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Reasoning So Far

• Code so far made up of three elements
– straight-line code (just variable declarations and returns)
– conditionals
– recursion

• All code without mutation looks like this

• Proving correctness is proving implications
– check that known facts imply the required facts



Recall: Finding Facts at a Return Statement

• Consider this code

// Inputs a and b must be integers.
// Returns a non-negative integer.
public int f(int a, int b) {
  if (a >= 0 && b >= 0) {
    final List L = cons(a, cons(b, nil));
    return sum(L);
  }

  …

• Known facts include “a	≥	0”, “b	≥	0”, and “L	=	cons(…)”

• Prove that postcondition holds: “sum(L)	≥	0”

find facts by reading along path 
from top to return statement



Finding Facts at a Return Statement

• Consider this code

// Inputs a and b must be integers.
// Returns a non-negative integer.
public int f(int a, int b) => {
  if (a >= 0 && b >= 0) {
    a = a – 1;

    final List L = cons(a, cons(b, nil));
    return sum(L);
  }
  …

• Facts no longer hold throughout straight-line code

• When we state a fact, we have to say where it holds

a	≥	0

a	≥	0? No!



Correctness Levels

Description Testing Tools Reasoning

no mutation coverage type checking calculation
induction

local variable mutation “ “ Floyd logic

heap state mutation “ “ rep invariants

array mutation “ “ for-any facts



Finding Facts at a Return Statement

// Inputs a and b must be integers.
// Returns a non-negative integer.
public int f(int a, int b) {
  if (a >= 0 && b >= 0) {
    {{	a	≥	0	}}
    a = a – 1;

    {{	a	≥	–1	}}
    final List L = cons(a, cons(b, nil));
    return sum(L);
  }
   

• When we state a fact, we have to say where it holds

•  {{	..	}} notation indicates facts true at that point
– cannot assume those are true anywhere else



Finding Facts at a Return Statement

// Inputs a and b must be integers.
// Returns a non-negative integer.
public int f(int a, int b) {
  if (a >= 0 && b >= 0) {
    {{	a	≥	0	}}
    a = a – 1;

    {{	a	≥	–1	}}
    final List L = cons(a, cons(b, nil));
    return sum(L);
  }

• There are mechanical tools for moving facts around
– “forward reasoning” says how they change as we move down
– “backward reasoning” says how they change as we move up



Finding Facts at a Return Statement

// Inputs a and b must be integers.
// Returns a non-negative integer.
public int f(int a, int b) {
  if (a >= 0 && b >= 0) {
    {{	a	≥	0	}}
    a = a – 1;

    {{	a	≥	–1	}}
    final List L = cons(a, cons(b, nil));
    return sum(L);
  }

• Professionals are insanely good at forward reasoning
– “programmers are the Olympic athletes of forward reasoning”
– you’ll have an edge by learning backward reasoning too



Floyd Logic



Floyd Logic

• Invented by Robert Floyd and Sir Anthony Hoare
– Floyd won the Turing award in 1978
– Hoare won the Turing award in 1980

picture from Wikipedia

Tony HoareRobert Floyd

By%20https:/amturing.acm.org/award_winners/floyd_3720707.cfm,%20Fair%20use,%20https:/en.wikipedia.org/w/index.php?curid=59539154


Floyd Logic Terminology

• The program state is the values of the variables

• An assertion (in {{ .. }}) is a T/F claim about the state
– an assertion “holds” if the claim is true
– assertions are math not code

(we do our reasoning in math)

• Most important assertions:
– precondition: claim about the state when the function starts
– postcondition: claim about the state when the function ends



Hoare Triples

• A Hoare triple has two assertions and some code

	 	 {{	P	}}
	 	 				S	
	 	 {{	Q	}}

– P is the precondition, Q is the postcondition
– S is the code

• Triple is “valid” if the code is correct:
– S takes any state satisfying P into a state satisfying Q

does not matter what the code does if P does not hold initially

– otherwise, the triple is invalid



Correctness Example

/**
 * @param n an integer with n >= 1
 * @returns an integer m with m >= 10
 */
public int f(int n) {
  n = n + 3;

  return n * n;
};



Correctness Example

/**
 * @param n an integer with n >= 1
 * @returns an integer m with m >= 10
 */
public int f(int n) {
  {{	n	≥	1	}}
  n = n + 3;

  {{	n2	≥	10	}}
  return n * n;
};

• Precondition and postcondition come from spec

• Remains to check that the triple is valid



Hoare Triples with No Code

• Code could be empty:

	 	 {{	P	}}
	 	 {{	Q	}}

• When is such a triple valid?
– valid iff P implies Q
– we already know how to check validity in this case:

prove each fact in Q by calculation, using facts from P



Hoare Triples with No Code

• Code could be empty:

	 	 {{	a	≥	0,		b	≥	0,		L	=	cons(a,	cons(b,	nil))	}}
	 	 {{	sum(L)	≥	0	}}

• Check that P implies Q by calculation

sum(L)	 =	sum(cons(a,	cons(b,	nil)))	 	 	 since	L	=	…
	 	 =	a	+	sum(cons(b,	nil))	 	 	 	 def	of	sum
	 	 =	a	+	b	+	sum(nil)	 	 	 	 	 def	of	sum
	 	 =	a	+	b	 	 	 	 	 	 	 	 def	of	sum
	 	 ≥	0	+	b	 	 	 	 	 	 	 	 since	a	≥	0
	 	 ≥	0	+	0	 	 	 	 	 	 	 	 since	b	≥	0
	 	 =	0



Hoare Triples with Code

• Code with code:

	 	 {{	P	}}
	 	 				S
	 	 {{	Q	}}

• Easy if S is empty, but what if not?

• We can use forward & backward reasoning
– move the assertions toward each other until they meet
– then we have a triple with no code



Hoare Triples with Multiple Lines of Code

• Code with multiple lines:

	 	 {{	P	}}
	 	 				S
	 	 				T
	 	 {{	Q	}}

• Valid iff there exists an R making both triples valid
– i.e., {{	P	}}	S	{{	R	}} is valid and {{	R	}}	T	{{	Q	}} is valid

• Will see next how to put these to good use…

{{	P	}}
				S
{{	R	}}
				T
{{	Q	}}



Recall: Stronger Assertions

•  Assertion is stronger iff it holds in a subset of states

•  Stronger assertion implies the weaker one
– stronger is a synonym for “implies”
– weaker is a synonym for “is implied by”

Q2Q1



Recall: Stronger Assertions

•  Assertion is stronger iff it holds in a subset of states

•  Weakest possible assertion is “true” (all states)
– an empty assertion (“”) also means “true”

•  Strongest possible assertion is “false” (no states!)

Q2Q1



Mechanical Reasoning Tools

• Forward / backward reasoning fill in assertions
– mechanically create valid triples

•  Forward reasoning fills in postcondition

	 	 {{	P	}}		S		{{	___	}}

– gives strongest postcondition making the triple valid

•  Backward reasoning fills in precondition

	 	 {{	___	}}		S		{{	Q	}}

– gives weakest precondition making the triple valid



Correctness via Forward Reasoning

• Apply forward reasoning

{{	P	}}	 	 	 	 	 {{	P	}}
				S		 	 	 	 	 				S
{{	Q	}}	 	 	 	 	 {{	R	}}
	 	 	 	 	 	 {{	Q	}}

– first triple is always valid
– only need to check second triple

just requires proving an implication (since no code is present)

• If second triple is invalid, the code is incorrect
– true because R is the strongest assertion possible here

2

1



Correctness via Backward Reasoning

• Apply backward reasoning

{{	P	}}	 	 	 	 	 {{	P	}}
				S 	 	 	 	 {{	R	}}
{{	Q	}}	 	 	 	 	 				S
	 	 	 	 	 	 {{	Q	}}

– second triple is always valid
– only need to check first triple

just requires proving an implication (since no code is present)

• If first triple is invalid, the code is incorrect
– true because R is the weakest assertion possible here

1

2



Mechanical Reasoning Tools

• Forward / backward reasoning fill in assertions
– mechanically create valid triples

• Reduce correctness to proving implications (again)
– this was already true for functional code
– will soon have the same for imperative code

• Implication will be false if the code is incorrect
– reasoning can verify correct code
– reasoning will never accept incorrect code



Correctness via Forward & Backward

• Can use both types of reasoning on longer code

	 	 {{	P	}}
	 	 				S
	 	 {{	R1	}}
	 	 {{	R2	}}
	 	 				T
	 	 {{	Q	}}

– first and third triples is always valid
– only need to check second triple

verify that R1 implies R2

1

3

2



Forward & Backward
Reasoning



Forward and Backward Reasoning

• Imperative code made up of
– assignments (mutation)
– conditionals
– loops

• Anything can be rewritten with just these

• We will learn forward / backward rules to handle them
– will also learn a rule for function calls
– once we have those, we are done



Example Forward Reasoning through Assignments

{{	w	>	0	}}
 x = 17;

{{	_______________________	}}
 y = 42;

{{	_______________________	}}
 z = w + x + y;

{{	_______________________	}}

• What do we know is true after x = 17 ?
– want the strongest postcondition (most precise)



Example Forward Reasoning through Assignments

{{	w	>	0	}}
 x = 17;

{{	w	>	0	and	x	=	17	}}
 y = 42;

{{	_______________________	}}
 z = w + x + y;

{{	_______________________	}}

• What do we know is true after x = 17 ?
– w was not changed, so w	>	0 is still true
– x is now 17

• What do we know is true after y = 42 ?



Example Forward Reasoning through Assignments

{{	w	>	0	}}
 x = 17;

{{	w	>	0	and	x	=	17	}}
 y = 42;

{{	w	>	0	and	x	=	17	and	y	=	42	}}
 z = w + x + y;

{{	_______________________	}}

• What do we know is true after y = 42 ?
– w and x were not changed, so previous facts still true
– y is now 42

• What do we know is true after z = w + x + y ?



Example Forward Reasoning through Assignments

{{	w	>	0	}}
 x = 17;

{{	w	>	0	and	x	=	17	}}
 y = 42;

{{	w	>	0	and	x	=	17	and	y	=	42	}}
 z = w + x + y;

{{	w	>	0	and	x	=	17	and	y	=	42	and	z	=	w	+	x	+	y	}}

• What do we know is true after z = w + x + y ?
– w, x, and y were not changed, so previous facts still true
– z is now w	+	x	+	y

• Could also write z	=	w	+	59 (since x	=	17 and y	=	42)



Example Forward Reasoning through Assignments

{{	w	>	0	}}
 x = 17;

{{	w	>	0	and	x	=	17	}}
 y = 42;

{{	w	>	0	and	x	=	17	and	y	=	42	}}
 z = w + x + y;

{{	w	>	0	and	x	=	17	and	y	=	42	and	z	=	w	+	x	+	y	}}

• Could write z	=	w	+	59, but do not write z	>	59 !
– that is true since w	>	0, but…



Example Forward Reasoning through Assignments

• Could write z	=	w	+	59, but do not write z	>	59 !
– that is true but it is not the strongest postcondition

correctness check could now fail even if the code is right

w

z 60

z	>	59	and	w	>	0

z	=	w	+	59	and	w	>	0



Code Example of Forward Reasoning

// @param w an integer > 0
// @returns an integer z > 59
public int f(int w) {
  int x = 17;
  int y = 42;
  int z = w + x + y;
  return z;
};

• Let’s check correctness using Floyd logic…



Code Example of Forward Reasoning

// @param w an integer > 0
// @returns an integer z > 59
public int f(int w) {
  {{	w	>	0	}}
  int x = 17;
  int y = 42;
  int z = w + x + y;
  {{	z	>	59	}}
  return z;
};

• Reason forward…



Code Example of Forward Reasoning

// @param w an integer > 0
// @returns an integer z > 59
public int f(int w) {
  {{	w	>	0	}}
  int x = 17;
  int y = 42;
  int z = w + x + y;
  {{	w	>	0	and	x	=	17	and	y	=	42	and	z	=	w	+	x	+	y	}}
  {{	z	>	59	}}
  return z;
};

• Check implication: z	 =	w	+	x	+	y
	 =	w	+	17	+	y  since x	=	17
	 =	w	+	59   since y	=	42
	 >	59    since w	>	0



Code Example of Forward Reasoning

// @param w an integer > 0
// @returns an integer z > 59
public int f(int w) {
  int x = 17;
  int y = 42;
  int z = w + x + y;
  return z;
};

• How about if we use our old approach?

• Known facts: w	>	0, x	=	17, y	=	42, and z	=	w	+	x	+	y

• Prove that postcondition holds: z	>	59

find facts by reading along path 
from top to return statement



Code Example of Forward Reasoning

// @param w an integer > 0
// @returns an integer z > 59
public int f(int w) {
  int x = 17;
  int y = 42;
  int z = w + x + y;
  return z;
};

• We’ve been doing forward reasoning already!
– forward reasoning is (only) “and” with no mutation

• Line-by-line facts are for mutation (not “final”)



Forward Reasoning through Assignments

• Forward reasoning is trickier with mutation
– gets harder if we mutate a variable

 w = x + y;

{{	w	=	x	+	y	}}
 x = 4;

{{	w	=	x	+	y	and	x	=	4	}}
 y = 3;

{{	w	=	x	+	y	and	x	=	4	and	y	=	3	}}

• Final assertion is not necessarily true
– w	=	x	+	y is true with their old values, not the new ones
– changing the value of “x” can invalidate facts about x

facts refer to the old value, not the new value

– avoid this by using different names for old and new values



Forward Reasoning through Assignments

• Can use subscripts to refer to values at different times

… (int x) => …

 …      x0

 x = …

 …      	x1	

 x = …

 …      	x2	

 x = …

 …      	x3	

 x = …

 …      	x4	

x	=	x0

x	=	x1

x	=	x2

x	=	x3

x	=	x4

"x" means current value



Forward Reasoning through Assignments

• Rewrite existing facts to use names of earlier values
– will use “x” and “y” to refer to current values
– can use “x0” and “y0” (or other subscripts) for earlier values

{{	w	=	x	+	y	}}
 x = 4;

{{	w	=	x0	+	y	and	x	=	4	}}
 y = 3;

{{	w	=	x0	+	y0	and	x	=	4	and	y	=	3	}}

• Final assertion is now accurate
– w is equal to the sum of the initial values of x and y



Forward Reasoning through Assignments

• For assignments, general forward reasoning rule is

{{	P	}}
				x = y;
{{	P[x	↦	xk]	and	x	=	y[x	↦	xk]	}}

– replace all “x”s in P and y with “xk”s

• This process can be simplified in many cases
– no need for x0 if we can write it in terms of new value
– e.g., if “x	=	x0	+	1”, then “x0	=	x	–	1”
– assertions will be easier to read without old values

(Technically, this is weakening, but it’s usually fine
 Postconditions usually do not refer to old values of variables.)



Forward Reasoning through Assignments

• For assignments, general forward reasoning rule is

{{	P	}}
				x = y;
{{	P[x	↦	xk]	and	x	=	y[x	↦	xk]	}}	 	 	 	xk	is name of previous value

• If x0	=	f(x), then we can simplify this to

{{	P	}}
				x = … x …;
{{	P[x	↦	f(x)]	}}	 	 	 	 	 	 no need for, e.g., “and	x	=	x0	+	1”

– if assignment is “x	=	x0	+	1”, then “x0	=	x	–	1”
– if assignment is “x	=	2x0”, then “x0	=	x/2”
– does not work for integer division (an un-invertible operation)



Correctness Example by Forward Reasoning

/**
 * @param n an integer with n >= 1
 * @returns an integer m with m >= 10
 */
public int f = (int n) {
  {{	n	≥	1	}}
  n = n + 3;

  {{	n	–	3	≥	1	}}
  {{	n2	≥	10	}}
  return n * n;
};

n2	 	≥	42	 	 	 since	n	–	3	≥	1	(i.e.,		n	≥	4)
	 =	16
	 >	10

n	=	n0	+	3	means n	–	3	=	n0

check this implication

This is the preferred approach.
Avoid subscripts when possible.



Mutation in Straight-Line Code

• Alternative ways of writing this code:

n = n + 3;     final int n1 = n + 3;
return n * n;    return n1 * n1;

• Mutation in straight-line code is unnecessary
– can always use different names for each value

• Why would we prefer the former?
– seems like it might save memory…
– but it doesn't!

most compilers will turn the left into the right on their own (SSA form)
it's better at saving memory than you are, so it does it itself



Example Backward Reasoning with Assignments

{{	_______________________	}}
 x = 17;

{{	_______________________	}}
 y = 42;

{{	_______________________	}}
 z = w + x + y;

{{	z	<	0	}}

• What must be true before z = w + x + y so z	<	0 ?
– want the weakest precondition (most allowed states)



Example Backward Reasoning with Assignments

{{	_______________________	}}
 x = 17;

{{	_______________________	}}
 y = 42;

{{	w	+	x	+	y	<	0	}}
 z = w + x + y;

{{	z	<	0	}}

• What must be true before z = w + x + y so z	<	0 ?
– must have w	+	x	+	y	<	0 beforehand

• What must be true before y = 42 for w	+	x	+	y	<	0 ?



Example Backward Reasoning with Assignments

{{	_______________________	}}
 x = 17;

{{	w	+	x	+	42	<	0	}}
 y = 42;

{{	w	+	x	+	y	<	0	}}
 z = w + x + y;

{{	z	<	0	}}

• What must be true before y = 42 for w	+	x	+	y	<	0 ?
– must have w	+	x	+	42	<	0 beforehand

• What must be true before x = 17 for w	+	x	+	42	<	0 ?



Example Backward Reasoning with Assignments

{{	w	+	17	+	42	<	0	}}
 x = 17;

{{	w	+	x	+	42	<	0	}}
 y = 42;

{{	w	+	x	+	y	<	0	}}
 z = w + x + y;

{{	z	<	0	}}

• What must be true before x = 17 for w	+	x	+	42	<	0 ?
– must have w	+	59	<	0 beforehand

• All we did was substitute right side for the left side
– e.g., substitute “w	+	x	+	y” for “z” in “z	<	0”
– e.g., substitute “42” for “y” in “w	+	x	+	y	<	0”
– e.g., substitute “17” for “x” in “w	+	x	+	42	<	0”



Backward Reasoning through Assignments

• For assignments, backward reasoning is substitution

{{	Q[x	↦	y]	}}
				x = y;
{{	Q	}}

– just replace all the “x”s with “y”s
– we will denote this substitution by Q[x	↦	y]

• Mechanically simpler than forward reasoning
– no need for subscripts



Correctness Example by Backward Reasoning

/**
 * @param n an integer with n >= 1
 * @returns an integer m with m >= 10
 */
public int f(int n) {
  {{	n	≥	1	}}
  n = n + 3;

  {{	n2	≥	10	}}
  return n * n;
};

• Code is correct if this triple is valid…



Correctness Example by Backward Reasoning

/**
 * @param n an integer with n >= 1
 * @returns an integer m with m >= 10
 */
public int f(int n) {
  {{	n	≥	1	}}
  {{	(n	+	3)2	≥	10	}}
  n = n + 3;
  {{	n2	≥	10	}}
  return n * n;
};

(n+3)2	 	≥	(1	+	3)2	 	 	 since	n	≥	1
	 	 =	16
	 	 >	10

check this implication



Correctness Example by Forward Reasoning

/**
 * @param n an integer with n >= 1
 * @returns an integer m with m >= 10
 */
public int f(int n) {
  {{	n	≥	1	}}
  n = n + 3;

  {{	n	–	3	≥	1	}}
  {{	n2	≥	10	}}
  return n * n;
};

n2	 	≥	42	 	 	 since	n	–	3	≥	1	(i.e.,		n	≥	4)
	 =	16
	 >	10

check this implication

Forward reasoning produces known facts.
Backward reasoning produces fact to prove.



Conditionals



Conditionals in Functional Programming

// Inputs a and b must be integers.
// Returns a non-negative integer.
public int f(int a, int b) {
  if (a >= 0 && b >= 0) {
    final List L = cons(a, cons(b, nil));
    return sum(L);
  }

  …

• Prior reasoning also included conditionals
– what does that look like in Floyd logic?



Conditionals in Floyd Logic

// Inputs a and b must be integers.
// Returns a non-negative integer.
public int f(int a, int b) {
  {{	}}
  if (a >= 0 && b >= 0) {
    {{	a	≥	0	and	b	≥	0	}}
    final List L = cons(a, cons(b, nil));
    return sum(L);
  }

  …

• Conditionals introduce extra facts in forward reasoning
– simple “and” since nothing is mutated



Conditionals in Floyd Logic

// Returns an integer m with m > n
public int g(int n) {
  int m;
  if (n >= 0) {
    m = 2 * n + 1;
  } else {
    m = 0;

  }
  return m;
}

• Code like this was impossible without mutation
– cannot write to a “final” after its declaration

• How do we handle it now?



Conditionals in Floyd Logic

// Returns an integer m with m > n
public int g(int n) {
  int m;
  if (n >= 0) {
    m = 2 * n + 1;
  } else {
    m = 0;

  }
  return m;
}

• Reason separately about each path to a return
– handle each path the same as before
– but now there can be multiple paths to one return



Conditionals in Floyd Logic

// Returns an integer m with m > n
public int g(int n) {
  {{	}}
  int m;
  if (n >= 0) {
    m = 2 * n + 1;

  } else {
    m = 0;
  }

  {{	m	>	n	}}
  return m;
}

• Check correctness path through “then” branch



Conditionals in Floyd Logic

// Returns an integer m with m > n
public int g(int n) {
  {{	}}
  int m;
  if (n >= 0) {
    {{	n	≥	0	}}
    m = 2 * n + 1;

  } else {
    m = 0;

  }
  {{	m	>	n	}}
  return m;
}



Conditionals in Floyd Logic

// Returns an integer m with m > n
public int g(int n) {
  {{	}}
  int m;
  if (n >= 0) {
    {{	n	≥	0	}}
    m = 2 * n + 1;

    {{	n	≥	0	and	m	=	2n	+	1}}
  } else {
    m = 0;
  }

  {{	m	>	n	}}
  return m;
}



Conditionals in Floyd Logic

// Returns an integer m with m > n
public int g(int n) {
  {{	}}
  int m;
  if (n >= 0) {
    {{	n	≥	0	}}
    m = 2 * n + 1;

    {{	n	≥	0	and	m	=	2n	+	1}}
  } else {
    m = 0;
  }

  {{	n	≥	0	and	m	=	2n	+	1	}}
  {{	m	>	n	}}
  return m;
}

m	 =	2n+1
	 >	2n	 	 since 1	>	0
	 ≥	n		 	 since n	≥	0



Conditionals in Floyd Logic

// Returns an integer m with m > n
public int g(int n) {
  {{	}}
  int m;
  if (n >= 0) {
    m = 2 * n + 1;

  } else {
    m = 0;
  }

  {{	n	≥	0	and	m	=	2n	+	1	}}
  {{	m	>	n	}}
  return m;
}

• Note: no mutation, so we can do this in our head
– read along the path, and collect all the facts



Conditionals in Floyd Logic

// Returns an integer m with m > n
public int g(int n) {
  {{	}}
  int m;
  if (n >= 0) {
    m = 2 * n + 1;

  } else {
    m = 0;
  }

  {{	n	<	0	and	m	=	0	}}
  {{	m	>	n	}}
  return m;
}

• Check correctness path through “else” branch
– note: no mutation, so we can do this in our head

m	 =	0
	 >	n		 	 since 0	>	n



Conditionals in Floyd Logic

// Returns an integer m with m > n
public int g(int n) {
  {{	}}
  int m;
  if (n >= 0) {
    m = 2 * n + 1;

    {{	n	≥	0	and	m	=	2n	+	1	}}
  } else {
    m = 0;

    {{	n	<	0	and	m	=	0	}}
  }

  {{	_________________________________________________________________	}}
  {{	m	>	n	}}
  return m;
}

What do we know is true
even if we don't know

which branch was taken?



Conditionals in Floyd Logic

// Returns an integer m with m > n
public int g(int n) {
  {{	}}
  int m;
  if (n >= 0) {
    m = 2 * n + 1;

  } else {
    m = 0;
  }

  {{	(n	≥	0	and	m	=	2n	+	1)	or	(n	<	0	and	m	=	0)	}}
  {{	m	>	n	}}
  return m;
}

• The “or” means we must reason by cases anyway!



Conditionals in Floyd Logic
{{	P	}}	
if (cond) {
 	{{	P	and	cond	}}
 S1
 	{{	A	}}
} else {
 	{{	P	and	not	cond	}}
 S2
 	{{	B	}}
}
{{	A	or	B	}}	
{{	Q	}}	

• Postcondition is of the form {{	A	or	B	}}
–  A being what we know if we had taken the if branch
–  B being what we know if we had taken the else



Conditionals in Floyd Logic

// Returns an integer m with m > n
public int g(int n) {
  {{	}}
  int m;
  if (n >= 0) {
    m = 2 * n + 1;

  } else {
    return 0;
  }

  {{	(n	≥	0	and	m	=	2n	+	1)	or	(n	<	0	and	??)	}}
  {{	m	>	n	}}
  return m;
}

• What is the state after a “return”?



Conditionals in Floyd Logic

// Returns an integer m with m > n
public int g(int n) {
  {{	}}
  int m;
  if (n >= 0) {
    m = 2 * n + 1;

  } else {
    return 0;
  }

  {{	(n	≥	0	and	m	=	2n	+	1)	or	(n	<	0	and	false)	}}
  {{	m	>	n	}}
  return m;
}

• State after a “return” is false (no states)

simplifies to just n	≥	0	and	m	=	2n	+	1



Conditionals With Returns

• Latter rule for "if .. return" is useful:

  {{	P	}}

  if (cond)
    return something;

  {{	P	and	not	cond	}}
  …
  return something else;

• Only reach the line after the "if" if cond was false

• Only one path to each "return" statement
– forward reason to the "return" inside the "if"
– forward reason to the "return" after the "if"



Conditionals in Floyd Logic

// Returns an integer m, with m > 0
public int h(int x) {
  {{	}}
  int m = x;
  if (x < 0) {
    m = m * -1;

  } else if (x == 0) {
    return 1;
  }

  {{	_________________________________________________________________		}}
  m = m + 1;

  {{	m	>	0	}}
  return m;
}

How many paths can 
the code take?



Conditionals in Floyd Logic

// Returns an integer m, with m > 0
public int h(int x) {
  {{	}}
  int m = x;
  if (x < 0) {
    m = m * -1;

  } else if (x == 0) {
    return 1;
  } else { 
  // do nothing
  }
  {{	________________	or	________________	or	________________	}}
  m = m + 1;
  {{	m	>	0	}}
  return m;
}

3 paths! else branch is not 
written out, but it’s there 
implicitly 

After the conditional, there are 
3 sets of facts that could be 
true



Conditionals in Floyd Logic

// Returns an integer m, with m > 0
public int h(int x) {
  {{	}}
  int m = x;
  if (x < 0) {
  {{	____________________	}}
  m = m * -1;

 		{{	____________________	}}
  } else if (x == 0) {
    return 1;
  } // else: do nothing
  {{	________________	or	________________	or	________________	}}
  m = m + 1;
  {{	m	>	0	}}
  return m;
}



Conditionals in Floyd Logic

// Returns an integer m, with m > 0
public int h(int x) {
  {{	}}
  int m = x;
  if (x < 0) {
  {{	m	=	x	and	x	<	0	}}
  m = m * -1;

 		{{	____________________	}}
  } else if (x == 0) {
    return 1;
  } // else: do nothing
  {{	________________	or	________________	or	________________	}}
					m = m + 1;
  {{	m	>	0	}}
  return m;
}



Conditionals in Floyd Logic

// Returns an integer m, with m > 0
public int h(int x) {
  {{	}}
  int m = x;
  if (x < 0) {
  {{	m	=	x	and	x	<	0	}}
  m = m * -1;

 		{{	m	=	-	x	and	x	<	0	}}
  } else if (x == 0) {
    return 1;
  } // else: do nothing
  {{	(m	=	-	x	and	x	<	0)	or	________________	or	________________	}}
  m = m + 1;
  {{	m	>	0	}}
  return m;
}



Conditionals in Floyd Logic

// Returns an integer m, with m > 0
public int h(int x) {
  {{	}}
  int m = x;
  if (x < 0) {
    m = m * -1;

  } else if (x == 0) {
    {{	____________________	}}
    return 1;
  } // else: do nothing
  {{	(m	=	-	x	and	x	<	0)	or	________________	or	________________	}}
  m = m + 1;

  {{	m	>	0	}}
  return m;
}



Conditionals in Floyd Logic

// Returns an integer m, with m > 0
public int h(int x) {
  {{	}}
  int m = x;
  if (x < 0) {
    m = m * -1;

  } else if (x == 0) {
    {{	x	=	0	and	m	=	x	}}
    return 1;
  } // else: do nothing
  {{	(m	=	-	x	and	x	<	0)	or	________________	or	________________	}}
  m = m + 1;

  {{	m	>	0	}}
  return m;
}



Conditionals in Floyd Logic

// Returns an integer m, with m > 0
public int h(int x) {
  {{	}}
  int m = x;
  if (x < 0) {
    m = m * -1;

  } else if (x == 0) {
    {{	x	=	0	and	m	=	x	}}
    return 1;
  } else {
  // else: do nothing 
  }

  {{	(m	=	-	x	and	x	<	0)	or	(x	=	0	and	m	=	x		and	false)	or	_________	}}
  m = m + 1;

  {{	m	>	0	}}
  return m;
}

Must prove that post 
condition holds here

false: no states can 
reach beyond return 



Conditionals in Floyd Logic

// Returns an integer m, with m > 0
public int h(int x) {
  {{	}}
  int m = x;
  if (x < 0) {
    m = m * -1;

  } else if (x == 0) {
    return 1;
  } // else: do nothing
  
					{{	(m	=	-	x	and	x	<	0)	or	________________	}}
  m = m + 1;

  {{	m	>	0	}}
  return m;
}

What do we know in 
implicit else case? 
When neither of the then 
cases were entered



Conditionals in Floyd Logic

// Returns an integer m, with m > 0
public int h(int x) {
  {{	}}
  int m = x;
  if (x < 0) {
    m = m * -1;

  } else if (x == 0) {
    return 1;
  } // else: do nothing
  
					{{	(m	=	-	x	and	x	<	0)	or	(x	>	0	and	m	=	x)	}}
  m = m + 1;

  {{	m	>	0	}}
  return m;
}



Conditionals in Floyd Logic

// Returns an integer m, with m > 0
public int h(int x) {
  {{	}}
  int m = x;
  if (x < 0) {
    m = m * -1;

  } else if (x == 0) {
    return 1;
  } // else: do nothing
					{{	(m	=	-	x	and	x	<	0)	or	(x	>	0	and	m	=	x)	}}
  {{	_________________	}}
  m = m + 1;

  {{	m	>	0	}}
  return m;
}

Can reason backward and forward 
and meet in the middle



Conditionals in Floyd Logic

// Returns an integer m, with m > 0
public int h(int x) {
  {{	}}
  int m = x;
  if (x < 0) {
    m = m * -1;

  } else if (x == 0) {
    return 1;
  } // else: do nothing
					{{	(m	=	-	x	and	x	<	0)	or	(x	>	0	and	m	=	x)	}}
  {{	m	+	1	>	0	}}
  m = m + 1;

  {{	m	>	0	}}
  return m;
}

check this implication

Does the set of facts we know at this point in the program 
satisfy what must be true to reach our post condition



Conditionals in Floyd Logic

• Prove by cases
	 {{	(m	=	-	x	and	x	<	0)	or	(x	>	0	and	m	=	x)	}}
	 {{	m	+	1	>	0	}}

Case 1: m	=	-	x	and	x	<	0
m	+	1		=		-x	+	1	 	since	m	=	-x
														>	1	 	 	since	x	<	0
						 				>	0

Case 2: x	>	0	and	m	=	x 
m	+	1		=		x	+	1	 	since	m	=	x
														>	1	 	 	since	x	>	0
						 				>	0

• Already proved for the branch with the return, so 
proved the postcondition holds, in general



Loops



Correctness of Loops

• Assignment and condition reasoning is mechanical

• Loop reasoning cannot be made mechanical
– no way around this

(311 alert: this follows from Rice’s Theorem)

• Thankfully, one extra bit of information fixes this
– need to provide a “loop invariant”
– with the invariant, reasoning is again mechanical



Loop Invariants

• Loop invariant is true every time at the top of the loop

{{	Inv:	I	}}
while (cond) {
  S
}

– must be true when we get to the top the first time
– must remain true each time execute S and loop back up

• Use “Inv:” to indicate a loop invariant
otherwise, this only claims to be true the first time at the loop



Loop Invariants

• Loop invariant is true every time at the top of the loop

{{	Inv:	I	}}
while (cond) {
  S
}

– must be true 0 times through the loop (at top the first time)
– if true n times through, must be true n+1 times through

• Why do these imply it is always true?
– follows by structural induction (on ℕ)



Checking Correctness with Loop Invariants

{{	P	}}
{{	Inv:	I	}}
while (cond) {
  S
}

{{	Q	}}

• How do we check validity with a loop invariant?
– intermediate assertion splits into three triples to check



Checking Correctness with Loop Invariants

{{	P	}}
{{	Inv:	I	}}
while (cond) {
  S
}

{{	Q	}}

Splits correctness into three parts

1.  I holds initially
2.  S	preserves	I
3.  Q holds when loop exits

1.  I holds initially



Checking Correctness with Loop Invariants

{{	P	}}
{{	Inv:	I	}}
while (cond) {
 {{	I	and	cond	}}
  S
 {{	I	}}
}

{{	Q	}}

Splits correctness into three parts

1.  I holds initially
2.  S	preserves	I
3.  Q holds when loop exits

1.  I holds initially

2.  S	preserves	I



Checking Correctness with Loop Invariants

{{	P	}}
{{	Inv:	I	}}
while (cond) {
 {{	I	and	cond	}}
  S
 {{	I	}}
}
{{	I	and	not	cond	}}
{{	Q	}}

Splits correctness into three parts

1.  I holds initially      implication

2.  S	preserves	I	 	 	 	 	 	 forward/back then implication

3.  Q holds when loop exits   implication

1.  I holds initially

2.  S	preserves	I

3.  Q holds when loop exits



Checking Correctness with Loop Invariants

{{	P	}}
{{	Inv:	I	}}
while (cond) {
  S
}

{{	Q	}}

Formally, invariant split this into three Hoare triples:

1. {{	P	}}		{{	I	}}     I holds initially
2. {{	I	and	cond	}}		S		{{	I	}}  S	preserves	I
3. {{	I	and	not	cond	}}		{{	Q	}}  Q holds when loop exits



Loop Correctness Example 1

• This loop claims to calculate n2

{{		}}
int j = 0;
int s = 0;
{{	Inv:	s	=	j2	}}
while (j != n) {
  j = j + 1;
  s = s + j + j - 1;

}

{{	s	=	n2	}} Easy to get this wrong!
– might be initializing “j” wrong (j	=	1?)
– might be exiting at the wrong time (j	≠	n–1?)
– might have the assignments in wrong order
– …

Fact that we need to check 3 implications is a
strong indication that more bugs are possible.



Loop Correctness Example 1

• This loop claims to calculate n2

{{		}}
int j = 0;
int s = 0;
{{	Inv:	s	=	j2	}}
while (j != n) {
  j = j + 1;
  s = s + j + j - 1;

}

{{	s	=	n2	}}

Loop Idea
– move j from 0 to n
– keep track of j2 in s

j s

0 0

1 1

2 4

3 9

4 16

… …

Loop Invariant formalizes the Loop Idea



Loop Correctness Example 1

• This loop claims to calculate n2

{{		}}
int j = 0;
int s = 0;
{{	j	=	0	and	s	=	0	}}
{{	Inv:	s	=	j2	}}
while (j != n) {
  j = j + 1;

  s = s + j + j - 1;
}

{{	s	=	n2	}}

s	=	0	 	 	
			=	02	 	 	 since j	=	0
			=	j2



Loop Correctness Example 1

• This loop claims to calculate n2

{{	Inv:	s	=	j2	}}
while (j != n) {
  j = j + 1;
  s = s + j + j - 1;

}

{{	s	=	j2	and	j	=	n	}}
{{	s	=	n2	}}

s	=	j2
			=	n2	 	 since j	=	n



Loop Correctness Example 1

• This loop claims to calculate n2

{{	Inv:	s	=	j2	}}
while (j != n) {
  {{	s	=	j2	and	j	≠	n	}}
  j = j + 1;

  s = s + j + j - 1;

  {{	s	=	j2	}}
}

{{	s	=	n2	}}



Loop Correctness Example 1

• This loop claims to calculate n2

{{	Inv:	s	=	j2	}}
while (j != n) {
  {{	s	=	j2	and	j	≠	n	}}
  j = j + 1;

  {{	s	=	(j	–	1)2	and	j	–	1	≠	n	}}
  s = s + j + j - 1;
  {{	s	=	j2	}}
}

{{	s	=	n2	}}

j	=	j0	+	1	means	j0	=	j	–	1



Loop Correctness Example 1

• This loop claims to calculate n2

{{	Inv:	s	=	j2	}}
while (j != n) {
  {{	s	=	j2	and	j	≠	n	}}
  j = j + 1;

  {{	s	=	(j	–	1)2	and	j	–	1	≠	n	}}
  s = s + j + j - 1;
  {{	s	–	2j	+	1	=	(j	–	1)2	and	j	–	1	≠	n	}}
  {{	s	=	j2	}}
}

{{	s	=	n2	}}

s	=	s0	+	2j	–	1	means	s0	=	s	–	2j	+	1



Loop Correctness Example 1

• This loop claims to calculate n2

{{	Inv:	s	=	j2	}}
while (j != n) {
  {{	s	=	j2	and	j	≠	n	}}
  j = j + 1;

  {{	s	=	(j	–	1)2	and	j	–	1	≠	n	}}
  s = s + j + j - 1;
  {{	s	–	2j	+	1	=	(j	–	1)2	and	j	–	1	≠	n	}}
  {{	s	=	j2	}}
}

{{	s	=	n2	}} s	=	2j	–	1	+	(j	–	1)2	 	 since	s	–	2j	+	1		=	(j	–	1)2
			=	2j	–	1	+	j2	–	2j	+	1
			=	j2	 	 	 	 	



Loop Correctness Example 2

• Recursive function to calculate sum of list

	 	sum(nil)		 :=	0
	 	sum(x	::	L)	 :=	x	+	sum(L)

• This loop claims to calculate it as well:

{{	L	=	L0	}}
int s = 0;
{{	Inv:	sum(L0)	=	s	+	sum(L)	}}
while (L != null) {
  s = s + L.hd;
  L = L.tl;

}

{{	s	=	sum(L0)	}}

Loop Idea
– move through L front-to-back
– keep sum of prior part in s



Loop Correctness Example 2

• Recursive function to calculate sum of list

	 	sum(nil)		 :=	0
	 	sum(x	::	L)	 :=	x	+	sum(L)

• Check that the invariant holds initially

{{	L	=	L0	}}
int s = 0;
{{	L	=	L0	and	s	=	0	}}
{{	Inv:	sum(L0)	=	s	+	sum(L)	}}
while (L != null) {
  …

sum(L0)
		=	sum(L)	 	 since L	=	L0
		=	0	+	sum(L)	
		=	s	+	sum(L)	 since	s	=	0



Loop Correctness Example 2

• Recursive function to calculate sum of list

	 	sum(nil)		 :=	0
	 	sum(x	::	L)	 :=	x	+	sum(L)

• Check that the postcondition holds at loop exit

{{	Inv:	sum(L0)	=	s	+	sum(L)	}}
while (L != null) {
  s = s + L.hd;

  L = L.tl;

}

{{	sum(L0)	=	s	+	sum(L)	and	L	=	nil	}}
{{	s	=	sum(L0)	}}

sum(L0)
		=	s	+	sum(L)	
		=	s	+	sum(nil)	 since L	=	nil
		=	s		 	 	 def of sum



Loop Correctness Example 2

• Recursive function to calculate sum of list

	 	sum(nil)		 :=	0
	 	sum(x	::	L)	 :=	x	+	sum(L)

• Check that the loop body preserves the invariant

{{	Inv:	sum(L0)	=	s	+	sum(L)	}}
while (L != null) {
  {{	sum(L0)	=	s	+	sum(L)	and	L	≠	nil	}}
  s = s + L.hd;

  L = L.tl;
  {{	sum(L0)	=	s	+	sum(L)	}}
}

L	≠	nil	means	L	=	L.hd	::	L.tl



Loop Correctness Example 2

• Recursive function to calculate sum of list

	 	sum(nil)		 :=	0
	 	sum(x	::	L)	 :=	x	+	sum(L)

• Check that the loop body preserves the invariant

{{	Inv:	sum(L0)	=	s	+	sum(L)	}}
while (L != null) {
  {{	sum(L0)	=	s	+	sum(L)	and	L	=	L.hd	::	L.tl	}}
  s = s + L.hd;

  L = L.tl;
  {{	sum(L0)	=	s	+	sum(L)	}}
}



Loop Correctness Example 2

• Recursive function to calculate sum of list

	 	sum(nil)		 :=	0
	 	sum(x	::	L)	 :=	x	+	sum(L)

• Check that the loop body preserves the invariant

{{	Inv:	sum(L0)	=	s	+	sum(L)	}}
while (L != null) {
  {{	sum(L0)	=	s	+	sum(L)	and	L	=	L.hd	::	L.tl	}}
  s = s + L.hd;

  {{	sum(L0)	=	s	+	sum(L.tl)	}}
  L = L.tl;

  {{	sum(L0)	=	s	+	sum(L)	}}
}



Loop Correctness Example 2

• Recursive function to calculate sum of list

	 	sum(nil)		 :=	0
	 	sum(x	::	L)	 :=	x	+	sum(L)

• Check that the loop body preserves the invariant

{{	Inv:	sum(L0)	=	s	+	sum(L)	}}
while (L != null) {
  {{	sum(L0)	=	s	+	sum(L)	and	L	=	L.hd	::	L.tl	}}
  {{	sum(L0)	=	s	+	L.hd	+	sum(L.tl)	}}
  s = s + L.hd;
  {{	sum(L0)	=	s	+	sum(L.tl)	}}
  L = L.tl;

  {{	sum(L0)	=	s	+	sum(L)	}}
}



Loop Correctness Example 2

• Recursive function to calculate sum of list

	 	sum(nil)		 :=	0
	 	sum(x	::	L)	 :=	x	+	sum(L)

• Check that the loop body preserves the invariant

{{	Inv:	sum(L0)	=	s	+	sum(L)	}}
while (L != null) {
  {{	sum(L0)	=	s	+	sum(L)	and	L	=	L.hd	::	L.tl	}}
  {{	sum(L0)	=	s	+	L.hd	+	sum(L.tl)	}}
  s = s + L.hd;
  {{	sum(L0)	=	s	+	sum(L.tl)	}}
  L = L.tl;

  {{	sum(L0)	=	s	+	sum(L)	}}
}

sum(L0)
		=	s	+	sum(L)	
		=	s	+	sum(L.hd	::	L.tl)	 since L	=	L.hd	::	L.tl
		=	s	+	L.hd	+	sum(L.tl)	 def of sum



Loop Correctness Example 3

• Recursive function to check if y appears in list L

	 contains(y,	nil)	 :=	false
	 contains(y,	x	::	L)	 :=	true	 	 	 	 if x	=	y
	 contains(y,	x	::	L)	 :=	contains(y,	L)	 	 if x	≠	y

• This loop claims to calculate it as well:

{{	Inv:	contains(y,	L0)	=	contains(y,	L)	}}
while (L != null) {
  if (L.hd == y)
    return true;
  L = L.tl;

}
return false;

Loop Idea
– move through L front-to-back
– answer remains the same as on 

the original list L0
– can only do that if y is not found



Loop Correctness Example 3

• Check that the invariant holds initially

{{	L0	=	L	}}
{{	Inv:	contains(y,	L0)	=	contains(y,	L)	}}
while (L != null) {
  if (L.hd == y)
    return true;
  L = L.tl;

}
return false;

contains(y,	nil)	 :=	false
contains(y,	x	::	L)	 :=	true	 	 	 	 if x	=	y
contains(y,	x	::	L)	 :=	contains(y,	L)	 	 if x	≠	y

contains(y,	L0)
		=	contains(y,	L)	 	 since L0	=	L



Loop Correctness Example 3

• Check that the invariant implies the postcondition

{{	Inv:	contains(y,	L0)	=	contains(y,	L)	}}
while (L != null) {
  if (L.hd == y)
    return true;
  L = L.tl;

}

{{	contains(y,	L0)	=	contains(y,	L)	and	L	=	nil	}}
{{	contains(y,	L0)	=	false	}}
return false;

contains(y,	nil)	 :=	false
contains(y,	x	::	L)	 :=	true	 	 	 	 if x	=	y
contains(y,	x	::	L)	 :=	contains(y,	L)	 	 if x	≠	y

contains(y,	L0)
		=	contains(y,	L)
		=	contains(y,	nil)		 since L	=	nil
		=	false	 	 	 	 def of contains



Loop Correctness Example 3

• Check that the body preserves the invariant

{{	Inv:	contains(y,	L0)	=	contains(y,	L)	}}
while (L != null) {
  {{	contains(y,	L0)	=	contains(y,	L)	and	L	≠	nil	}}
  if (L.hd == y)
    return true;
  L = L.tl;

  {{	contains(y,	L0)	=	contains(y,	L)	}}
}

return false;

contains(y,	nil)	 :=	false
contains(y,	x	::	L)	 :=	true	 	 	 	 if x	=	y
contains(y,	x	::	L)	 :=	contains(y,	L)	 	 if x	≠	y

L	≠	nil  means  L	=	L.hd	::	L.tl	



Loop Correctness Example 3

• Check that the body preserves the invariant

{{	Inv:	contains(y,	L0)	=	contains(y,	L)	}}
while (L != null) {
  {{	contains(y,	L0)	=	contains(y,	L)	and	L	=	L.hd	::	L.tl	}}
  if (L.hd == y)
    {{	contains(y,	L0)	=	contains(y,	L)	and	L	=	L.hd	::	L.tl	and	L.hd	=	y	}}
    {{	contains(y,	L0)	=	true	}}
    return true;
  L = L.tl;

  {{	contains(y,	L0)	=	contains(y,	L)	}}
}

return false;

contains(y,	nil)	 :=	false
contains(y,	x	::	L)	 :=	true	 	 	 	 if x	=	y
contains(y,	x	::	L)	 :=	contains(y,	L)	 	 if x	≠	y

contains(y,	L0)
		=	contains(y,	L)
		=	contains(y,	L.hd	::	L.tl)					since L	=	L.hd	::	L.tl
		=	true	 	 	 	 				since y	=	L.hd
		



Loop Correctness Example 3

• Check that the body preserves the invariant

{{	Inv:	contains(y,	L0)	=	contains(y,	L)	}}
while (L != null) {
  {{	contains(y,	L0)	=	contains(y,	L)	and	L	=	L.hd	::	L.tl	}}
  if (L.hd == y)
    {{	contains(y,	L0)	=	true	}}
    return true;
  {{	contains(y,	L0)	=	contains(y,	L)	and	L	=	L.hd	::	L.tl	and	L.hd	≠	y	}}
  L = L.tl;

  {{	contains(y,	L0)	=	contains(y,	L)	}}
}

return false;

contains(y,	nil)	 :=	false
contains(y,	x	::	L)	 :=	true	 	 	 	 if x	=	y
contains(y,	x	::	L)	 :=	contains(y,	L)	 	 if x	≠	y



Loop Correctness Example 3

• Check that the body preserves the invariant

{{	Inv:	contains(y,	L0)	=	contains(y,	L)	}}
while (L != null) {
  {{	contains(y,	L0)	=	contains(y,	L)	and	L	=	L.hd	::	L.tl	}}
  if (L.hd == y)
    {{	contains(y,	L0)	=	true	}}
    return true;
  {{	contains(y,	L0)	=	contains(y,	L)	and	L	=	L.hd	::	L.tl	and	L.hd	≠	y	}}
  {{	contains(y,	L0)	=	contains(y,	L.tl)	}}
  L = L.tl;

  {{	contains(y,	L0)	=	contains(y,	L)	}}
}
return false;

contains(y,	nil)	 :=	false
contains(y,	x	::	L)	 :=	true	 	 	 	 if x	=	y
contains(y,	x	::	L)	 :=	contains(y,	L)	 	 if x	≠	y

contains(y,	L0)
		=	contains(y,	L)
		=	contains(y,	L.hd	::	L.tl)					since L	=	L.hd	::	L.tl
		=	contains(y,	L.tl)	 	 				since y	≠	L.hd
		



Loop Correctness Example 4

• Declarative spec of sqrt(x)

	 return	y	∈	ℤ	such that (y	–	1)2	<	x	≤	y2

– precondition that x is positive: 0	<	x
– precondition that x is not too large: x	<	1012	=	(106)2



Loop Correctness Example 4

return	y	∈	ℤ	such that (y	–	1)2	<	x	≤	y2

• This loop claims to calculate it:

int a = 0;
int b = 1000000;
{{	Inv:	a2	<	x	≤	b2	}}
while (a != b - 1) {
  int m = (a + b) / 2;
  if (m*m < x) {
    a = m;
  } else {
    b = m;
  }

}
return b;

Loop Idea
– maintain a range a	...	b

with x in the range a2	...	b2



Loop Correctness Example 4

return	y	∈	ℤ	such that (y	–	1)2	<	x	≤	y2

• Check that the invariant holds initially:

{{	Pre:	0	<	x	≤	1012	}}
int a = 0;
int b = 1000000;

{{	Inv:	a2	<	x	≤	b2	}}
while (a != b - 1) {
  …

}
return b;



Loop Correctness Example 4

return	y	∈	ℤ	such that (y	–	1)2	<	x	≤	y2

• Check that the invariant holds initially:

{{	Pre:	0	<	x	≤	1012	}}
int a = 0;
int b = 1000000;
{{	0	<	x	≤	1012	and	a	=	0	and	b	=	106	}}
{{	Inv:	a2	<	x	≤	b2	}}
while (a != b - 1) {
  …
}

return b; a2	=	02	 since a	=	0
					=	0
					<	x

x	<	1012	
				=	(106)2
					=	b2	  since b	=	106



Loop Correctness Example 4

return	y	∈	ℤ	such that (y	–	1)2	<	x	≤	y2

• Check that the postcondition hold after exit

{{	Inv:	a2	<	x	≤	b2	}}
while (a != b - 1) {
  … 

}

{{	a2	<	x	≤	b2	and	a	=	b	–	1	}}
{{	(b	–	1)2	<	x	≤	b2	}}
return b;

(b	–	1)2	
			=	a2	 since a	=	b	–	1
			<	x		 	

Does  (y	–	1)2	<	x	<	y2		hold with y	=	b?



Loop Correctness Example 4

return	y	∈	ℤ	such that (y	–	1)2	<	x	≤	y2

• Check that the body preserves the invariant:

{{	Inv:	a2	<	x	≤	b2	}}
while (a != b - 1) {
  {{	a2	<	x	≤	b2		and	a	≠	b	–	1	}}
  int m = (a + b) / 2;
  if (m*m < x) {
    a = m;

  } else {
    b = m;

  }
  {{	a2	<	x	≤	b2	}}
}



Loop Correctness Example 4

return	y	∈	ℤ	such that (y	–	1)2	<	x	≤	y2

• Check that the body preserves the invariant:

{{	Inv:	a2	<	x	≤	b2	}}
while (a != b - 1) {
  {{	a2	<	x	≤	b2		and	a	≠	b	–	1	}}
  int m = (a + b) / 2;
  if (m*m < x) {
    {{	a2	<	x	≤	b2		and	a	≠	b	–	1	and	m2	<	x	}}
    a = m;
  } else {
    {{	a2	<	x	≤	b2		and	a	≠	b	–	1	and	x	≤	m2	}}
    b = m;

  }

  {{	a2	<	x	≤	b2	}}
}



Loop Correctness Example 4

return	y	∈	ℤ	such that (y	–	1)2	<	x	≤	y2

• Check that the body preserves the invariant:

{{	Inv:	a2	<	x	≤	b2	}}
while (a != b - 1) {
  int m = (a + b) / 2;
  if (m*m < x) {
    {{	a2	<	x	≤	b2		and	a	≠	b	–	1	and	m2	<	x	}}
    {{	m2	<	x	≤	b2	}}
    a = m;
  } else {
    {{	a2	<	x	≤	b2		and	a	≠	b	–	1	and	x	≤	m2	}}
    b = m;

  }

  {{	a2	<	x	≤	b2	}}
}

Immediate!



Loop Correctness Example 4

return	y	∈	ℤ	such that (y	–	1)2	<	x	≤	y2

• Check that the body preserves the invariant:

{{	Inv:	a2	<	x	≤	b2	}}
while (a != b - 1) {
  int m = (a + b) / 2;
  if (m*m < x) {
    a = m;

  } else {
    {{	a2	<	x	≤	b2		and	a	≠	b	–	1	and	x	≤	m2	}}
    {{	a2	<	x	≤	m2	}}
    b = m;
  }

  {{	a2	<	x	≤	b2	}}
}

Immediate!

Correctness of binary search is pretty easy
once you have the invariant clear!



Termination

• This analysis does not check that the code terminates
– it shows that the postcondition holds if the loop exits
– but we never showed that the loop does exit

• Termination follows from the running time analysis
– e.g., if the code runs in O(n2) time, then it terminates
– an infinite loop would be O(infinity)
– any finite bound on the running time proves it terminates

• Normal to also analyze the running time of our code, 
and we get termination already from that analysis



Correctness of Loops

• With straight-line code and conditionals,
if the triple is not valid…
– the code is wrong
– there is some test case that will prove it

(doesn't mean we found that case in our tests, but it exists)

• With loops, if the triples are not valid…
– the code is wrong with that invariant
– there may not be any test case that proves it

the code may behave correctly on all inputs

– the code could be right but with a different invariant

• Loops are inherently more complicated


