CSE 331: Software Design & Implementation Spring 2025

Homework 3
Due: Wednesday, April 23rd, 11pm

As in Homeworks 1-2, the focus of this assignment is practicing debugging, this time in an application
with both client and server components. Task 2 asks you to submit a log describing all the time spent
debugging and the nature and causes of the bugs. Like HW2, you can debug after completing each
section of the app, but it will be challenging to fully debug earlier parts until the whole app is complete.

Check out the starter code for this assignment:

git clone https://gitlab.cs.washington.edu/cse331-25sp/materials/hw3-campuspaths.git

Navigate to the hw3-campuspaths/server directory and run npm install --no-audit. Then start
the server with npm run start. In a separate terminal, do the same thing in the hw3-campuspaths/client
directory. With both the client and server parts running, you can open the application at
http://localhost:8080.

When you start the application, you will see a map as in HW2, but it will not do anything yet.
Eventually, the application will allow the user to select two places on campus, and it will display the
shortest path between them on the map. Unlike in Homework 2, where all calculation is done in the
client, here, the shortest path calculation will be performed on the server, so the client will need to send
a request to the server to get the answer.

We encourage you to explore the starter code for this assignment before getting started. You may
find useful functions or otherwise benefit from understanding the types we utilize in this assignment.
It is a very common mistake for students to do more work than necessary, especially in implementing
Dijkstra's Algorithm.

Task 1 — Don’t be caught App-ing [25 pts]

Just like Homework 1 and 2, you will turn in your code for this assignment. This will allow us
to give you feedback on your code and verify that you are following our class coding conventions and
making an attempt at all parts of the app. Our primary focus is still your debugging experience, so the
majority of the points for this assignment will still go to your debugging log, and it is okay if you turn
in code that has remaining defects, provided you've made an attempt at all parts.

Don't get stuck debugging a section without making sure you at least have an implementation
attempt for all parts. In general, it's a good debugging strategy to move on to a problem and look at
it later with a fresh set of eyes.

One Client Leap for Mankind

The provided App component of the client displays the campus map and an Editor beneath it, but
initially, the Editor does not do anything. Implement this component to allow the user to choose the
two locations between which they want to see a path. You must also include a button to clear the path.
Your Ul should look something like this’:

From: | (choose a building) |

To: | (choose a building) v|

Clear

The list of buildings is provided to you in props. A callback is also provided to invoke to change the
path that is displayed. You should call this when the user has chosen two endpoints and when they clear
the path (in that case, you pass undefined to indicate no path). Do not invoke the callback when the
user has chosen only one endpoint: the callback wants either two endpoints or no path at all.

At this point, after selecting two buildings, markers should appear for each, but no path will be drawn
yet as we need to find that path in the next section.

From: [Paul G. Allen Center for Computer Science & Engineering <]

To: [Kane Hall V]

Clear

1The precise details of the layout and styling are not important. Once again, this is not a Ul design class.

The Full-Short Press

Now, switching to the server, complete the method shortestPath in dijkstra.ts. This method takes
a starting (z,y) location and an ending (x,y) location along with a list of pairs of points representing
straight line walking paths (for this app, this is all walking paths on the UW campus). Each path is
called an “edge” and also includes the distance of that straight-line walk.

In campus.ts, there is an array called EDGES that is filled in by the function parseEdges, which
parses an array of strings (the lines from campus_edges.csv) into the Edge type. We handle calling
parseEdges in the starter code for you, but be sure to import and use the EDGES variable when calling
shortestPath.

The method should return a Path object describing the shortest path. A path consists of zero or
more steps, each of which moves along one edge. The Path object holds the starting location, end-
ing location, the sequence of edges to walk along, and total distance covered. With this type we can
keep track of intermediate paths between locations and eventually, a shortest path between buildings.
For example, the shortest path from CSE2 (found at (2315.0936,1780.7913)) to Moore Hall (found at
(2317.1749,1859.502)) in the format (x,y) — (2/,y') is:

(2315.0936, 1780.7913) — (2286.6177,1825.6619) — (2322.4782,1853.4411) — (2317.1749, 1859.502)

You should complete the method by implementing Dijkstra's algorithm. Pseudocode for the algorithm
is given on the last page. This describes the basic structure of the code but leaves out many details. In
particular, to translate that pseudocode to functional Typescript, you will need to implement the data
structures required by the algorithm (descriptions of which are listed in the pseudocode).

For the required map (adjacent) and set (finished), you can use the built-in Map and Set classes
provided in Javascript. Note, however, that these classes use “===" to compare keys, which will not do
what we want if we try to use Locations as keys. The easiest way to make this work is to convert a
Location to a string and use that string as the key. You can do the conversion in any way that you
like provided that distinct Locations are converted into different strings.

Note: Prior to Dijkstra's algorithm, the adjacent map (or adjacency list) should be filled in with all
the outgoing edges that correspond to each starting Location in edges (which represents all the edges
on the map). Other data structures you will use for this algorithm should start empty.

For the priority queue, we have provided am interface called Heap in heap.ts that will do the job.
It provides all the required operations: isEmpty, add, and removeMin. This interface is generic, so
it can be used with any type, but in order to do so, you must provide a “comparator” function to its
constructor that allows it to determine which elements are smaller and larger than others.

A comparator function takes two elements, a and b, as arguments and returns a negative value if
a < b, a positive value if a > b, and 0 if @ = b. For numbers, simply returning a — b would do the trick.

For Dijkstra's algorithm, we need a priority queue of Paths, so you will need to implement a
comparator for Paths in order to use Heap.

Retrieve You Me

Finally, we will add paths to the application by having the client retrieve a shortest path from the server.
We will do so in two steps as follows:

1. On the server, update index.ts to have a new route with URL /api/shortestPath that calls
a getShortestPath function you will add in routes.ts. This should be a GET request. The
latter should retrieve the starting and ending buildings from the request, invoke shortestPath
(from dijkstra.ts) to calculate the shortest path between them, and then send back the path
to the client in the response.

2. On the client, update the doEndPointChange method of App to initiate a request to the server
asking for the path between the two selected buildings, and then, when we get back the path in
the response, update the state to store the path in the “path” field of AppState.

Once you have done these steps, the application should display shortest paths almost immediately after
the user selects two buildings in the Ul you built in the first part. (See the examples below in fuchsia)

From: | Paul G. Allen Center for Computer Science & Engineering v

To: | Kane Hall v

Clear

From: Bill & Melinda Gates Center For Computer Science & Engineering v
To: Moore Hall v

Clear

Linter? | hardly know ’er

Starting with this assignment, we will also be using a custom linter, comfy-tslint, which checks that
your code follows our course-specific coding conventions. The linter is not able to catch every coding
convention mistake, so you should write code that looks similar to the examples we go over in class,
and refer to the coding conventions document for a written explanation of our expectations.

We will run the linter on your code through the autograder when you submit on Gradescope,
so you should make sure it also passes locally. You can always run the linter in the command line
with npm run lint, or you can download the recommended VS Code extension for the linter. The
linter warnings will appear as helpful popups while you're coding (similar to the type checker). If you
run the command, the output will always have the first two lines listed in the image below, and if your
code has any errors, those will be listed below.

> cse331-hw-fib@@.0.1 lint
> comfy-tslint —no-mutation src/x.{ts,tsx}

src/fib.ts:7:32: any type is not allowed
src/index.tsx:6:10: top-level variable declarations must have a type

The linter restricts the use of mutation, but for this assignment mutation is allowed on the server.
It is however, fine to use .push(___) on the client side when pushing to an array, even though that
is a type of mutation, just do not explicitly change the value of any variable on the client side. The
npm run lint command is already configured to allow this mutation. To allow mutation with the
VSCode extension, open the extension, select the gear icon, open "Settings”, and check the checkbox
to " Allow Mutation”.

Comfy TS Linter: Allow Mutation

v/ Allow mutation of local variables and heap data.

The linter also has some restrictions on loops. It disallows standard for loops and requires that all
while loops have an "invariant”. If you want to use a standard for loop, use a for. . .of loop instead.
We haven't covered invariants yet, so if you want to use a while loop, you can stop the warnings by
placing a comment above the loop that starts with // Inv:, as so:

// Inv:
while(true) {

If you have any trouble with loop or mutation related linter warnings, definitely reach out on Ed or OH
so we can help you resolve it!

Code Submission

After you finish debugging your code (details of which are described in the next task), you should turn
it in by submitting the following files to the “HW3 code” assignment on Gradescope:

Editor.tsx App.tsx dijkstra.ts routes.ts index.ts

After you submit your work, an autograder will run to verify you have submitted the correct files
(as well as run the linter). Verify that the submitted files are up-to-date with all implementation and
debugging you completed. Then, wait for the autograder to finish, to check that the submission looks
correct and fix any errors, if needed.

https://courses.cs.washington.edu/courses/cse331/25sp/resources/comfy-tslint.html
https://courses.cs.washington.edu/courses/cse331/25sp/resources/#coding-conventions.html
https://marketplace.visualstudio.com/items?itemName=fencily-golden.comfy-tslint

Task 2 — Go Log Wild! [75 pts]

Submit your log of all time spent debugging, along with an explanation of the cause of the bug.
For each bug, you must also provide the following information:

e What failure, (incorrect) app behavior, did you see that told you there was a bug?

e Which experiments did you perform to try to locate the defect? (Checking the network tab,
scanning for typos, console.logs, etc.)

e What the defect was that caused that bug (if you ever found it)?
e How many minutes did you spend on the bug after noticing the failure?

e Was the code that produced the failure in a different function than the code that contained the
defect? What functions (on either the client or the server or both) did you need to debug through
in order to find this bug?

Again, we have provided a debugging log website for you to record your debugging. Don't forget to
save your log!

Once you have finished debugging your app, you will select only 3 log entries to turn in. Like Home-
work 1-2, you should try to select “interesting” entries, though you will not be penalized if some of
your bugs were simple. However, each log entry you select to turn in should have, at minimum, 1
experiment, and at least one log entry should have, at minimum, 2 experiments. Experiments
(your process) are the most important part of this assignment.

Your log should capture all the necessary context around each bug. Your TAs should be able to
understand the interactions and inputs that led to the failure, and follow your experience through each
debugging step. Experiments should start with some hypotheses with a leading question that you hope
to answer with your experiment; then, upon seeing the result, we want to know what you learned which
may lead to a next experiment (or to finding the defect).

It's understandable that you may hit some dead-ends and need to try a totally unrelated experiment
idea, or that you may not find the defect, so it's okay if these show up in your log entries. Remember,
that the goal here is that you improve your debugging skills, so try to make each experiment choice
intentionally and avoid just “trying stuff” (but still log it if you do!).

You only need to turn in 3 log entries, but we encourage you to continue debugging your app to try
to get all the behavior working because it's fun to have a working app! and it's good practice.

If you have been debugging for more than ~8 hours and have yet to find 3 bugs to turn in, we
highly encourage you to reach out to the staff for help! Come to office hours or make a private ed post
and let us know what’s going on, so we can try to give you some extra debugging support. Sometimes
bugs takes days or weeks to debug, in the “real world”, but extremely time-consuming bugs are not the
intention for this class, so make sure you're getting our help if you need it!

If you think your implementation is correct, and you have not yet found 3 bugs... we still
want you to have the whole debugging experience, so we ask that you send us your implementation,
and we will return it to you as soon as possible with new bugs for you to debug. To send us your
work, you should submit Editor.tsx containing your completed component to Gradescope, and email
a link or the timestamp of that submission cse331-staff@cs.washington.edu. If you need to send us your
implementation for bugs, you MUST do so by Monday, April 21st at 7pm.

https://comfy.cs.washington.edu/service/hw3

Debugging Log Submission
After you finish debugging:

1. Open each log entry that you want to include in your submission and select Show in “View" box.
Show: & (in “View")

2. From the main page, select “View Log" to open all of your selected log entries.

3. Select File > Print or ctrl+-P/Command+P to open the print dialog.

4. Set the print destination as “Save as PDF" and “Save”

Debugg

Logged a total of 1.

Entry1 @S '
1.0 hours spent ¢

Failure

Failure 1

Experiment

No experiments

Defect

return x;

Was not supposed to retarnx

Types
Type checking would not have helped. It was a typo, not a type issue

Feie..n

5. Submit your downloaded log (which should be named “DebugginglLog.pdf”), to the “HW3
Log” assignment on Gradescope.

Dijkstra’s Algorithm

The pseudocode below assumes we have the following data structures:

adjacent A map from an (z,y) location to the list of all edges that start at that location. These
give us all the locations you can get to from that location in one step.

finished A set of (z,y) locations for which we have already found the shortest path. The algorithm
will avoid considering new paths to these locations.

active A (priority) queue containing all paths to locations that are one step from a finished node.
The key idea of the algorithm is that the shortest path in the queue to a non-finished node must
be the shortest path to that node.?

With those data structures in hand, Dijkstra's algorithm proceeds as follows:

add a O-step (empty) path from start to itself to active

while active is not empty:
minPath = active.removeMin() // shortest active path

if minPath.end is end:
return minPath // shortest path from start to end!

if minPath.end is in finished:
continue // longer path to minPath.end than the one we found before

add minPath.end to finished // just found shortest path to here!

// add all paths that have one step added to this shortest path
for each edge e in adjacent.get(minPath.end):
if e.end is not in finished:
newPath = minPath + e
add newPath to active

return undefined // no path from start to end :(

2This can be proven formally using tools from CSE 311.

