Quiz Section 8: Arrays

Task 1 – Better Get Proving

[14 pts]

The function replace : (List, y, z) \rightarrow List is defined by

$$\begin{split} \operatorname{replace}(\operatorname{nil},y,z) &:= \operatorname{nil} \\ \operatorname{replace}(x :: L,y,z) &:= z :: \operatorname{replace}(L,y,z) \quad \text{if } x = y \\ \operatorname{replace}(x :: L,y,z) &:= x :: \operatorname{replace}(L,y,z) \quad \text{if } x \neq y \end{split}$$

In this problem, we will prove that replace works the same way at the end of the list that it does at the front of the list, i.e.:

$$\begin{aligned} \operatorname{replace}(L+\!\!+[x],y,z) &= \operatorname{replace}(L,y,z) +\!\!+[z] & \text{if } x = y \\ \operatorname{replace}(L+\!\!+[x],y,z) &= \operatorname{replace}(L,y,z) +\!\!+[x] & \text{if } x \neq y \end{aligned}$$

a) Explain, in your own words, why the following statement, if proven, would imply the one above:

$$replace(L + [x], y, z) = replace(L, y, z) + replace([x], y, z)$$

b) Explain, in your own words, why the following claim, if proven, would imply the one from part (a):

$$replace(L + R, y, z) = replace(L, y, z) + replace(R, y, z)$$

c) Prove the claim from part (b) by induction on \underline{L} .

In this problem, you will implement the following function:

```
/**
 * Writes over each copy of y in A with the value z.
 * @param A .. y .. z ..
 * @modifies A
 * @effects A = replace(A_0, y, z)
 */
public void replace(int[] A, int y, int z) { .. }
```

With each loop invariant below, fill in the missing parts of the code to make it correct with the **given invariant**. (If the code works correctly with some other invariant, it is not correct.)

```
a) int i = ______

// Inv: A[.. i] = A_0[.. i] and A[i+1 ..] = replace(A_0[i+1 ..], y, z)
while (______) {
```

```
b) int i = ______

// Inv: A[.. i-1] = replace(A_0[.. i-1], y, z) and A[i ..] = A_0[i ..]
while (______) {
```

Recall the function remove : (List, y) \rightarrow List defined as follows:

```
\begin{aligned} &\mathsf{remove}(\mathsf{nil},y) := \mathsf{nil} \\ &\mathsf{remove}(x :: L,y) := \mathsf{remove}(L,y) & \text{if } x = y \\ &\mathsf{remove}(x :: L,y) := x :: \mathsf{remove}(L,y) & \text{if } x \neq y \end{aligned}
```

It is possible to prove, as the same manner as we did in Task 1, that the following holds:

```
\operatorname{remove}(L + [x], y) = \operatorname{remove}(L, y) \qquad \text{if } x = y
\operatorname{remove}(L + [x], y) = \operatorname{remove}(L, y) + [x] \quad \text{if } x \neq y
```

You can use these facts below without proof. Refer to them as "Lemma 2".

In this problem, we will check the correctness of the following code that implements remove. Specifically, it writes $\operatorname{remove}(A,y)$ into some prefix of the array, A[...j-1], and returns j.

```
int i = 0;
int j = 0;
{{ P<sub>1</sub>: ______}}}
\{\!\{\operatorname{Inv}:\ A[\mathinner{\ldotp\ldotp} j-1]=\operatorname{remove}(A[\mathinner{\ldotp\ldotp} i-1],y) \text{ and } A[i\mathinner{\ldotp\ldotp}]=A_0[i\mathinner{\ldotp\ldotp}] \}\!\}
while (i != A.length) {
  if (A[i] == y) {
      \{\{P_2: \underline{\hspace{1cm}}\}\}
  } else {
      {{ P<sub>3</sub>: _____}}}
      \{\{Q_3: \__\}\}
      A[j] = A[i];
      j = j + 1;
  }
  i = i + 1;
\{\!\{\,P_4\colon
\{\{\operatorname{Post}:\ A[..j-1] = \operatorname{remove}(A,y)\}\}
return j;
```

a)	Fill in	P_1	using	forward	reasoning	gand	the	n prove	e that .	P_1 in	mplies	Inv.			
b)	Fill in	P_4	using	forward	reasoning	g and	the	n prove	e that .	P_4 in	mplies	the po	stcor	ndition	1.
c)	Fill in	P_2	using	forward	reasoning	g and	Q_2	using	backwa	ard.	Then,	prove	that	P_2 im	iplies Q_2
d)	Fill in	P_3	using	forward	reasoning	g and	Q_3	using	backwa	ard.	Then,	prove	that	P_3 im	iplies Q_3