
Mutation of Heap State
James Wilcox and Kevin Zatloukal

CSE 331

331 So Far…

• Saw how to implement ADTs without mutation

• Introducing more mutation going forward
– core idea is that mutation makes things harder

• Introduced local variable mutation last time
– causes some difficulty for implementers

need to reason line-by-line for any variable that is mutated

– causes no difficulty for clients
they literally cannot tell the difference

331 So Far…

• Instances of classes and arrays are "heap" data
– can still be in use after the call returns

• Mutation of heap data is different
– clients can often see that this occurred!

• Must also be update specifications
– need to explain any possible mutation that may happen

by default, nothing is being mutated

– higher likelihood of potential bugs
miscommunication between programmers is a common cause

– these will be harder to debug

Mutation of Heap Data

• Plan for today:
1. Mutation in simple functions (revisit Topic 1)
2. Mutation in ADTs (revisit Topic 3)

Mutation of Arguments

Recall: Writing Method Specifications in Java

• Every input falls in one of three cases:
1. input is disallowed
2. input is allowed and will return something
3. input is allowed and will throw something

• Item 1 is the precondition
– explained in @param and @requires

• Items 2-3 are the postcondition
– explained in @return and @throws

Writing Method Specifications in Java

• Every input falls in one of three cases:
1. input is disallowed
2. input is allowed and will return something
3. input is allowed and will throw something

• The postcondition can also include mutation
– client will see that something argument was changed
– explained in @modifies and @effects

Describing Mutation in Specifications

• List anything that may change in @modifies
– anything not listed is assumed not modified
– no @modifies means nothing is mutated

• Results of the mutation listed in @effects
– promises about the state when the call returns
– no @effects means any change is possible

// @modifies A
// @effects all entries of A set to zero
void clear(int[] A)

Example 1

/**

 * Changes the first instance of v in A to w
 * @param A The list to look in. Must be non-null
 * @param v The value to look for
 * @param w The value to replace the first v with
 * @modifies A
 * @effects changes A[i] = w, where i is the
 * smallest index with A[i] = v, and leaves

 * A[j] unchanged for all j /= i
 * @throws NotFound if no such index i exists
 */

void changeFirst(List<Integer> A, int v, int w)

Recall: Example 2

/**

 * Returns the concatenation of two lists.
 * @param A The first list. Must be non-null
 * @param B The second list. Must be non-null
 * @return a list containing the elements of A
 * followed by all the elements of B.

 */
List<Integer> concat(
 List<Integer> A, List<Integer> B)

How would we change this to mutate instead?

Example 2

/**

 * Returns the concatenation of two lists.
 * @param A The first list. Must be non-null
 * @param B The second list. Must be non-null
 * @modifies A
 * @effects A = A_0 ++ B
 */
void concat(List<Integer> A, List<Integer> B)

Can B also be modified?

We are now using Floyd logic in the spec!

Example 3

/**

 * Returns the number of common elements in both
 * A and B. Sorts A and B in the process.

 * @param A The first list. Must be non-null
 * @param B The second list. Must be non-null
 *

 *
 *

 *
 */
int commonElems(List<Integer> A, List<Integer> B)

How should we specify this?

Example 3

/**

 * Returns the number of common elements in both
 * A and B. Sorts A and B in the process.

 * @param A The first list. Must be non-null
 * @param B The second list. Must be non-null
 * @modifies A, B
 * @effects A is sorted and B is sorted
 * @returns the number of indexes i such that
 * A[i] also appears in B somewhere
 */
int commonElems(List<Integer> A, List<Integer> B)

Recall: Comparing Specifications

• Specification S1 is stronger than S2…
– whenever is S1 satisfied, S2 is also satisfied
– i.e., satisfying S1 implies satisfying S2

• Changing from S2 to S1 (strengthening)…
– cannot break any clients!
– client works with any implementation satisfying S2

and that includes anything satisfying S1

• But what does this mean…
– in terms of precondition and postcondition

Recall: Comparing Specifications

• Specification S1 is stronger than S2 if it has…
– a weaker precondition and the same postcondition

– a stronger postcondition and the same precondition

– (or both)

P1 P2precondition

postcondition
(for a fixed input)

Q2 Q1

Comparing Specifications With Mutation

• Specification S1 is stronger than S2 if it has…

• A stronger postcondition:
– adds more to @returns
– adds more to @effects
– removes from @modifies

promise is not to modify anything not listed

• A weaker precondition:
– no change here

Example 4

int commonElems(List<Integer> A, List<Integer> B)

// Specification S1
// @modifies A, B
// @effects A is sorted and B is sorted
// @returns the number of indexes i such that
// A[i] also appears in B somewhere

// Specification S2
// @modifies A, B
// @effects
// @returns the number of indexes i such that
// A[i] also appears in B somewhere

How does S1 relate to S2?

Example 5

int commonElems(List<Integer> A, List<Integer> B)

// Specification S3
// @modifies A, B
// @effects A is sorted
// @returns the number of indexes i such that
// A[i] also appears in B somewhere

// Specification S4
// @modifies A
// @effects A is sorted
// @returns the number of indexes i such that
// A[i] also appears in B somewhere

How does S3 relate to S4?

Example 5

int commonElems(List<Integer> A, List<Integer> B)

// Specification S1
// @modifies A, B
// @effects A is sorted and B is sorted
// @returns the number of indexes i such that
// A[i] also appears in B somewhere

// Specification S4
// @modifies A
// @effects A is sorted
// @returns the number of indexes i such that
// A[i] also appears in B somewhere

How does S1 relate to S4?

Mutation in ADTs

Recall: Mutable vs Immutable ADTs

 Immutable Mutable
observers ✅ ✅

mutators ❌ ✅
producers ✅ ❌ (usually not)

• Sensible to pick one or the other
– would be dangerous to provide both

will see why later on

Recall: Specifying FastList

/**
 * A list of integers that can retrieve the last
 * element in O(1) time.
 */
interface FastList {

 // Returns the last element of the list (O(1) time)
 // @requires obj /= nil
 // @return last(obj)
 int getLast();

 // Returns the object as a regular list of items.
 // @return obj
 List getList();

observer

observer

Recall: Specifying FastList

/**
 * A list of integers that can retrieve the last
 * element in O(1) time.
 */
interface FastList {
 …

 /**
 * Returns a new list with x in front of this list.
 * @return x :: obj
 */
 FastList cons(int x);

• How do we make this a mutator?

producer

Specifying a Mutable FastList

/**
 * A mutable list of integers that can retrieve the
 * last element in O(1) time.
 */
interface MutableFastList {
 …

 /**
 * Adds x to the front of this list.
 * @modifies obj
 * @effects obj = x :: obj_0
 */
 void cons(int x);

• Changes obj to have x at the beginning

Recall: Specifying Point

/** Represents an (x, y) point in 2D space. */
interface Point {

 /** @return x */
 double getX();

 /** @return y */
 double getY();

• Abstract state is a pair (x,	y)
– i.e., we have (x,	y)	:=	obj
– so, we can refer to "x" and "y"

Recall: Specifying Point

/** Represents an (x, y) point in 2D space. */
interface Point {

 /** @return (x^2 + y^2)^(1/2) */
 double getR();

 /** @return arctan(y/x) */
 double getTheta();

• Imperative specifications
– code may or may not actually do these calculations
– PolarPoint just returns the value in a field

Recall: Specifying Point

/** Represents an (x, y) point in 2D space. */
interface Point {

 /** @return (x + dx, y + dy) */
 Point shiftBy(double dx, double dy);

• How do we make this a mutator?

Specifying a Mutable Point

/** Represents a mutable (x, y) point in 2D space. */
interface MutablePoint {

 /**
 * Moves the point right by dx and up by dy
 * @modifies obj
 * @effects obj = (x_0 + dx, y_0 + dy)
 */
 void shiftBy(double dx, double dy);

Recall: Immutable Queue

• A queue is a list that can only be changed two ways:
– add elements to the front
– remove elements from the back

// List that only supports adding to the front and
// removing from the end
interface NumberQueue {

 // @return len(obj)
 int size();

 // @return [x] ++ obj
 NumberQueue enqueue(int x);

 // @requires len(obj) > 0
 // @return (x, Q) with obj = Q ++ [x]
 DequeueParts dequeue();

}

class DequeueParts {
 public final List Q;
 public final int x;
}

Which method(s) change
in a mutable version?

Mutable Queue

 // @return [x] ++ obj
 NumberQueue enqueue(int x);

• How do we make this mutable?

 // @modifies obj
 // @effects obj = [x] ++ obj_0
 void enqueue(int x);

Mutable Queue

 // @requires len(obj) > 0
 // @return (x, Q) with obj = Q ++ [x]
 DequeueParts dequeue();

• How do we make this mutable?

 // @modifies obj
 // @effects obj_0 = obj ++ [x]
 // @return x
 int dequeue();

Mutable Queue

• Note the symmetry between these operations:

 // @modifies obj
 // @effects obj = [x] ++ obj_0
 void enqueue(int x);

 // @modifies obj
 // @effects obj_0 = obj ++ [x]
 // @return x
 int dequeue();

Which one of these is declarative?

Recall: Specifying Polynomials

/**
 * Represents a polynomial with int coefficients.
 * This is a list of pairs (c, n), where each "c" is
 * called a coefficient and "n" an exponent.
 *
 * A polynomial can be thought of as a function whose
 * value at a given x is calculated as follows:
 *
 * value(nil, x) := 0
 * value((c, n) :: L, x) := c * x^n + value(L, x)
 */
interface IntPoly {

Recall: Specifying Polynomials

/**
 * Represents a polynomial with int coefficients.
 * This is a list of pairs (c, n), …
 */
interface IntPoly {

 /** @return value(obj, x) */
 int eval(int x);

 /** @return obj ++ p */
 IntPoly add(IntPoly p);

 // Returns the coefficient with exponent "m"
 // @return coeff(obj, m), where…
 int coeff(int n);

Which method(s) change
in a mutable version?

Mutable Polynomials

// Returns a list that also includes p's pairs
 // @return obj ++ p
 IntPoly add(IntPoly p);

• How do we make this mutable?

 // Adds all the pairs in the given poly to this one
 // @modifies obj
 // @effects obj = obj_0 ++ p
 void add(IntPoly p);

Converting Between Mutators and Producers

• We can transform between these in general
– assume that "T" is our interface

 // @return f(obj, x)
 T produce(int x);

 // @modifies obj
 // @effects obj = f(obj_0, x)
 void mutate(int x);

1. change return type
2. change @return expression

into @effects obj = expression

Aliasing

Recall: Binary Search Trees

• Consider the following tree
– searching for "4" proceeds as follows:

• Suppose someone changed "3" into "5"…

6

3

1 4

9

8

Recall: Binary Search Trees

• Suppose someone changed "3" into "5"…
– now this happens when we search for "4":

– It can no longer be found!
Doesn't crash. It's just not found.

– Problem doesn't occur on the line with the change

6

5

1 4

9

8

Scary Bugs

• Do not fear crashes
– often no debugging at all

get a stack trace that tells you exactly where it went wrong

• Do fear unexpected mutation
– failure will give you no clue what went wrong

will take a long time to realize the BST invariant was violated by mutation

– bug could be almost anywhere in the code
anyone who mutates a Location could have caused it

– could take weeks to track it down

Another Example

class Name {
 private String first;
 private String last;

 public String toString() {
 return first + " " + last;
 }

 public void capitalize() {
 this.first = first.substring(0, 1).toUpperCase()
 + first.substring(1);

 this.second = second.substring(0, 1).toUppercase()
 + second.substring(1);

 }
}

Somewhere else…
Map<Name, Integer> M;

Even Worse in C/C++

• C/C++ strings are mutable
– commonly used as map keys
– this sort of bug is still very common

• Java strings are immutable
– was hugely controversial at the time

in retrospect, it was clearly a good idea

– other mutable types can still be used as keys

Aliases

• Extra references to an object are called "aliases"
– possible for any reference type

• Aliases are fine when objects are immutable
– we don’t care if someone else reads the data
– we only care if someone mutates it

• Aliases are scary when objects are mutable…
– creates the potential for failures far from bugs
– that means painful debugging

Mutable Heap State

• “With great power, comes great responsibility”
– Uncle Ben

• With aliases to mutable heap state:
– gain efficiency in some cases
– must keep track of every alias that could mutate that state

any alias, anywhere in the entire program could cause a bug

• EJ 17: minimize mutability in classes

Easy Ways to Stay Safe

1. Do not mutate heap state
– don’t need to think about aliasing at all
– any number of aliases is fine

2. Do not allow aliases…
– create the state in your constructor and don’t share it

class MyClass {
 // RI: vals is sorted
 private String[] vals;

 public MyClass() {
 this.vals = new String[10]; // only reference
 …

 }

Easy Ways to Stay Safe

• Not enough just to declare it "private"

class MyClass {
 // RI: vals is sorted
 private String[] vals;

 …

 public String[] values() {
 return this.vals;
 };

– anyone can get an alias by calling values()

• "private" is a clue that aliases might be bad

this is "representation exposure"
we wil treat it as a bug

Easy Ways to Stay Safe

2. Do not allow aliases
 (a) do not hand out aliases yourself

– return copies instead

class MyClass {
 // RI: vals is sorted
 private String[] vals;

 …

 public String[] values() {
 return this.vals; // unsafe!
 return Arrays.copyOf(this.vals, // make a copy
 this.vals.length);
 };

Easy Ways to Stay Safe

2. Do not allow aliases
 (b) make a copy of anything you want to keep

– does not matter if the caller mutates the original

class MyClass {
 // RI: vals is sorted
 private String[] vals;

 …

 // @requires A is sorted
 public MyClass(String[] A) {
 this.vals = A; // unsafe!
 this.vals = Arrays.copyOf(A, // make a copy
 A.length);
 };

Easy Ways to Stay Safe

1. Do not use mutable state
– don’t need to think about aliasing at all
– any number of aliases is fine

2. Do not allow aliases to mutable state
a) do not hand out aliases yourself
b) make a copy of anything you want to keep

• For 331, mutable aliasing across files is a bug!
– gives other parts the ability to break your code
– we will stick to these simple strategies for avoiding it

ensures only one reference to the object (no aliases)

An Advanced (Two-Stage) Approach

• Mutable object has only one reference (owner)
– one reference that is allowed to use & mutate it

• Object is eventually “frozen”, making it immutable
– no longer necessary to track ownership

• Example: Java’s StringBuilder vs String
– StringBuilder is mutable (be careful!)
– StringBuilder.toString returns the value as a String
– String is immutable

Rules of Thumb

Client Side

1. Data is small
– anything on screen is O(1)

2. Aliasing is common
– UI design forces modules
– data is widely shared

Rule: avoid mutation
– create new values instead
– performance will be fine

Server Side

1. Data is large
– efficiency maters

2. Aliasing is avoidable
– you decide on modules
– data is not widely shared

Rule: avoid aliases
– do not allow aliases to your data
– hand out copies not aliases
– (good enough for us in 331)

Using List

• Same issue arises with List as with arrays

class MyClass {
 // RI: vals is sorted
 private List<String> vals;

 public List<String> values() {
 return this.vals; // unsafe
 };

– since a List is mutable, we cannot create aliases

Another Alternative

• With List, a third option is sometimes used:

class MyClass {
 // RI: vals is sorted
 private List<String> vals;

 public List<String> values() {
 return Collections.unmodifiableList(this.vals);
 };

– throws an exception when mutators are called
– runs in O(1) time instead of O(n) to copy

Can this change break the client?

Another Alternative

• This can break clients
– this works with a copy

MyClass m = …;
List<String> list = m.values()

list.add("another");

– but not with UnmodifiableList

• Specification must make clear the behavior
– how do the two options relate?

Another Alternative

• These two are incomparable
– they have differing behavior
– client can work with one but not the other and v.v.

• How is this possible when both return List?
– the unmodifiable list does not implement List!

the spec doesn't let you throw on any call to add

– this is a terrible idea
but occasionally necessary in extreme circumstances

• Really these are different return types
– would be better to make then different interfaces

Unmodifiable View

• Unmodifiable list is a "view" of the underlying list

• It changes whenever the underlying list changes
– updates to that list show up in the view immediately
– it is not a copy of the data at that point

• This can lead to difficult bugs
– do not use such a view as a key in a map
– any alias to it can mutate it at any point

Unmodifiable View

• Why would someone do this?

• Like most CS bugs, it is for performance
– we all know that O(1) is better than O(n)

• But most client uses are O(n) anyway!
– client probably wants to loop through the list
– in that case, there is no O(..) gain to

• We will stick to immutable or copying (no aliases)

Module Design

Module Design

"Designing modules is the heart of software design."
— Michael Ernst

• In Java, a "module" is a file or a top-level class

• Module design is an enormous subject
– can look for many properties such as decomposability,

composability, understandability, continuity, isolation

• We will keep things simpler…

Module Design

• Modules should have
– high cohesion
– low coupling

• Cohesion: the parts go together
– they all serve one purpose or represent one concept
– examples: an ADT, java.util.Arrays
– non-example: one class for sorting, drawing, & printing
– primarily about the specification

Module Design

• Modules should have
– high cohesion
– low coupling

• Coupling: the parts only understandable together
– must learn both to understand either
– example: an immutable ADT
– non-example: a mutable ADT that allows aliases

must understand how all aliases are used to know if it's correct

– primarily about the implementation
– will see another non-example next time..

Coupling Is Bad

• Coupling makes the code less understandable
– truth for both humans and AI
– highly coupling becomes "spaghetti code"
– often shows up as a "god class"

• Coupling makes the code hard to change
– all the interrelated parts may require changes

• Coupling creates potential for painful debugging
– bugs in one piece can cause failures in another
– e.g., any misuse of an alias can break use by any other alias

Subclasses

Subclasses

• Subclassing is a means of sharing code
– subclass gets parent fields & methods (unless overridden)

class Product {
 private String name;
 private int price;
 public String getName() {return name; }
 public int getPrice() { return price; }
}

class SaleProduct extends Product {
 private float discount;
 public int getPrice() {
 return (1 – discount) * super.getPrice();
 }
}

Subclasses

• Subclassing is a surprisingly dangerous feature

• Subclassing tends to break modularity
– creates tight coupling between super- and sub-class
– often see the “fragile base class” problem

changes to super class often break subclasses

• Let’s see some examples…

Example 1: Tight Coupling

class Product {
 private int price;
 public int getPrice() { return price; }

 // @returns true iff obj’s price < p’s price
 public boolean isCheaperThan(Product p) {
 return getPrice() < p.getPrice();
 }

}

class SaleProduct extends Product {
 public int getPrice() {
 return (1 – discount) * super.getPrice();
 }
}

– looks okay so far…

Example 1: Tight Coupling

class Product {
 private int price;
 public int getPrice() { return price; }

 // @returns true iff obj’s price < p’s price
 public boolean isCheaperThan(Product p) {
 return this.price < p.price;
 }

}

class SaleProduct extends Product {
 public int getPrice() {
 return (1 – discount) * super.getPrice();
 }
}

Made it faster by eliminating a method call!

What’s wrong?

Oops! Broke the subclass

Example 2: Tight Coupling

class InstrumentedHashSet extends HashSet<Integer> {
 private static int count = 0;

 public boolean add(Integer e) {
 count += 1;
 return super.add(e);
 }

 public boolean addAll(Collection<Integer> c) {
 count += c.size();

 return super.addAll(c);
 }

 public int getCount() { return count; }
}

– what could possibly go wrong?

Example 2: Tight Coupling

InstrumentedHashSet S = new InstrumentedHashSet();
System.out.println(S.getCount()); // 0
S.addAll(Arrays.asList(1, 2));
System.out.println(S.getCount());

– what does this print?

• What is printed depends on HashSet’s addAll:
– if it calls add, then this prints 4
– if it does not call add, then this prints 2

• Also possible to be dependent on order of calls

// 4?!?

Subclassing Creates Tight Coupling

• Creates tight coupling between super- and sub-class

• Example 1: super-class needs to know about subclass
– direct field access in parent breaks subclass

• Example 2: subclass needs to know about super-class
– subclass dependent on which methods call each other

• But wait… There’s more!

Example 3: Tight Coupling

class WorkList {
 // RI: len(names) = len(times) and total = sum(times)
 protected ArrayList<String> names;
 protected ArrayList<Integer> times;
 protected int total;

 public addWork(Job job) {
 addToLists(job.getName(), job.getTime());

 total += job.getTime();
 }

 protected addToLists(String name, int time) {
 names.add(name);

 times.add(time);
 }

}

Example 3: Tight Coupling

// Makes sure no task is too large compared to rest
class BalancedWorkList extends WorkList {
 protected addToLists(String name, int time) {
 if (times.size() <= 3 || 2*time < total)
 super.addToLists(name, time); // okay
 } else {
 throw new ImbalancedWorkException(name, time);
 }
 }

}

– prevents item from being added if too big
– (also: this subclass is not a subtype!)

Example 3: Tight Coupling

class WorkList {
 // RI: len(names) = len(times) and total = sum(times)
 protected ArrayList<String> names;
 protected ArrayList<Integer> times;
 protected int total;

 public addWork(Job job) {
 int time = job.getTime(); // just one call
 total += time;
 addToLists(job.getName(), time);

 }

}

– reordering the updates breaks the subclass!
– subclass is using total that includes the new job

RI not true in method call

Example 3: Tight Coupling

• RI can be false in calls to non-public methods
– only needs to hold at end of the public method

• Requires extra care to get it right
– method is tightly coupled with the ones that call it
– needs to know what is true in those methods

not enough to just know the RI

• Hard for multiple people to communicate this clearly
– can be okay when it’s all your code
– very error prone when methods are written by others

Subclassing Creates Tight Coupling

• Creates tight coupling between super- and sub-class
– direct field access can break subclass
– subclass dependent on which methods call each other
– subclass dependent on order of method calls
– subclass can be called when RI is false

• Often see the “fragile base class” problem

• Subclassing is a surprisingly dangerous feature!
– up to you to verify subclass method specs are stronger
– up to you to prevent tight coupling

Subclassing is Best Avoided

• EJ 19: either design for subclassing or prohibit it
– from Josh Bloch, author of (much of) the Java libraries

• We haven’t used subclassing in our ADTs
– we used interfaces and implemented them with classes
– these problems are the main reason why we avoided it

• Subclassing is not necessary anyway
– we have other ways to share code
– EJ 18: prefer composition to inheritance

Equality

Equity of User-Defined Types

• For any type, useful to know which are “the same”

• Java “==” is not useful on records:

new Integer(1) == new Integer(1) // false!

– this is “reference equality”
– tells you if they refer to the same object in memory

• Checking if the fields are the same is also wrong
– different concrete states can have same abstract state

Storing a List In Two Parts

// Stores a list, split in two parts.
class ListPair implements List {

 // AF: obj = this.front ++ this.back
 private List front;
 private List back;

– three ways of representing the same abstract state:

front	 	 back	 	 front	⧺	back
[1,	2]	 	 []	 	 	 	 [1,	2]
[1]	 	 	 [2]	 	 	 	 [1,	2]
[]	 	 	 [1,	2]	 	 	 [1,	2]

– same abstract states should be considered equal!

Recall: HW3

The abstract state allows duplicates,
but clients can't tell.

Equality on Sets

• Suppose our concrete representation is:

// RI: this.list has no duplicates
// AF: obj = this.list
private List list;

• Method add returns a different list than the spec
– spec says add(1) on [1] returns [1,	1]
– if the code add a second 1, abstract state is still [1]

• Need "equal" that says these states are "the same"
– two abstract states are equal if they contain the same values

equal(L,	R)	:=	true			iff		contains(x,	L)	=	contains(x,	R)	for	any	x

Equality

• Often useful / necessary to define your own equal
– check if references point to records that are “the same”

• Sensible definition should act like “=” in math:

1. equal(a,	a)	=	T for	any	a	:	A

2. equal(a,	b)	=	equal(b,	a)		for	any	a,	b	:	A

3. if	equal(a,	b)	and	equal(b,	c),	then	equal(a,	c)		for	any	…

– (311 alert: this is an “equivalence relation”)
– Java has two more rules for Object.equal

reflexive

symmetric

transitive

Java Equals

• Jave requires the following parts:

1. 	a.equals(a) = true

2. 	a.equals(b) == b.equals(a)

3. 	a.equals(b) and b.equals(c) means a.equals(c)

4. 	a.equals(null) = false

5. 	a.equals(b)	cannot	change	value
	unless	a	or	b	is	mutated

asymmetric with null

consistency

Equals in Java

• Every class inherits an equals method
– this implements reference equality

public class Object {
 public boolean equals(Object o) {
 return this == o;
 }
}

• Make your own equals by overriding it:

public class MyClass {
 public boolean equals(Object o) {
 // … new code here …
 }

}

Example: Duration

• Define Duration to be an amount of time in seconds
– one representation stores separate minutes and seconds

type	Duration	=	{min	:	ℤ,	sec	: ℤ}		with		0	≤	sec	<	60

– second part is a rep invariant

• Can define equality on Duration this way:

equal({min:	m,	sec:	s},	{min:	n,	sec:	t})			:=			(m	=	n)	and	(s	=	t)

– true iff these are the same amount of time
(wouldn’t be true without the invariant)

Example: Duration

equal({min:	m,	sec:	s},	{min:	n,	sec:	t})			:=			(m	=	n)	and	(s	=	t)

• Does this have the required properties?
– reflexive

equal({min:	m,	sec:	s},	{min:	m,	sec:	s})
				=	(m	=	m)	and	(s	=	s)	 	 	 	 	 def of equal
				=	T	and	T
				=	T

– symmetric

equal({min:	m,	sec:	s},	{min:	n,	sec:	t})
				=	(m	=	n)	and	(s	=	t)	 	 	 	 	 def of equal
				=	(n	=	m)	and	(t	=	s)
				=	equal({min:	n,	sec:	t},	{min:	m,	sec:	s})	 def of equal

proof by calculation
that it holds for any record

Example: Duration

equal({min:	m,	sec:	s},	{min:	n,	sec:	t})			:=			(m	=	n)	and	(s	=	t)

• Does this have the required properties?
– reflexive yes
– symmetric yes
– transitive also yes (but a little long for a slide)

• Good evidence that this is a reasonable definition

Non-Example: “==” in JavaScript

0 == “0”	 	 true
 0 == “”	 	 true
 0 == “ ”	 	 true

• Which property fails?
– transitivity: “” != “ “

• Good evidence that this is not a reasonable definition

Example: Duration in Java

// Represents an amount of time measured in seconds
class Duration {

 // RI: 0 <= sec < 60
 // AF: obj = 60 * this.min + this.sec
 private int min;
 private int sec;

 public boolean equals(Duration d) {
 return this.min == d.min && this.sec == d.sec;
 };

• What is wrong with this?
– it doesn't override equals(Object)

Example: Duration in Java

// Represents an amount of time measured in seconds
class Duration {

 // RI: 0 <= sec < 60
 // AF: obj = 60 * this.min + this.sec
 private int min;
 private int sec;

 public boolean equals(Object o) {
 return this.min == o.min && this.sec == o.sec;
 };

• What is wrong with this?
– it doesn't compile

Example: Duration in Java

// Represents an amount of time measured in seconds
class Duration {

 // RI: 0 <= sec < 60
 // AF: obj = 60 * this.min + this.sec
 private int min;
 private int sec;

 public boolean equals(Object o) {
 if (!(o instanceof Duration))
 return false;

 Duration d = (Duration) o;

 return this.min == d.min && this.sec == d.sec;
 }

• Correct and idiomatic Java

Example: NanoDuration

• Suppose a subclass also measures nanoseconds

class NanoDuration extends Duration {

 // min: number (inherited)
 // sec: number (inherited)
 private int nano;

 …

• How should we define equal?

Example: NanoDuration

class NanoDuration extends Duration {

 // min: number (inherited)
 // sec: number (inherited)
 private int nano;

 public boolean equals(Object o) {
 if (!(o instanceof NanoDuration)) {
 return false;

 NanoDuration n = (NanoDuration) o;

 return this.min === n.min &&
 this.sec === n.sec &&
 this.nano === n.nano;
 }

• Which property does this lack?
symmetry

Example: NanoDuration

Duration d = new Duration(2, 10);
NanoDuration n = new NanoDuration(2, 10, 300);

System.out.println(n.equals(d));

System.out.println(d.equals(n));

– NanoDuration is only equal to other NanoDurations

– Duration can be equal to a NanoDuration
if they have the same minutes and seconds

// false

// true!

Example: NanoDuration

class NanoDuration extends Duration {

 public boolean equals(Object o) {
 if (!(o instanceof Duration))
 return false;

 if (!(o instanceof NanoDuration)) {
 Duration d = (Duration) o;
 return this.min == d.min && this.sec == d.sec;
 } else {
 NanoDuration n = (NanoDuration) o;
 return this.min === d.min &&
 this.sec === d.sec && this.nano === d.nano;
 }

 };

• Fixes symmetry! all good now?
No! It lacks transitivity

Example: NanoDuration

NanoDuration n1 = new NanoDuration(2, 10, 300);
Duration d = new Duration(2, 10);
NanoDuration n2 = new NanoDuration(2, 10, 400);

System.out.println(n1.equals(d));
System.out.println(d.equals(n2));

System.out.println(n1.equals(n2));

– transitivity requires n1 to equal n2 (but it doesn’t)

// true

// true

// false!

Example: NanoDuration

• Can fix this instead as follows:
– have both agree that Duration ≠ NanoDuration

class Duration {
 …
 public boolean equals(Object o) {
 if (!(o instanceof Duration) ||
 (o instanceof NanoDuration))
 return false;

 Duration d = (Duration) o;

 return this.min == d.min && this.sec == d.sec;
 }

}

• This is arguably the most sensible answer…

Example: NanoDuration

• Should have spelled out the abstract states:

// Represents an amount of time in nanoseconds
class NanoDuration extends Duration {

 // RI: 0 <= sec < 60 and 0 <= nano < 10000
 // AF: obj = 60,000,000 * this.min +
 // 1,000,000 * this.sec +
 // this.nano
 private int nano;

}

• Abstract states of the two types are different
– time in seconds vs nanoseconds
– two different types of things should not be equal

Duration and NanoDuration

• We fixed it… but at what cost?

• Duration and NanoDuration are tightly coupled
– the two classes are tightly intertwined

• This usually happens with subclasses
– saw several different ways they are interdependent
– very hard to avoid coupling between subclasses

EJ 19: either design for subclassing or prohibit it

– better to simply not use it
find other ways to share code (e.g., shared utility functions etc.)

HashCode in Java

• Java has another method called hashCode

public int hashCode();

• Should override hashCode and equals together
– almost certainly a bug to only override equals

Java HashCode

• Java has another method called hashCode
– provided to make HashMap etc. work

public int hashCode();

• Its spec has the following requirements:

1. 	 a.hashCode()	cannot	change	value		unless	a	is	mutated

2. 	a.equals(b) means a.hashCode() == b.hashCode()
consistent with equals

self-consistency

when equals changes, so does hashCode

Equals & HashCode in Java

• Every class inherits a hashCode method

public class Object {
 public int hashCode() {
 // … consistent with reference equality …
 }

}

• When you override equals, also override hashCode
– almost certainly a bug to only override equals

public class MyClass {
 public int hashCode() {
 // … something consistent with new equality …
 }

}

