
CSE 331: Software Design & Implementation Fall 2025

Quiz Section 4: Floyd Logic

Task 1 – Found Guilty of Reason [12 pts]

In this problem, you will practice proving correctness of straight-line code using forward reasoning.

a) Use forward reasoning to fill in the missing assertions in the following code:

ttx ě 5 uu

y = x - 2;

tt uu

z = 3 * y;

tt uu

z = z - 4;

ttP : uu

ttQ : z ě 0 uu

b) Show that the code is correct by proving by calculation that P implies Q.

c) Use forward reasoning to fill in the missing assertions in the following code:

tt y ą 5 and z ą 2 uu

x = 4 * y - 3;

tt uu

y = y - 5;

tt uu

z = z * y;

ttP : uu

ttQ : x ă 2z ` 20 uu

d) Show that the code is correct by proving by calculation that P implies Q.

1



Task 2 – Does a Duck Say “Back”? [12 pts]

In this problem, you will practice proving correctness of straight-line code using backward reasoning.

a) Use backward reasoning to fill in the missing assertions in the following code:

Fill in each blank by applying the rules exactly as taught in lecture. Then, if you want, you can
simplify the resulting assertion, but do not weaken it. Separate any simplified statement from the
original by “Ø”.

ttP : c ě 0 uu

ttQ : uu

b = 2*c;

tt uu

c = c - 1;

tt uu

a = b + 1;

tt a ě c uu

b) Show that the code is correct by proving by calculation that P implies Q.

c) Use backward reasoning to fill in the missing assertions in the following code:

ttP : x ă w ` 1 and w ą 0 uu

ttQ : uu

y = 4 * w;

tt uu

x = x * 2;

tt uu

z = x - 8;

tt z ă y uu

d) Show that the code is correct by proving by calculation that P implies Q.

2



Task 3 – Nothing To Be If-ed At [6 pts]

Use forward reasoning to fill in the assertions. Then, prove, by cases, that what we know at the end of
the conditional implies the post condition. The final assertion of the if and else branches are labeled
as P1 and P2 respectively, please this abbreviation in future assertions and your proofs to refer to the
same set of facts.

tt s ą 0 and k “ s2 uu

if (s < 5) {
tt uu

j = k + s;

tt uu

j = j / 2;

ttP1 : uu

} else {
tt uu

j = k - s;

tt uu

j = j + 2;

ttP2 : uu

}
tt or uu

tt j ď k ` s uu

3



Task 4 – Everbody Loops [12 pts]

In this problem, we will prove the correctness of a loop that finds the quotient of x divided by 10, i.e.,
the largest value y such that 10y ď x. To say that y is the largest such value means that any larger
value would not satisfy the inequality, i.e., that 10py ` 1q ­ď x.

We denote the initial value of x at the top by x0. This is explicitly stated in the precondition as
the fact “x “ x0”. The first two facts of the postcondition say that y is the quotient of x0 divided by
10. The third fact says that x is the remainder, i.e., the remaining amount not divisible by 10.

This loop calculates the quotient without division. Instead, it just uses subtraction. It operates by
increasing y and decreasing x each time around. The first part of the invariant says that the distance
from x0 down to 10y (i.e., x0 ´ 10y) is the same as the distance from x down to 0 (i.e., x ´ 0 “ x).
The second part of the invariant says that x has not moved below 0 (i.e., x ě 0).

ttx “ x0 and x0 ě 0 uu

int y = 0;

tt Inv: x0 ´ 10y “ x and x ě 0 uu

while (x >= 10) {
y = y + 1;

x = x - 10;

}
tt 10y ď x0 and x0 ă 10py ` 1q and x “ x0 ´ 10y uu

a) Prove that the invariant is true when we get to the top of the loop the first time.

b) Prove that, when we exit the loop, the postcondition holds.

c) Prove that the invariant is preserved by the body of the loop. Use either forward or backward
reasoning (your choice) to reduce the body to an implication and then check that it holds.

4


