
CSE 331: Software Design & Implementation Spring 2025

Homework 4
Due: Wednesday, April 30th, 11pm

While problem sets 1–3 focused on learning to debug, the next few will focus on how to write code in
such a manner that debugging occurs much less frequently (ideally, not at all) because the code we
write is known to be correct before we run it for the first time.

With that goal in mind, the next few assignments will have written and coding components, where
the written part is to be completed before starting on the coding part.

This worksheet contains the written and coding parts of HW4.

Written

Submission

After completing all parts below, submit your solutions on Gradescope. The collection of all written
answers to problems described in this worksheet should be submitted as a PDF to “HW4 Written”.

Don’t forget to check that the submitted file is up-to-date with all written work you completed!

You may handwrite your work (on a tablet or paper) or type it, provided it is legible and dark enough
to read. When you turn in on Gradescope, please match each HW problem to the page with your work
on it. If you fail to have readable work or assign pages, you will receive a point deduction.

1

Task 1 – Off the Beaten Math [12 pts]

For each of the following functions, translate the code into a function definition written in our math
notation, using pattern matching. Unless the comments above the code say otherwise, you can assume
that any value of the declared TypeScript type is allowed by the function.

Make sure your rules are exclusive and exhaustive!

(a) const x = (a: bigint, b: boolean): List<bigint> => {

if (!b) {

return cons(-a, cons(a, nil));

} else {

return cons(a, cons(-a, nil));

}

};

(b) const y = (c: [bigint, bigint], b: boolean): [bigint, bigint] => {

const [i, j]: [bigint, bigint] = c;

if (b) {

return [j + 1n, i];

} else {

return [i - 1n, j];

}

};

(c) // c and a allow only non-negative integers

const z = (d: {c: [bigint, bigint], a: bigint}): bigint => {

const [i, j]: [bigint, bigint] = d.c;

if (d.a === 0n) {

return i * 2n;

} else if (d.a === 1n) {

return i;

} else {

return j + z({c: d.c, a: d.a - 1n});

}

};

2

Task 2 – A Princess’s Poor Egg-conomy [12 pts]

In this problem, we will practice a skill that you will use a lot in coming assignments. We’ll start with
an English description and formalize that description into a mathematical definition which could serve
as a specification if we were to write this in TypeScript.

Princess Peach is planning a party for her friends and wants to bake an amazing cake. Unfortunately,
there’s been a recent phenomenon where eggs hatch into Yoshis, regardless of the original egg type.
Because the Nintendo world has been hit with this Yoshi-dino flu, an egg shortage epidemic has occurred.
Princess Peach is worried that her cake cannot be made to correct size or will cost too much. Still, she
wants to make a cake as her party’s showstopper. Help Princess Peach figure out how many layers of
cake she can bake!

To do this, we’ll be converting an English description of a function that calculates Cake-layer
numbers to math notation. We’ll denote a Cake-layer number as cpnq for some non-negative and non-
zero integer n, where cpnq is number of eggs it takes to make n layers of cake. According to Princess
Peach’s eggs-travagant cake recipe, each additional layer takes just as many eggs as the previous layer,
but needs 1 more egg plus its layer number n on top of the previous layer’s egg quantity. This means for
the bottom layer of the 3 layer cake, we get its previous layer’s egg quantity (5) plus it’s layer number
of (3) plus (1) which sums up to 9. This way, the cake will be nicely tiered like the image below shows,
instead of stacking to a straight tower. Therefore, we define cp1q “ 2 and cp2q “ 5, where for 1 layer
of cake, 2 eggs are needed and for 2 layers of cake, 5 eggs are needed. We define gpnq to be the total
number of eggs for n layers of cakes. With that definition in hand, our goal is to write a function “gpnq”
that gives the sum of the first n Cake-layer numbers. For example, gp2q “ cp1q ` cp2q “ 7.

For reference, here are the first four layers of the Cake-layer sequence and their eggs (candles are
decorative and negligible):

n cpnq gpnq

1 2 2
2 5 7
3 9 16
4 14 30

3

(a) The description above is in English, so our first step is to formalize it into a math notation.

Define two mathematical functions, “c” and “g”, both taking non-negative and non-zero
integers as input. This has the type N`. Define each function recursively with pattern matching.

(b) Princess Peach has decided that a 3-tiered cake, each tier having 3 layers, would be perfect.
Show how your mathematical definition would execute gp9q “ 210 by writing out the sequence of
recursive calls. Include the arguments and what is returned for each recursive call.

Use any sensible notation to clearly show the sequence of calls. (If a call is made a second
time, you can reuse the result of that call without showing all recursive calls that would be made.)

4

Task 3 – I Toad Ya So [12 pts]

In this problem, we will create some functions that allow us to encode secret string messages.
Our messages will be represented as lists of integers, where each integer is in the range 0–25 and

the integer i represents the i-th Latin letter. For example, ‘a’ = 0, ‘b’ = 1, and ‘z’ = 25.

Let’s start by discussing how we encode individual characters.

Introducing Toad Cipher. To encode a single character within the cipher we have a few cases. If
we reach an i-th character representing a Latin letter in “toad” then we replace that ith character with
the next latin letter in “toad”. For example, ’d’ becomes ’t’ after being encoded.

If we don’t land on an i-th character representing a latin letter in “toad” then the i-th character
will be negated over the range. We will say that “negating” the i-th character means swapping the i-th
character with the i-th character from the end of our range (excluding the latin letters in “toad”). For
example, negating turns ‘b’ (1) into ‘z’ (25), ‘y’ (24) into ‘c’ (2) etc.

As an example the list [0,1,2] is translated to [3, 25, 24] by Toad Cipher:

- 0 (representing a) becomes 3 (representing d) as a is in ”toad” meaning we go to the next latin
character

- 1 (representing b) becomes 25 (representing z), as b is not in ”toad”, z is the last letter in the
latin alphabet, and b is the first letter in the latin alphabet that is not in ”toad”

- 2 (representing c) becomes 24 (representing y), as c is not in ”toad”, y is the second to last letter
in the latin alphabet, and c is the second letter in the latin alphabet that is not in ”toad”

To encode a message, which is a list of character indices, we apply the character encoding individually
to each character in the list.

(a) Above, we were given an English definition of the problem, so our first step is to formalize it.

The function “td” will take an integer within the range 0–25 as input and returns the value
produced by following the encoding rules as described above. For integer values outside the range
0–25, we define td to leave those unchanged.

(b) Now, given “td” defined in part (a), formalize the “Toad Cipher”, which encodes messages.

Write a formal definition using recursion. Assume that the mathematical function “td” defined
in part a) correctly implements the behavior described above.

5

Before we can get to the next two problems, we need the following mathematical definitions.

Blocks

In this assignment, we will write some math that displays pipes. Each pipe is made up of blocks.
Mathematically, each block is a record of the following type:

type Block :“ tform : STRAIGHT, color : Color, direction : Lineu

| tform : ANGLED, color : Color, direction : Corneru

Individual Blocks include a color property, which are elements of the following type:

type Color :“ DIRT | WALL

Blocks also include a direction property that describes how the block is oriented (i.e. how it is
rotated). Direction is defined with different types depending on the form property of the block.

STRAIGHT Blocks contain a straight line that spans the block in 1 direction, either top to bottom
(a vertical line), or right to left (a horizontal line). This is defined with the following type:

type Line :“ TB | LR

ANGLED Blocks contain a line that starts at one side of the block, angles, and exits at another.
ANGLED block directions are described as the corner of the square created by the angle within the
block (for intuition on which label corresponds to which block, think of where the ”arrow” points to).
This is defined with the following type:

type Corner :“ TR | TL | BR | BL

6

Pipes

A pipe is a 2D table of blocks. We will represent each pipe as a list of lists of blocks. We will call a list
of blocks a “row”, and then a pipe is a list of rows. As mentioned in the last problem, our current List
type has integer elements, so to express rows and pipes we will define these two new types inductively
as follows:

type Row :“ rnil | rconsphd : Block, tl : Rowq

type Pipe :“ pnil | pconsphd : Row, tl : Pipeq

All rows in a pipe should have the same length. Mathematically, we define the function
rlen : Row Ñ N defines the length of a row by:

rlenprnilq :“ 0

rlenprconspa, Lqq :“ 1 ` rlenpLq

Note, however, that our type definitions allow the pipe to contain rows of different lengths! It is an
additional requirement of the pipe type that all rows in each pipe must have the same length.

We can also define concatenation of rows. The function rconcat : pRow,Rowq Ñ Row is defined by:

rconcatprnil, Rq :“ R

rconcatprconsps, Lq, Rq :“ rconsps, rconcatpL,Rqq

These two functions, whose names start with “r”, are defined on lists of blocks (rows). There are
analogous definitions of functions, plen and pconcat, whose names start with “p”, that operate on lists
of rows (pipes).

This pipe has the structure as follows:
pcons(rcons(tl, rcons(tr, rnil)), pcons(rcons(bl, rcons(br, rnil)), pnil)) where
tl = {form: ANGLED, color: DIRT, direction: TL}
tr = {form: ANGLED, color: DIRT, direction: TR}
bl = {form: ANGLED, color: DIRT, direction: BL}
br = {form: ANGLED, color: DIRT, direction: BR}

7

Task 4 – Piper, No Piping! [14 pts]

With these definitions, we can create pipes like those pictured below. If Mario and Luigi were traveling
through these small, simple pipes they probably wouldn’t get lost, but you can imagine that these simple
designs could be composed to make more complex pipes.

(a) Our first exercise is formalizing the pipe designs above by using the definitions of the Block and
Pipe types from the previous page. Write mathematical definitions for functions “pipeA”, “pipeB”
which creates 4 ˆ 2 (rows ˆ cols) pipes, and “pipeC” which creates a 6 ˆ 2 pipe matching those
shown above. Write them in the most straight-forward manner –no loops or recursion!

Additionally, have these pipes accept one parameter, an argument of type Color, which will
determine whether the blocks of the pipe should be DIRT (as shown above) or WALL.

(b) Next, we’ll define recursive functions that repeat these designs to allow for creating larger pipes.

Your mathematical definitions should accept an argument, n, which is a natural number
defining the number of rows the design should have, as well as the same color parameter as
before. Your functions should have 1 recursive case, in which rows of blocks should be added to
the result, and 1 base case.

Pipe A and pipe B repeat every 2 rows. Pipe C repeats every 3 rows, where the first 3 rows
of the design above are those to repeat (you can see the pattern start again in the fourth row,
and you can assume it continues by repeating the second row next and then the third).

In other words, pipe A and pipe B are defined for any even number of rows while pipe C
is defined on numbers of row that are multiples of 3. This should be useful insight for how to
define your recursive cases, and you can assume this restriction on allowed inputs is part of the
specification for these functions visible to users.

8

Task 5 – My Flips are Sealed [16 pts]

In this problem, we will write a function that “flips a pipe vertically, as if mirrored across a horizontal
line through the center”.

Here is an example (the bottom pipe is the result of vertically flipping the top pipe over the center
line):

(a) The problem definition was in English, so our first step is to formalize it.

Start by writing a mathematical definition of a function “bflip” that flips a block vertically.

(b) Next, we will define a mathematical function “rflip” that flips a row vertically.

Let’s start by writing this out in more detail. Let e, d, and f be blocks. Fill in the blanks
showing the result of applying rflip to different rows, which we will write as lists of blocks.

Feel free to abbreviate bflip in your answer as “b”.

rnil

rconspd, rnilq

rconspd, rconspe, rnilqq

rconspd, rconspe, rconspf, rnilqqq

. . .

(c) Write a mathematical definition of a function rflip using recursion.

(d) Now, we are ready to define a function “pflip” that flips a pipe vertically.

Again, let’s start by writing this out in more detail. Let u, v, and w be rows. Fill in the
blanks showing the result of applying pflip to different pipes, which we will write as lists of rows.
Note that this operation flips individual rows vertically, and also switches the order of the rows!

9

Your answers should use rflip (not bflip), which you can abbreviate as just “r”.

pnil

pconspu, pnilq

pconspu, pconspv, pnilqq

pconspu, pconspv, pconspw, pnilqqq

. . .

(e) Write a mathematical definition of a function “pflip”.

Hint: it may be useful to review definition of the function rev, for reversing a list, which is
defined in the notes on lists posted on the website. Also, remember that the function pconcat,
which concatenates two pipes, is already provided for you.

10

Coding

To get started, check out the starter code for this assignment:

git clone https://gitlab.cs.washington.edu/cse331-25sp/materials/hw4-pipes.git

Navigate to the hw4-pipes directory and run npm install --no-audit. For this assignment, we
have provided (and will ask you to write) unit tests. To run the tests, use the command npm run test.
To run the linter, use npm run lint.

This assignment (and the next few) does not allow mutation. To disallow mutation with the VS-
Code extension, follow similar steps as HW3. Open the extension, select the gear icon, open ”Settings”,
and uncheck the checkbox to no longer allow mutation. The linter settings should look like this:

Submission

After completing all tasks to follow, submit your solutions on Gradescope. The following completed files
should be submitted to “HW4 Code”:

designs.ts pipe ops.ts App.tsx Viewer.tsx funcs test.ts

After you submit your work, an autograder will run which verifies you have submitted the correct
files, runs the linter, and runs tests (including those you submit, the tests we provide in the starter code,
and some additional staff tests). As usual, the autograder is worth points, so you should wait until
the autograder completes to make sure it passes, and otherwise resubmit. Meaning you should leave
enough time to fix possible issues before the deadline. As usual, we will also manually grade your code
(including test cases).

11

Task 6 – It’s Simply Design [22 pts]

In the first part of this problem, we will translate mathematical definitions for functions into TypeScript
code. Then, we will complete a client side app that utilizes those functions.

When translating, we will treat the math definitions as imperative specifications for the TypeScript
functions, so the translations should be “straight from the spec” –a direct translation.

We have provided tests for these functions based on their correct behavior as described in the
English/picture descriptions from the written tasks. You should run these tests to get a good idea of if
your implementations are correct using the command npm run test.

If the tests fail, indicating a bug in your TypeScript functions, you should fix these bugs to try to
get the tests to pass.

(a) Translate your mathematical definitions from HW4 Task 4(b), the recursive functions for each
pipe design, into TypeScript code in designs.ts.

You should only translate the recursive definitions that you wrote in part (b), you do not need
to translate the 2ˆ 4 / 2ˆ 6 versions from part (a). Please maintain the order of the parameters
as given in those declarations, even if it deviates from the order in your mathematical definition,
as it is required for testing.

The types and helper functions related to pipes (as described in the HW4 Written spec) are
translated to TypeScript for you in pipe.ts; import those to designs.ts and use as needed.
The provided tests for these functions are in designs test.ts.

Make sure to complete the TODO in the comment of each recursive pipe function to copy
over your math definition from Task 4.

(b) Translate your mathematical definitions from HW4 Task 5 (a), (c), and (e), the functions for
each type of flip, into TypeScript code in pipe ops.ts. The provided tests for these functions
are in pipe ops test.ts.

Again, make sure to complete the TODO in the comment of each flip function to copy over
your math definition from Task 5.

With these interesting pipe functions in hand, we can use them in a super cool app. You can run the
app with the command npm run start. Currently, you will get lots of errors about unused variables
and other problems (since the app is incomplete), but after this next part, you’ll have a pipe designer
app where you can design A, B and C pipes with different colors, numbers of rows, and flips.

12

It will display the designed pipe in an “experimentation” view, where you can continue to adjust the pipe
design. For example, the image on the left is the result of clicking “Go” with the selections shown in
the image on the previous page, and the image on the right is the result of clicking “Flip” and “Double”
on that initial design.

Importantly, we want users to be able to maintain their experiment settings and see them reflected in
the initial input areas when they go “Back”, as so:

(c) We have provided starter code that lays out the components we will use, constructs all the html for
the buttons and input areas, and handles rendering all the pipe blocks. It is your job to fill in some
gaps that will allow the input page, App, and the pipe viewing page, Viewer, to communicate
with each other.

Familiarize yourself with the existing code in both components, and make note of the TODO
comments which outline where you will need to add some code. If you have any questions about
the existing code, it’s a good idea to ask on Ed or in OH before writing any code yourself.

App contains states that reflect the values in each of the input areas on the screen. It also has
a state renderPipe which it uses to determine whether the initial input page or the pipe display
page should be rendered. It also has some error handling to make sure users can only create
well-formed pipes (e.g. prevents pipes with no color, or a design C pipe with an even number of
rows).

Viewer is responsible for rendering the pipe pattern specified which is done with a custom
pipeElem component which takes a pipe as a prop specifying the design to create. We provided

13

this custom component for you, and you are not required to understand how it works, but feel
free to check it out. In order to create a pipeElem, the Viewer needs to have access to all the
necessary attributes of the pipe to create.

Currently, the Viewer has states for some pipe attributes, associated with the experimentation
buttons, which it updates when they are clicked, but they are initialized with hardcoded values
instead of the real values that the user inputted on the initial page.

Once a user is done experimenting, they need to be able to click “Back” to return to the main
page and see all the up-to-date inputs for the pipe they were just experimenting with. Currently,
the Viewer just prints out a TODO message when the “Back” button is clicked, and there is no
way for the App component to see the updates to the pipe design that have been made while
experimenting.

To fix these problems, we will need to define some props passed from the parent component,
App, to the child component, Viewer. Recall that props both allow parent components to send
data to their child components, and allow child components to send data back to their parent
through callbacks.

Specifically, complete the following steps:

- Initialize Type ViewerProps in Viewer.tsx with the necessary props that App needs to
pass to Viewer, so the pipe attributes can be initialized properly.

- Pass the necessary props to Viewer from App.

- Complete renderPipe in Viewer.tsx to generate the Pipe using the appropriate pipe
attributes.

- Update doAddRowsClick so the “Add Rows” button works for each design.

- Write a handler method for the onClick of the “Back” button in Viewer. Guarantee that
clicking “Back” returns to the input page and that every input area reflects the state of the
pipe when “Back” is clicked.

It may make sense to do these in a different order, and you may need to make changes in
areas not explicitly mentioned here!

Once you think your app is complete, make sure you test it thoroughly! Unlike parts a-b
which we can test with unit tests, it is easiest and most effective to test an app by using it and
visually inspecting the results.

Congratulations! At this point you should have a super cool, functioning, pipe design app!

14

Task 7 – Test Friends Forever [12 pts]

Now that you’ve written some TypeScript code and tested it, it is your turn to write some tests!
In funcs.ts, there are 9 functions that you must write tests for. Your tests should follow the

testing requirements we have described in lecture and in our testing notes summary(also linked on the
website “Topics” page).

Write your tests for each function in funcs test.ts.

Additionally, write short labels describing which coverage requirement is met by each test. We’ve
written up some tips on using Mocha on the course website. For a direct example see below:

const twice = (L: List): List => {

if (L.kind === "nil") {

return nil;

} else {

return cons(2 * L.hd, twice(L.tl));

}

}

In test file:

it("twice", function() {

// Statement coverage: [] executes 1st return, [3] executes 2nd

assert.deepStrictEqual(twice(nil), nil);

assert.deepStrictEqual(twice(cons(3, nil)), cons(6, nil));

// Branch coverage: covered above, [] executes 1st branch, [3] executes 2nd

// Loop/recursion coverage, 0 case: covered above by []

// Loop/recursion coverage, 1 case: covered above by [3]

// Loop/recursion coverage: many case

assert.deepStrictEqual(twice(cons(1, cons(2, cons(3, nil)))),

cons(2, cons(4, cons(6, nil))));

});

Notice how you don’t need to add additional tests if previous tests cover multiple requirements, just
make sure there are clear comments for the required coverage areas. You are welcome to organize your
comments differently than the example or use different wordings, just make sure all necessary details
are conveyed.

15

https://courses.cs.washington.edu/courses/cse331/25sp/topics/notes/testing.pdf
https://courses.cs.washington.edu/courses/cse331/25sp/topics/notes/mocha.html

