
Software Implementation

James Wilcox and Kevin Zatloukal

July 2025

The process of creating software — be it a single method, a class, or a full program — starts with
collecting requirements for what the software needs to do. Those requirement are codified in a specification.
Next, we need to come up with an idea for how to achieve the desired behavior. A clear description of how
to do so, along with a specification, is a design.

With those elements in hand, we turn to implementation. The time-tested approach to implementing
software designs proceeds in the following steps:

Coding Type Checking
1

Reasoning
2

errors

Debugging

Testing
3

Beta Users

4

failures

All Users

5

• Coding: translates the design into source code in the appropriate programming language

• Type Checking: verifies that the code always produces values in the right set

– checks all inputs (even invalid ones) but only checks simple properties (being in some set)

– 100% reliable (as long as you have no type casts!)

• Testing: checks for correct outputs on specifically chosen inputs

– checks for the exact answer but only on a handful inputs

– tests can also be wrong! think carefully about each test case

• Reasoning: thinking through what the code does on all allowed inputs

– only technique that checks that the code produces the correct outputs on all allowed inputs

– usually done informally for most problems but formally for very hard or important problems

• Debugging: searching backward from a failure (e.g., wrong output) to find where the code is wrong

– becomes more difficult as more code is involved

– requires a full of understanding all of the code that executed

Once the code gets through testing, we let a small number of beta users try it. Only after it has worked
reliably for them for some amount of time will we release it to all users.

1



Why These Steps?

To a newcomer, this may seem like a lot of steps and a lot of work. Why not just send the first version that
compiles out to all users? The main reasons is due to the following, important fact: users hate bugs!

Encountering a single bug will typically result in a poor user report. If that bug causes the user to lose
work, then they are unlikely to ever use the program again. If it calculates an incorrect answer where money
is involved, expect a lawsuit.

Hence, one reason why new code is only released to a small number of users at first is to limit the damage
if it contains bugs. Furthermore, beta users are typically warned about what they are getting into, and as
a result, they are more understanding about failures. Regular users, however, are completely unforgiving!
They do not give partial credit — only As and Fs!

Why All These Steps?

The reputation damage caused by bugs explains why we need beta users, but why do we need all the steps
before that? There are two main reasons for that. One has to due with debugging, which we will discuss
next. The other is that some bugs simply do not show up until you have a large number of users. A small
number of beta users will not necessarily try every combination of features or every rare corner case that
can occur. However, with millions or billions of users, someone eventually will.

Hence, if your goal is to avoid the reputation damage of sending bugs to regular users, then you need
to find all the bugs lurking in every dark corner of the program before the code is sent to regular users.
The hardest such bugs are unlikely to be found by beta users or by testing in general. The primary method
of catching them, historically, has been reasoning, in particular, via the process of a code review, where a
second programmer thinks through the code to make sure that no rare cases have been missed.

Debugging

Debugging is the search from a failure, something visible to the user, back to the bug that caused it. It is,
in general, very difficult, often more-so than writing the code was initially. Indeed, Brian Kernighan once
said “debugging is twice as hard as writing the code in the first place”.

Debugging is generally harder the more code that needs to be searched through. The easiest case is a
failure that occurs when a single method is being executed, as part of a “unit test”. In that case, only that
method and the methods it calls are part of the search space. The hardest case is when the failure is seen
by a user. In that case, the bug could potentially be anywhere in the code.

Failures found by users are also harder because they rarely come with instructions for reproducing the
failure. Debugging cannot be performed until we have the ability to reliably reproduce the failure. In some
cases, finding a set of steps that reliably reproduce the failure is extremely difficult.

Once we have a way to reproduce the failure, the next step is to reduce the search space to a small enough
portion of the code that we can step through it in the debugger. It would likely take weeks to step through
one million lines of code to figure out where the bug occurs. Realistically, the search space must be reduced
to a few hundred lines before stepping through them all becomes feasible.

The two principal techniques used to reduce the search space are the following:

• Binary search: If you can look at the state of the program in the debugger halfway through and
confirm that the failure has already occurred (or has not), then you can cut the search space in half.

• Scientific method: If you can come up with an experiment, such as changing part of the code, that
would prove the bug is in (or not in) part of the code, then you can perform that experiment and
interpret the result to reduce the search space.

Both of these techniques require a complete understanding of how the program is supposed to work.
Even after the search space is down to a few hundred lines and we can step through the program in

the debugger, we cannot identify the bug without understanding. When you are looking at the state of the
program in the debugger, there isn’t a red light that turns on to tell you that it is incorrect. You must
know, from your own understanding, what the state should look like at that point so that you can determine
whether that state is correct or not.

2



Binary search requires the same ability: to look at the state halfway through and identify whether that
state is as it should be. The scientific method requires even more: the ability to imagine the behavior of the
application in a hypothetical experiment (say, after a certain change is made to the code) and know how the
resulting behavior would be different depending on where the bug in the code is located.

Debugging is hard !
In prior years of CSE 331, when writing the simplest full-stack applications, the average time to debug a

single bug was over one hour, with many students encountering bugs that took several hours to find. This
happened with programs that were typically less than 200 lines of new code. How can that be?

These assignments asked student to write applications consisting of two programs, a client and server.
Debugging a failure observed by a user first required determining whether the bug was in the client or the
server. That could be done by examining the requests and response messages sent between the two programs.
To interpret them, the student had to understand whether the requests that were sent to the server were
the ones that should have been sent in that circumstance. If one was wrong, then the bug was in the client.
If the request was right, then the student would examine the response. To interpret it, the student had to
know what response should have been sent. If the server sent the wrong response, then the bug was in the
server. If it was correct, then the bug was in the client.

Even for assignments with only a client program, students spent an average 40 minutes per bug, again,
with many students encountering individual bugs that took hours to find. How can that be? Well, the client
application was a user interface. The user interacts with the application via events like clicking on buttons
or typing in text. If the program crashes when the user clicks on a button, that does not necessarily mean
that the bug was in the code that was executed after the click! Code that ran previously might have written
an incorrect value somewhere in the state, but it was not until that value was read and used, much later,
that a failure occurred.

Debugging is hard ! Programmer productivity (and happiness and sanity) depend more on avoiding painful
debugging than on anything else.

Hopefully, these examples give you some sense of why the software development process spends so much
effort making sure the code is correct when it was written initially. These steps might seem like overkill, but
amount of time saved by avoiding debugging more than makes up for it. Debugging is hard, harder than
writing the code correctly in the first place.

Incorporating AI

At present, AI is being incorporated into this process in two different ways.
First, non-programmers are using AI to generate code and then testing it purely through its user interfaces

(i.e., not via unit tests). This approach, often called “vibe coding”, has the advantage that it does not require
any programming knowledge. When the program does not work properly, they try prompting the AI to fix
it. If that does not work, they try re-prompting the AI, having it replace some of the code, hoping the new
version will not contain the same bug.1

Thus far, this technique has only been successful for very small programs, say, fewer than 1000 lines. It
would be surprising for this approach to work for significantly larger programs. Even human programmers
generate a few bugs every hundred lines of code, which means dozens of bugs in 1000 lines of code. Without
the ability to test individual methods — which requires some knowledge of programming — it is extremely
difficult for anyone, human or AI, to produce a large, error-free program. The inherently random nature of
LLMs means there is always a nonzero probability of generating a version with bugs, and as the length of
the generated code increases, the probability of it being bug-free tends to zero.2

The other way that AI is being used is under the supervision of a trained programmer, who can use the AI
to generate the code and even to generate unit tests, provided that both are carefully reviewed. This method
does not have the limitations of the approach described above and can be used to write large programs. We
will explore this approach in the course.

1Sadly, even if it the old bug is gone, it could contain new bugs!
2Of course, the code is not written in a single shot, but rather, updated after being prompted each time. However, an update

to the code can not only fix existing bugs but also introduce new bugs, so the odds of a series of updates also producing a long,
bug-free program tend to zero.

3



It is important to note, however, that it remains the responsibility of the human programmer to careful
review and understand every line of code and every test. As just noted, AI generated code frequently
contains errors (just like human code), fixing those errors frequently involves debugging, and debugging
requires understanding how the code is supposed to work. Skipping the work of understanding and carefully
reviewing the code is likely to end up in extraordinarily painful debugging!

Debugging is already hard. Any approach that takes the hardest part of writing large, correct programs
(debugging) and makes it even harder is not a good methodology. The fact that it requires less effort to
do the work necessary to make sure the code is correct initially (testing and code reviews) than it does to
debug that code is even more true with AI involved.

At present, careful attempts to measure improvements in developer productivity have found little if any
benefit in having AI write the code. Features are not being shipped any faster. Meanwhile, code submissions
are introducing more bugs and getting longer, making them harder to debug.

Surprisingly, the area where AI is having the most measurable improvement in productivity is not in
writing code but rather in debugging, specifically the analyzing of stack traces, which is a laborious (and
boring) process. It may be that these initial efforts have it backward: AI shouldn’t be trying to help us write
the code, it should be trying to help us debug.

Time will tell whether these trends continue, but at present, there is no reason not to think that careful
testing and code reviews will remain essential to producing programs that work reliably when released to all
users and to keeping the programmers that create them maximally productive.

4


