
CSE 331: Software Design & Engineering Spring 2025

Sample Final Exam Solutions

Name:

UW Email: @uw.edu

This exam contains 18 pages (including this cover page) and 8 problems. Check to see if any pages are
missing. Enter all requested information on the top of this page.

Instructions:

‚ Closed book, closed notes, no cell phones, no calculators.

‚ You have 1 hour and 50 minutes to complete the exam. Once time is up, stop immediately.

‚ Answer all problems on the exam paper, or request scratch paper from a staff member. If any
part of an answer is on scratch paper, clearly mark which problem it is for and staple it to the
back of your exam.

‚ The last 3 pages contain definitions used in all of the problems. Feel free to separate those pages
from the rest of the test (although they must also be turned in at the end).

‚ If you have a question, please ask. The worst we will say is “we can’t answer that”.

1

This page intentionally left blank. Do not put answers here.

2

Task 1 – The Has and the Has Nots [4 pts]

Before you start this problem, be sure to read the last 3 pages of the exam, which define the IntSet

ADT, describe how we will implement it in the CompactIntSet class, and defines additional functions.
Consider the following code, which implements “has” in CompactIntSet:

// @returns contains(obj, value)

has = (value: bigint): boolean => {
const b = contains(this.list, value);

ttP : b “ containspthis.list, valueq uu

ttPost : b “ containspobj, valueq uu

return b;

}

(a) Explain, in 1–2 English sentences, why Post correctly states what is required for this code to be
correct. In particular, why is there no RI included in Post?

This data structure is immutable, and the method does not mutate its fields; we only
must show that the RI is true after the constructor.

(b) Prove by calculation that P implies Post.

b “ containspthis.list, valueq from P

“ containspobj, valueq by AF

3

Task 2 – Add It Up! [20 pts]

Consider the following code, which implements “add” in CompactIntSet:

// @returns S where contains(S, value) = true

// and equiv(cons(value, obj), S) = true

add = (value: bigint): CompactIntSet => {
let S: CompactIntSet;

if (this.has(value)) {
S = CompactIntSet(this.list);

ttP1 : containspobj, valueq “ true and S “ this.list uu

} else {
S = CompactIntSet(cons(value, this.list));

ttP2 : containspobj, valueq “ false and S “ value :: this.list uu

}
return S;

}

(a) To use the CompactIntSet constructor, we must satisfy its precondition. Explain, in English,
why its precondition is satisfied in the else branch of the if statement.

this.list is immutable; according to our RI, it has no duplicates. We must show
that the argument to the constructor also does not have any duplicates. When we
don’t take the if statement, we know that this.list does not contain value. Thus,
cons(value, this.list) also contains no duplicates.

(b) P2 was filled in using forward reasoning. Explain briefly, in English, why both facts within P2 are
correct. (Feel free to cite prior questions)

The first fact holds since we entered the “else” branch and applied the definition of
has from Task 1. The second fact follows from the assignment statement and the
postcondition of the constructor (which we can use because of part (a)).

4

(c) Prove that the postcondition holds when the else branch is taken, i.e.

contains(S, value) = true and equiv(value :: obj, S) = true

given that P2 holds.

We proceed with two distinct proofs. First, we show that contains(S, value) = true.

containspS, valueq “ contains(value :: this.list, value) from P2

“ true def of contains

Next, we show that equiv(value :: obj, S) = true.

equiv(value :: obj, S) “ equiv(value :: this.list, S) AF

“ equiv(S, S) from P2

“ true reflexivity of equiv

(d) Suppose we repeated parts (a-c) for P1 as well. Explain why that would tell us that the postcon-
dition holds at the end of the code above.

Parts (a-c) showed that the postcondition holds at the end of the else branch. Doing
the same with P1 would tell us that it holds at the end of the then branch. Together,
that would show that it holds after the if statement, no matter which branch we take.

(e) Now, suppose that we skipped part (a). In 1–3 sentences, explain what fact we could not use
(and how that impacts our analysis).

To use a fact from a function call (i.e. the postcondition), we must show that the input
satisfies the precondition. Without part (a), we would not have S = value :: this.list,
which we use heavily in part (c).

5

Task 3 – Everybody Loops [16 pts]

Consider removeAll : pListxZy,Zq Ñ ListxZy, which removes all instances of s : Z from the list
L : ListxZy:

removeAllpnil, sq :“ nil

removeAllpx :: L, sq :“ removeAllpL, sq if x “ s

removeAllpx :: L, sq :“ x :: removeAllpL, sq if x ‰ s

Now, consider this tail-recursive definition of removeAll-acc : pListxZy,Z, ListxZyq Ñ ListxZy

removeAll-accpnil, s, Rq :“ R

removeAll-accpx :: L, s,Rq :“ removeAll-accpL, s,Rq if x “ s

removeAll-accpx :: L, s,Rq :“ removeAll-accpL, s, x :: Rq if x ‰ s

Consider the following claim, where s : Z and L : ListxZy:

removeAll-accpL, s,Rq “ revpremoveAllpL, sqq `̀ R

Prove that this claim holds by structural induction on L.
As usual, you should cite the appropriate definitions in the right-hand column of your calculations.

Base Case. (a) Prove that P pnilq holds.

removeAll-accpnil, s, Rq “ R def of removeAll-acc

“ nil `̀ R def of concat

“ revpnilq `̀ R def of rev

“ revpremoveAllpnil, sqq `̀ R def of removeAll

Inductive Hypothesis. Suppose that removeAll-accpL, s,Rq “ revpremoveAllpL, sqq `̀ R holds for
some list L and some arbitrary s : Z and list R.

Inductive Step. Let x be an arbitrary integer. Our goal is to show that P px :: Lq holds, i.e., to show
that removeAll-accpx :: L, s,Rq “ revpremoveAllpx :: L, sqq `̀ R. We continue by cases on x. . .

(b) Prove that P px :: Lq holds when x “ s.

removeAll-accpx :: L, s,Rq “ removeAll-accpL, s,Rq def of removeAll-acc

“ revpremoveAllpL, sqq `̀ R by I.H.

“ revpremoveAllpx :: L, sqq `̀ R def of removeAll

6

(c) Prove that P px :: Lq holds when x ‰ s.

removeAll-accpx :: L, s,Rq “ removeAll-accpL, s, x :: Rq def of removeAll-acc

“ revpremoveAllpL, sqq `̀ px :: Rq by I.H.

“ revpremoveAllpL, sqq `̀ px :: pnil `̀ Rqq def of concat

“ revpremoveAllpL, sqq `̀ ppx :: nilq `̀ Rq def of concat

“ revpremoveAllpL, sqq `̀ prxs `̀ Rq notation

“ prevpremoveAllpL, sqq `̀ rxsq `̀ R associativity of `̀

“ revpx :: removeAllpL, sqq `̀ R def of rev

“ revpremoveAllpx :: L, sqq `̀ R def of removeAll

These cases on x are exhaustive, so we have shown that P px :: Lq holds in general.

Conclusion. P pLq holds for all lists L by structural induction.

Task 3 Lemma This also implies that (by substituting R “ nil and using a property of rev),

removeAllpL, sq “ revpremoveAll-accpL, s, nilqq

You may use this in future sections without additional proof, citing it as “Task 3 Lemma”.

7

Task 4 – Chasing One’s Tail In A Loop [24 pts]

Now, we convert our tail-recursive function to code.

(a) Given the following invariant, fill out the implementation of the “removeAll” function (using our
typical conversion from a tail-recursive function to a loop). Then, fill in Pinit and Pexit (using
forwards reasoning), and Qexit (using backwards reasoning).

// @returns list X = removeAll(L 0, s)

removeAll = (L: List<bigint>, s: bigint): List<bigint> => {
let R: List<bigint> = nil;

ttPinit : R0 “ nil uu

tt Inv : removeAll-accpL0, s, R0q “ removeAll-accpL, s,Rq uu

while (L.kind !== "nil") {
if (L.hd !== s) {
R = cons(L.hd, R);

}
L = L.tl;

}
ttPexit : removeAll-accpL0, s, R0q “ removeAll-accpL, s,Rq and L “ nil uu

ttQexit : revpRq “ removeAllpL0, sq uu

const X: List<bigint> = rev(R);

ttPost : X “ removeAllpL0, sq uu

return X;

}

(b) Explain, in 1–3 English sentences, why your choice of Pinit implies Inv.

At this point, L “ L0 and R “ R0 “ nil, so both sides of the equality are exactly the
same.

8

(c) Prove that your choice of Pexit implies Qexit. (Hint: you will want to use the Task 3 Lemma)

revpRq “ revpremoveAll-accpnil, s, Rqq def of removeAll-acc

“ revpremoveAll-accpL, s,Rqq from Pexit

“ revpremoveAll-accpL0, s, R0qq from Pexit

“ revpremoveAll-accpL0, s, nilqq from Pinit

“ removeAllpL0, sq Task 3 Lemma

(d) Consider the body of the loop when the if statement is taken.

tt Inv : removeAll-accpL0, s, R0q “ removeAll-accpL, s,Rq uu

while (L.kind !== "nil") {
ttP2 : removeAll-accpL0, s, R0q “ removeAll-accpL, s,Rq and L “ L.hd :: L.tl uu

if (L.hd !== s) {
ttP3 : removeAll-accpL0, s, R0q “ removeAll-accpL, s,Rq and L “ L.hd :: L.tl and L.hd ‰ s uu

ttQ3 : removeAll-accpL0, s, R0q “ removeAll-accpL.tl, s, L.hd :: Rq uu

R = cons(L.hd, R);

}
L = L.tl;

ttQ2 : removeAll-accpL0, s, R0q “ removeAll-accpL, s,Rq uu

}

After copying your code from part (a), fill in the blank assertions P2 (from forwards reasoning) and
Q2 (from backwards reasoning).

(e) Prove that your choice of P3 implies Q3.

removeAll-accpL0, s, R0q “ removeAll-accpL, s,Rq from P3

“ removeAll-accpL.hd :: L.tl, s, Rq from P3

“ removeAll-accpL.tl, s, L.hd :: Rq def of removeAll-acc

(as L.hd ‰ s)

9

Task 5 – I Never Would Have Test [8 pts]

Fill in the body of this unit test for removeAll so that it meets our coverage requirements.
You do not need to provide explanations for your choice of test inputs. You are encouraged to use the
nil and cons list helpers and the function assert.deepStrictEqual.

it(‘removeAll’, () => {

assert.deepStrictEqual(

removeAll(nil, 42n),

nil

);

assert.deepStrictEqual(

removeAll(cons(42n, nil), 42n),

nil

);

assert.deepStrictEqual(

removeAll(cons(23n, nil), 42n),

cons(23n, nil)

);

const fib: List<bigint> = cons(1n, cons(1n, cons(2n, cons(3n, cons(5n, nil)))));

assert.deepStrictEqual(

removeAll(fib, 1n),

cons(2n, cons(3n, cons(5n, nil)))

);

// Bonus!

assert.deepStrictEqual(

removeAll(fib, 42n),

fib

);

});

10

Task 6 – I Like To Remove It, Remove It [8 pts]

Consider extending the CompactIntSet with a new method, “removeMultiple”. This method takes
in a list of bigints and removes each of them from the set, in order. It is described by the math
function removeMultiple : pListxZy, ListxZyq Ñ ListxZy

removeMultiplepL, nilq :“ L

removeMultiplepL, x :: Rq :“ removeMultiplepremoveAllpL, xq, Rq

Fill in an implementation of removeMultiple including a corresponding loop invariant (as a comment),
using the tail-recursion-to-loop conversion we have discussed in class.

You may use any functions that have been defined in previous tasks. You do not need to prove that this
implementation (or this invariant) is correct.

// @returns removeMultiple(obj, R)

removeMultiple = (R: List<bigint>): CompactIntSet => {

let L: List<bigint> = this.list;

// Inv: removeMultiple(L_0, R_0) = removeMultiple(L, R)

while (R.kind !== "nil") {

L = removeAll(L, R.hd);

R = R.tl;

}

return new CompactIntSet(L);

}

11

Task 7 – Alternative Factories [12 pts]

Finally, we consider the factory function for our implementation of CompactIntSet. As a reminder,
you will want to look at the definition of the constructor in the last 3 pages of this exam.

(a) Consider this potential factory function for CompactIntSet:

const nilCompactIntSet = new CompactIntSet(nil);

const makeCompactIntSetA = (): IntSet => {

return nilCompactIntSet;

}

In 1–3 sentences, explain why this factory function is correct (even in the presence of aliasing).

The constructor for CompactIntSet has a precondition (that the list has no dupli-
cates). This is true for the nil list! Furthermore, returning an alias to the same global
nilCompactIntSet is okay as the data structure is immutable.

(b) Consider an alternative potential factory function for CompactIntSet:

const makeCompactIntSetB = (list: List<bigint>): IntSet => {

return new CompactIntSet(list);

}

In 1–3 sentences, explain why this factory function is incorrect.

The constructor for CompactIntSet has a precondition — that there are no duplicates
— but we do not check this precondition.

(c) Write a new, correct implementation of makeCompactIntSetB that fixes the above errors. You
may not change the header or precondition. You are not required to prove its correctness, and
you do not need to provide a loop invariant.

const makeCompactIntSetB = (list: List<bigint>): IntSet => {

let L: List<bigint> = nil;

while (list.kind !== "nil") {

L = cons(list.hd, L);

list = removeAll(list.tl, list.hd);

}

return new CompactIntSet(rev(L));

}

12

Task 8 – Decisions, Decisions, Decisions... [8 pts]

Answer each of the following short-answer / multiple-choice questions.

(a) Your friend (enemy?) Matt is debugging a full-stack web application similar to HW8, where files
are edited on the client and saved on the server. When he clicks “save file”, he says that no
change occurs on the page. However, when he refreshes the page, the file change “magically”
appears (and is correct). Mark all boxes next to explanations that could apply.

There is no click event handler registered on the save button.

A request is sent, but the server has no route handler for that URL.

x The server has a bug that causes it to crash before completing the save request.

x The server saves the file, but sends back a malformed response to the client.

x The server saves the file and returns a response, but the client’s response handler
has a bug that causes it to crash before updating the state.

The server saves the file and returns a response, the client’s state is updated properly,
but Matt forgot to call render after updating the state.

(b) Consider the following four assertions:

- A: L is a list of one or more integers

- B: L is a list that contains only even integers

- C: L is a list of one or more integers and x is non-negative

- D: x is non-negative

Now, consider the following claims relating those assertions. Mark all of the claims that are true.

A is stronger than B

B is stronger than A

x C is stronger than A

C is stronger than B

x C is stronger than D

13

(c) We discussed three key tenets of Floyd logic to show that programs with loops meet a specification:

(a) initialization (the precondition implies the invariant)

(b) preservation (the loop body preserves the invariant)

(c) exit (the invariant and the loop exit condition imply the post condition)

Is this sufficient to prove that a program with a loop is correct? Why or why not?

No. We must also show that the loop terminates, which none of these proofs do.
However, the combination of termination and these three proofs show that a loop is
correct.

(d) In 1–3 sentences (or with a short code example), explain one case where complete statement
coverage does not imply complete branch coverage.

The typical case is when an if statement (or if-else-if chain) doesn’t end with an “else”,
also called an “implicit else”. The implicit else doesn’t have a line of code (so there is
no statement to cover), but the else branch itself still needs to be tested.

(e) In 1–3 sentences, explain a weakness of tail-call optimization.

Tail-call optimization removes calls from the call stack, which makes debugging harder.

(f) In Java, the adaptor design pattern is common for type interoperability, especially across libraries.
Is the adaptor pattern similarly helpful in TypeScript? Why or why not?

No, as TypeScript uses structural typing, not nominal typing (what Java uses). Types
with the same fields and methods in TypeScript already interoperate.

(g) In 1–3 sentences, explain a weakness of constructors compared to factory functions.

All constructors must have the same name, even if there are multiple versions with a
different number of arguments (and thus, different behaviours). Factory functions can
differentiate different versions with different names.

(h) Recall that in JavaScript, the == operator has some unexpected behaviour with false:

false == 0 // true

false == "0" // true

false == "" // true

false == " " // true

Which property of an equality definition does == lack? Explain briefly using the above values.

== is not transitive: ”0” == false and false == ” ”, but ”0” !=” ”

14

ADT Specification

In these problems, we will implement the following IntSet ADT. While there are many ways to specify
a set, for simplicity’s sake we will treat a set as a ListxZy. The ADT is defined in TypeScript as follows:

/* obj is a list of integers */

interface IntSet {

/**

* Checks if the given value is in the set (the list obj).

* @returns contains(obj, value)

*/

has: (value: bigint) => boolean;

/**

* Adds the given value to the set (the list obj).

* @returns S where contains(S, value) = true

* and equiv(value :: obj, S) = true

*/

add: (value: bigint) => IntSet;

/**

* Removes the given value from the set (the list obj).

* @requires contains(obj, value) = true

* @returns S where contains(S, value) = false

* and equiv(obj, value :: S) = true

*/

remove: (value: bigint) => IntSet;

}

This specification relies on equiv : pListxZy, ListxZyq Ñ B, which returns true if (and only if) the two
lists contain the same items (independent of ordering or duplicates). This appears in the postcondition
of add and remove to ensure that the operation only changes the set in a certain way (without it,
remove could just always return the empty set). The function is defined by:

equivpL1, L2q :“ subsetpL1, L2q ^ subsetpL2, L1q

equiv is defined in terms of subset : pListxZy, ListxZyq Ñ B, which returns true if (and only if) every
element of the first list is also present in the second list. It is defined by:

subsetpnil, L2q :“ true

subsetpx :: L1, L2q :“ false if containspL2, xq “ false

subsetpx :: L1, L2q :“ subsetpL1, L2q if containspL2, xq “ true

Importantly, subset and equiv are reflexive, i.e. for any list L,

subsetpL,Lq “ true

equivpL,Lq “ true

You may use these identities without proof, but you should cite them as “reflexivity of ”.

15

ADT Implementation

There are many ways to implement the IntSet ADT. For this exam, we will implement it with the
following class, CompactIntSet. It stores the set as a linked list:

class CompactIntSet implements IntSet {

// AF: obj = this.list

// RI: noDuplicates(this.list) = true

list: List<bigint>

Importantly, the representation invariant enforces that there are no duplicates in the field this.list. This
RI is described by noDuplicatespListxZyq Ñ B, which is defined by:

noDuplicatespnilq :“ true

noDuplicatespx :: Lq :“ noDuplicatespLq if containspL, xq “ false

noDuplicatespx :: Lq :“ false if containspL, xq “ true

In addition to the methods required by IntSet, the CompactIntSet class also includes the following
constructor:

/**

* makes obj = list

* @requires: noDuplicates(this.list) = true

*/

constructor(list: List<bigint>) {

this.list = list;

}

The List type is implemented as a record type exactly as seen in lecture, section, and the homework:

type List<A> =

| { readonly kind: "nil" }

| { readonly kind: "cons", readonly hd: A, readonly tl: List<A> };

You may assume that the nil and cons helpers are defined as follows:

const nil: { kind: "nil" } = { kind: "nil" };

const cons = <A> (hd: A, tl: List<A>): List<A> => {

return { kind: "cons", hd: hd, tl: tl };

};

16

Familiar List Functions

The function len : ListxAy Ñ N, which returns the length of a list, is defined by

lenpnilq :“ 0

lenpx :: Lq :“ lenpLq ` 1

The function concat : pListxAy, ListxAyq Ñ ListxAy, which takes two lists L and R and returns a single
list with L followed by R (and is also abbreviated “L `̀ R”), is defined as

concatpnil, Rq :“ R

concatpx :: L,Rq :“ x :: concatpL,Rq

You may assume (without proof) that `̀ is associative, i.e. pa `̀ bq `̀ c “ a `̀ pb `̀ cq.

The function rev : ListxAy Ñ ListxAy, which returns the same numbers but in reverse order, is given by

revpnilq :“ nil

revpx :: Lq :“ revpLq `̀ rxs

The function contains : ListxAy Ñ B, returns if the list contains the second argument. It is defined by:

containspnil, yq :“ false

containspx :: L, yq :“ true if x “ y

containspx :: L, yq :“ containspL, yq if x “ y

The function at : pListxAy,Zq Ñ pZY tmissingu) takes a list L and an index j and returns the value at
index j of L. It is abbreviated as “Lrjs” and is defined by

atpnil, jq :“ missing

atpx :: L, jq :“ missing if j ă 0

atpx :: L, jq :“ x if j “ 0

atpx :: L, jq :“ atpL, j ´ 1q if 0 ă j

17

