HTML page can load JavaScript
• starter code’s index.html includes index.tsx

• Each time the page loads, browser executes index.tsx

Development Environment

• “npm run start” starts a server that the browser can contact
• server is running on this machine (localhost)
• (more on servers later this quarter…)

• This server returns index.html but adds compiled JS into the
page

• also adds code to reload if the source code is changed!

request

response
(HTML)

Custom Server (Review)

• Query Parameters (e.g. ?name=Fred) in requests (req)
const F = (req, res) => {
 if (req.query.name === undefined) {
 res.status(400).text(“Missing ‘name’”);
 return;
 }
 res.json({message: `Hi, ${req.query.name}`});
}

HTTP Terminology (Review)

• HTTP Request include:
– URL: Path and query parameters
– Method: Get/Post

• Get is used to read data on the server (can paste raw
url in browser and get result back)

• Post is used to change data on the server (cannot paste
raw url in browser)

– Body (for Post only)
• used for sending large or non-string data to server

• HTTP Response Status Codes include:
– 200 (ok)
– 400-499 (Client error)
– 500-599 (Server error)

Debugging

Bugs can be split into 2 stages:
• Failure: the incorrect behavior that is externally visible (e.g.

visible to a user/client)
• Defect (“the bug”): the actual mistake in the code

Debugging is the search from
the failure back to the defect

Example

let A = [3, 28, 7, 15, 12, 234, 89, 834];
let s = 0;
for (let i = 0; i <= A.length; i++) {
 s += A[i];
}
console.log(s);

• Failure: prints NaN!

• Defect: “<=” should be “<” so we stay inside the array

Debugging Tips

• Check the easy stuff
– check files are saved
– restart server/computer/VS Code (this works more than you

think)
• Create a minimal example that demonstrates problem

– need a way to reliably reproduce the failure
– shrink the input that fails

• Look for common silly mistakes
– comparing records with ===
– misspelling the name of a method you were implementing

usually caught by a type checker
– passing arguments in the wrong order

Debugging Tips

• Make sure it is a bug!
– check the spec carefully

• Be thoughtful & systematic
– don’t just try random changes
– write down what you have tried
– don’t try the same thing again and again
– think of experiments that reduce search space

Debugging Tips

• Try explaining the problem to someone / something
– can even be a rubber duck (“rubber ducking”)
– Talking through the problem often helps you spot it – this

happens all the time
• Get some sleep!

– the later it gets, the dumber you get
– often don’t realize it until 4–5am
– Common to wake up and instantly see the problem

Bug Journalling

Practice Log: https://comfy.cs.washington.edu/service/hw1-practice
Homework Log: https://comfy.cs.washington.edu/service/hw1

Be sure to check this box for the
bug entry to show up when you
view the debugging log

https://comfy.cs.washington.edu/service/hw1-practice
https://comfy.cs.washington.edu/service/hw1

Bug Journaling
• Before you start debugging: Add a bug log entry and

document the error and start time of when you started
debugging

• After you have finished debugging: Fill out the log entry with
your findings from the debugging session. This will include:
– Any experiments you ran to find the bug
– If you found the defect (if so, where)
– If type checking would have prevented the bug and why

• 1 bug should be 1 log entry. Do not split a single bug into
multiple log entries.

• Be sure to check the “Show” checkbox so that the entry will
show up when you view the debugging journal

• For initial HWs, you must debug for at least 4 hours and at most
6 hours regardless of whether you fix the bug or not

Your Turn!

• Take a look at the worksheet and fix those bugs!
• Be sure to document your debugging process and any

experiments you did to find the bug

