
CSE 331: Software Design & Implementation Spring 2025

Homework 6
Due: Wednesday, May 14th, 11pm

Written

Submission

After completing all parts below, submit your solutions as a PDF on Gradescope under “HW6 Written”.
Don’t forget to check that the submitted file is up-to-date with all written work you completed!

Make sure your work is legible and scanned clearly if you handwrite it, or compiled correctly if you
choose to use LaTeX. Make sure you match each HW problem to the page with your work. If your work
is not readable or pages are not assigned correctly, you will receive a point deduction.

Reasoning rules

Apply the following rules to all reasoning problems unless stated otherwise.

- Assume that all code is TypeScript, and numerical variables are bigints.

- All assertions should use math notation.

- You should only use subscripts for variable mutation that is not invertible. Otherwise, you
should leave the expressions in terms of the current value of variables.

- Arithmetic simplification is not required. If you choose to do so though, you are always permitted
and encouraged to show your work for any simplification or combination of facts. However, please
do so clearly to the side of your final assertions.

- If you find yourself applying math definitions during forward or backward reasoning, that is not
permitted simplification; math definitions should only be applied within a proof.

- If you choose to abbreviate any function names within assertions, you must clearly define that
abbreviation at the top of the problem.

- There’s no need to include the value of constant variables in assertions.

1

Task 1 – The House That Back Built [12 pts]

Use Floyd logic to fill in the assertions for each part, then prove the required implication to show the post
condition holds. In proving implications, you may use algebra to rewrite your assertions and support your
math with English, if needed, (see the section solutions as examples of valid proofs for these problems).

(a) Use forward reasoning to fill in the missing assertions (strongest postconditions) in the following
code. Then, prove that the stated postcondition holds.

tt z ą 0 uu

x = 1n + 3n * z;

tt uu

y = z * z;

tt uu

x = x + y;

tt uu

z = z + 1n;

tt uu

ttx ą 4 uu

(b) Use backward reasoning to fill in the missing assertions (weakest preconditions) in the following
code. Then, prove that the stated precondition implies what is needed for the postcondition to
hold.

tt y ă 0 and x ą 0 uu

tt uu

y = y + 1n;

tt uu

x = -y;

tt uu

z = x + 2n;

tt z ě 0 uu

2

(c) Use forward reasoning to fill in the assertions. Then, prove, by cases, that what we know at the
end of the conditional implies the post condition.

Consider x and y to be constant integer variables. This means you do not need to carry the
precondition facts about them through your assertions. However, you may still use those facts in
your proofs. You should, however, include any new facts related to x or y that you learn in your
assertions.

tt y ą 0 and x “ y2 uu

if (y < 5n) {
tt uu

z = x + y;

tt uu

z = z - 2n;

tt uu

} else {
tt uu

z = x - y;

tt uu

z = z + 2n;

tt uu

}
tt or uu

tt z ` y ě x uu

3

Task 2 – Hula-Loop [10 pts]

In this problem, we will prove the correctness of a loop that finds the quotient of q divided by 3, i.e.,
the largest value r such that 3r ď q. To say that r is the largest such value means that any larger value
would not work, i.e., that 3pr ` 1q ą q.

We denote the initial value of q at the top by q0. This is explicitly stated in the precondition as
the fact “q “ q0”. The first two facts of the postcondition say that r is the quotient of q0 divided by
3. The third fact says that q is the remainder, i.e., the remaining amount not divisible by 3.

This loop calculates the quotient without division. Instead, it just uses subtraction. It operates by
increasing r and decreasing q each time around. The first part of the invariant says that the distance
from q0 down to 3r (i.e., q0 ´ 3r) is the same as the distance from q down to 0 (i.e., q ´ 0 “ q). The
second part of the invariant says that q has not moved below 0 (i.e., q ě 0).

tt q “ q0 and q0 ě 0 uu

let r: bigint = 0n;

tt Inv: q0 ´ 3r “ q and q ě 0 uu

while (q >= 3n) {
r = r + 1n;

q = q - 3n;

}
tt 3r ď q0 and q0 ă 3pr ` 1q and q “ q0 ´ 3r uu

(a) Prove that the invariant is true when we get to the top of the loop the first time.

(b) Prove that, when we exit the loop, the postcondition holds.

(c) Prove that the invariant is preserved by the body of the loop. You may choose to use either
forward or backward reasoning (but not a mix of the two) to reduce the body to an implication
and then check that it holds. Please indicate which direction you reasoned through the code.

Include all intermediate assertions within the loop (after/before every line of code).

4

Task 3 – Loop Dreams [15 pts]

In this problem, you will write a loop that finds the integer square root of a, i.e., the smallest integer
b such that a ď b2. That b is the smallest such integer means that no smaller integer would work, i.e.,
that pb ´ 1q2 ă a. These two facts are the postcondition of the loop below.

It is only possible to have a number smaller than a if a ą 0, so that is required by the precondition.
Your loop should calculate the square root using only addition. It will operate by increasing b until

it is the integer square root of a. In order to do this without multiplication or subtraction, we will need
to keep track of two other values. The variable “c“ stores 2b ´ 1, and the variable d stores b2. The
invariant states these two facts and the first part of the postcondition, namely, that pb ´ 1q2 ă a.

The basic structure of the loop is as follows. You will fill in the missing pieces below.

tt a ą 0 uu

let b: bigint = ;

let c: bigint = ;

let d: bigint = ;

tt Inv: pb ´ 1q2 ă a and c “ 2b ´ 1 and d “ b2 uu

while () {
b = b + 1n;

c = ;

d = ;

}
tt pb ´ 1q2 ă a and a ď b2 uu

return b;

(a) Fill in the initialization code above the loop. Then, prove that the invariant holds with your code.

(b) Fill in the loop condition. Then, prove that the post condition holds when the loop exits.

(c) The first line of the body of the loop increases b by 1. Fill in the updates to c and d so that the
invariant remains true with a b that is one larger.

Give the two lines of code. Then using either forward or backward reasoning (your choice,
but do not use a mix of the two) to reduce the body to an implication and then check that it
holds. Please indicate which direction you reasoned through the code.

Include all intermediate assertions within the loop (after/before every line of code).

5

Task 4 – If It Ain’t Broke, Don’t Mix It [18 pts]

We can define the set of secondary colors as an enum-like inductive data type as follows:

type Secondary :“ PURPLE | GREEN | ORANGE

These colors can be expressed as 50/50 mixtures of pairs of red, yellow, and blue. Specifically, PURPLE
is 50% red and 50% blue, GREEN is 50% blue and 50% yellow, and ORANGE is 50% red and 50%
yellow.

The two functions, amt-red, amt-blue : ListxSecondaryy Ñ R, take lists of secondary colors and
return the amounts of red and blue, respectively, present in the list:

amt-redpnilq :“ 0

amt-redpPURPLE :: csq :“ 0.5 ` amt-redpcsq

amt-redpGREEN :: csq :“ amt-redpcsq

amt-redpORANGE :: csq :“ 0.5 ` amt-redpcsq

amt-bluepnilq :“ 0

amt-bluepPURPLE :: csq :“ 0.5 ` amt-bluepcsq

amt-bluepGREEN :: csq :“ 0.5 ` amt-bluepcsq

amt-bluepORANGE :: csq :“ amt-bluepcsq

6

In this problem, we will prove the correctness of a loop that finds the amount of red and blue
present in a list L of secondary colors. The loop operates by moving forward through the list, updating
L at each point, to keep track of where we are, until the list is empty. As usual, L0 refers to the initial
value of the variable L, which is the full list.

The variables “r” and “b” keep track of the amount of red and blue, respectively, in the part of the
list processed so far. The first part of the invariant says that the amount of red in the full list is equal
to r plus the amount remaining in the list L. The second part states a similar fact for blue.

The postconditions states that r and b contain the full amount of red and blue, respectively, in the
full list.

ttL “ L0 uu

let r: number = 0;

let b: number = 0;

tt Inv: amt-redpL0q “ r ` amt-redpLq and amt-bluepL0q “ b ` amt-bluepLq uu

while (L.kind !== "nil") {
if (L.hd === "PURPLE") {

ttP1 : Inv and uu

ttQ1 : uu

r = r + 0.5;

b = b + 0.5;

} else if (L.hd === "GREEN") {
ttP2 : Inv and uu

ttQ2 : uu

b = b + 0.5;

} else { // "ORANGE"

ttP3 : Inv and uu

ttQ3 : uu

r = r + 0.5;

}
ttQ0 : uu

L = L.tl;

}
tt r “ amt-redpL0q and b “ amt-bluepL0q uu

(a) Prove that the invariant is true when we get to the top of the loop the first time.

(b) Prove that, when we exit the loop, the postcondition holds.

(c) Use forward reasoning to fill in each of the Pi’s above and backward reasoning to fill in each of
the Qi’s above. You only need to fill out the assertions which are left blank, you do not need to
include any other intermediate assertions.

7

Note that L ­“ nil means that we can write L “ L.hd :: L.tl since “::” is the only non-nil
constructor.

(d) Prove that the invariant is preserved by the loop body by showing that each Pi implies each Qi.

Note that Q0 is an exception, Q0 is just an intermediate backward reasoning step that does
not have an associated P0 or proof.

8

Task 5 – Barking Up the Wrong Three [18 pts]

Suppose we define the set of base-3 digits as

type Digit :“ 0 | 1 | 2

Then, we can represent number written in base 3 as a ListxDigity.

The following function, zeros : ListxDigity Ñ N, counts the number of zero digits in a given base-3
number:

zerospnilq :“ 0

zerosp0 :: dsq :“ 1 ` zerospdsq

zerosp1 :: dsq :“ zerospdsq

zerosp2 :: dsq :“ zerospdsq

The next function, even : ListxDigity Ñ B, determines whether the given base-3 number is even:

evenpnilq :“ true

evenp0 :: dsq :“ evenpdsq

evenp1 :: dsq :“ not evenpdsq

evenp2 :: dsq :“ evenpdsq

A base-3 number is even if the sum of its digits is an even number.

9

In this problem, you will write a loop that, at the same time, calculates the number of zero digits,
stored in a variable a, and whether the digits are even, stored in a variable b. The two facts of the
postcondition state that these variables contain the values of these two functions on the full list.

Your loop should calculate these values by making a single pass through the list from front to back,
exiting when you reach the end of the list. The first fact of the invariant states that the number of zero
digits in the whole list is a plus the number of zeros remaining in L. The second fact of the invariant
states that the number is even exactly when the evenness of the remaining digits matches the value of
b (i.e., they are both true or both false).

The basic structure of the loop is as follows. You will fill in the missing pieces below.

ttL “ L0 uu

let a: bigint = ;

let b: boolean = ;

tt Inv: zerospL0q “ a ` zerospLq and evenpL0q “ pb “ evenpLqq uu

while (L.kind !== "nil") {
...

// fill in the code here

...

L = L.tl;

}
tt a “ zerospL0q and b “ evenpL0q uu

(a) Fill in the initialization code above the loop. Then, prove that the invariant holds with your code.

Note that, if x is a boolean, then x “ true is true exactly when x is true, and x “ false is
true when pnot xq is true.

(b) Prove that the post condition holds when the loop exits.

(c) Fill in the missing code in the body of the loop so that the invariant is preserved when L moves
forward to the next element of the list.

Then, use forward or backward reasoning (or both) to reduce correctness of the loop body to
implication(s) and prove that they hold. Please indicate which direction you reasoned in at each
step using an arrow or Pi and Qi labels (similar to the labels provided for you in Task 4).

When doing forward or backward reasoning, you don’t need to show intermediate assertions
after every step, but you must include all assertions used in the implications for proving that the
body of the loop preserves the invariant.

Hint: note that, if b and c are booleans, then “not b “ c” is the same as “b “ not c”. Both
expressions are true exactly when the values of b and c are different (one is true and one is false).

10

Coding

After finishing the written part, to get started on the coding part, check out the starter code for this
assignment:

git clone https://gitlab.cs.washington.edu/cse331-25sp/materials/hw6-paint.git

Navigate to the hw6-paint directory and run npm install --no-audit. Run tests with the command
npm run test, run the app with the command npm run start, and run the linter with the command
npm run lint.

Starting with this homework, mutation is no longer prohibited (provided you use it correctly)! If you
have the comfy-tslint extension in VS Code, you will need to update a setting to allow mutation and
prevent it from giving you errors when you do things like use let and reassign variables. You will also
need to start writing invariants so make sure to renable the checkbox.

Open the comfy-tslint extension and press the gear icon to the right of the ”Disable” and
”Uninstall” buttons. Open ”Extension Settings” from the drop down options that appear. Then
check the box to enable the ”Comfy TS Linter: Allow Mutation” setting and ”Comfy TS Linter:
Req Invariants” setting, and save your settings.

The npm run lint command has been updated to allow mutation and require invariants.

Submission

After completing all tasks to follow, submit your solutions on Gradescope. The following completed files
should be submitted to “HW6 Code”:

even zeros.ts even zeros test.ts color ops test.ts App.tsx

Canvas.tsx Palette.tsx Store.tsx

Wait after submitting to make sure the autograder passes, and leave yourself time to resubmit if
there’s an issue. The autograder will run your tests, additional staff tests, and the linter. Like homework
5, there will be additional hidden staff tests, the results of which will be available after the deadline.

11

Task 6 – Wicked Witch of The Test [12 pts]

In this problem, we will copy some of the code we reasoned about on paper into TypeScript functions
and test them.
The tests you write should follow the testing requirements for this course (see the notes on testing for
a reminder). Additionally, write short labels describing which coverage requirement is met by each test.
See the example from HW4 for reference.

Just like last week, we have not provided any tests for these functions. However, you proved that
these functions fulfill their post conditions in the written parts, so if you copy it directly, you should
already have confidence that it is correct.

(a) Copy the code you wrote on paper in Task 5, into TypeScript code in even zeros.ts.

We have already provided the same scaffolding code as we did in the paper part, so you should
keep these parts and fill in the blanks. You do not need to copy over your Floyd logic assertions,
but you can if you want.

Write tests for even zeros in even zeros test.ts.

(b) Task a look at the function amtPrimaries in color ops.ts. This is a copy from the function
you reasoned about in Task 4, with the additional behavior of counting amt-yellow which has a
parallel definition to amt-red and amt-blue.

This function is already complete - you don’t need to do anything to it! But, we will use this
function to build our app (in the next task). To help us feel more confident in our code,

Write tests for amtPrimaries in color ops test.ts.

Make note of the specs provided for these functions. They describe the behavior in math definitions
and English descriptions (matching the written instructions). These functions are implemented with
a loop instead of “straight from the spec”, so it is important that we know the code implements the
behavior the users expect, given the spec, which is why we practice formally proving that correctness in
the written part.

12

https://courses.cs.washington.edu/courses/cse331/25sp/topics/notes/testing.pdf
https://courses.cs.washington.edu/courses/cse331/25sp/homework/homework04.pdf#page=15

Task 7 – Mind Like a Steel App [15 pts]

This week we have designed a (genuinely) super cool app that we hope you enjoy! The app has pages
that allow the user to buy, mix, and draw with paint!

The Paint Store page allows the user to click the “paint pots” to buy a unit of paint.

The paint store only sells primary paint colors (red, yellow, blue), so the Paint Palette allows
the user to “Mix!” together the primary paint colors to create secondary paint colors (orange, green,
purple).

Recall from Task 4 that 0.5 or any two distinct primary colors creates 1 new secondary color. This
page operates the same way, by decreasing a half unit of paint from the two mixed primary colors and
adding a unit of paint to the produced secondary color. If the user no longer wants their mixed secondary
colors, they can “Unmix All” which utilizes the amtPrimaries function that you wrote tests for in the
last task, to unmix all secondary colors back into the primary colors they were created from.

13

With all of these colors in hand the Canvas component allows the user to draw beautiful dot
masterpieces. Clicking on the paint pots selects that color to draw with, and clicking on the canvas will
place a dot. Each dot drawn spends 1 unit of paint. So if you run out, and you haven’t finished your
artwork, you’ll need to go back to the store!

To keep track of all of these pages, there is a main page directory with links to enter each page.

We have provided the code for the Store, Palette, and Canvas components. In this task, you
will put the pieces together. To take a sneak-peak at these pages before they’re all put together, you
can change the render in App.tsx to return one of the commented out components instead.

14

The App component will render the directory on start up, then, when a link to another page is clicked,
it will adjust which page is shown.

We have already worked with apps in this class that conditionally show one thing on the screen or
another, usually by checking some boolean, string, or if a variable is defined. As our apps become more
complex, we will want a more sophisticated way to identify which page of an app should be shown.

We will define a “Page” type which is a union of records, each representing a page the app can
take on. The records will each have a “kind” field with some identifying string for that page. As an
example, this is how we could have defined Page if we had used this technique for our HW5 cipher app:

type Page = {kind: "input"} | {kind: "encoding"}

As you may observe, this is an inductive data type (specifically an “enum” inductive type). It
defines 2 distinct ways to construct a “Page”.

As with other constructors, we may want to construct a “Page” with some defining fields in addition
to “kind”. In general, these additional fields of a page don’t include data that needs to be shared across
or maintained by the app, but rather identifying features specific to how that page is constructed for
a single viewing (e.g. a user profile component which is different each time it’s opened depending on
which user it’s for).

For this app, our pages won’t need to be constructed with any additional fields beyond it’s “kind,”
but we will see apps later in the quarter that have more interesting “Page” constructors.

(a) Create a “Page” type, mimicking the example above, at the top of App.tsx that represents all
the possible pages for this app.

Update App.tsx to utilize this type to control the page rendered by the app. There are
TODOs in this component to guide where you will want to make edits.

(b) Update the props for each component, so they can share commonly used data across the app.

Notice that each of the pages utilizes the same paint pots. The store can increase the
amount or red, yellow, and blue, the palette updates all the colors as they are mixed and unmixed,
and the canvas uses the paint as it draws. Currently, each of the individual components has a
paintInventory state that is initialized as an array of 6 numbers, each representing the available
“units” of paint for a color (ROYGBP in order).

Instead of each initializing this state, the App component should have an inventory state
that is initialized as empty for each color ([0, 0, 0, 0, 0, 0]) and passed as a prop to each
child component. Then, that component can initialize its inventory state with the prop it receives
instead.

Create onBackClick callbacks for each of the Store, Palette, and Canvas components
that pass any local data back to the App to share with the other components.

Create handler methods in App that update the state of App to correctly change the page
view, and store any data passed from those components.

(c) Enable the app to preserve drawn dots on the canvas. Specifically, update Canvas.tsx such that
drawing dots, exiting and then reentering the canvas will show the same drawn dots as before
exiting.

15

You are allowed to change any part of the Canvas component to do this. Though you do not
have to understand how the majority of the component is implemented (e.g. how the dots are
drawn on the canvas), so skim the component for the important parts, and use your knowledge
of how data is shared between components (hint: what did you do in previous parts?).

Update the rest of the app as needed to support this behavior (hint: you should only need to
edit 1 other component).

(d) Have fun with your working app! We had a lot of fun designing this app, so we hope you have
fun using it. If you create any cool designs, please share your magnum opus with us on the
megathread! (Feel free to temporarily hardcode extra paint for your self if you need to.)

16

