CSE 331
Software Design & Implementation

Autumn 2025
Section 4 — Floyd Logic




Administrivia

« HW 4 released tonight, due Friday 10/24 @ 6pm




Ed Posting Guidelines

When posting on Ed, please follow our Ed posting guidelines. Thank you!

Ed Title Format ;%
H

Homeworks: [AHW#] Q#: Short Title Describing the question

e Ex: [AHW2] Q1.a: proof formatting
InClass Work: [ICW# and Version] Q#: Short Title Describing the question

e Ex:[ICW1a] Q1.a: Stronger vs Weaker Spec
e Ex:[ICW2c] Q1.a: proof formatting

Section: [SC#] Q#: Short Title Describing the question

e Ex:[SC2] Q1.a: proof formatting


https://edstem.org/us/courses/87132/discussion/7126198

Proof By Calculation — Review

« The goal of proof by calculation is to show that an assertion is
true given facts that you already know

« You should start the proof with the left side of the assertion and
end the proof with the right side of the assertion. Each symbol
(=, >, <, etc.) connecting each line of the proof is that line's
relationship to the previous line on the proof

« Only modify one side. Never do work on both sides. We can
only work with what you have from the previous line, using
definitions and facts.




Structural Induction — Review

* Let P(S) be the claim

« To Prove P(S) holds for any list S, we need to prove two
implications: base case and inductive case

— Base Case: prove P(nil)
» Use any known facts and definitions

— Inductive Hypothesis: assume P(L) is true for a L: List
« Use this in the inductive step ONLY [2]]

— Inductive Step: prove P(x :: L) forany x : Z, L : List
* Direct proof
» Use known facts and definitions and Inductive Hypothesis

« Assuming we know P(L), if we prove P(x :: L), we then prove
recursively that P(S) holds for any List



Hoare Triples — Review

A Hoare Triple has 2 assertions and some code

{PH
S

{Q}}
— P is a precondition, Q is the postcondition
— Sis the code

» Triple is “valid” if the code is correct:
— S takes any state satisfying P into a state satisfying Q
» Does not matter what the code does if P does not hold
initially
« We use Proof By Calculation to prove our Hoare Triples!



Stronger vs Weaker — Review

» Assertion is stronger iff it holds in a subset of states
— Stronger assertion implies the weaker one:
If Q, is true, Q, must also be true, Q, - Q,

Q,

 Different from strength in specifications




Question ...

Which is the strongest assertion:
e x>3
e x=>3
e x>3andx€{2 46,8 10}
e x>3andx%2=0

Discuss with the person next to you



Question ...

Which is the strongest assertion:
e x>3
e x=>3
e x>3andx€ {2, 4,6,8, 10}
e x>3andx%2=0

Discuss with the person next to you



Forward Reasoning — Review

* Forwards reasoning fills in the postcondition
— Gives strongest postcondition making the triple valid
» Apply forward reasoning to fill in R

{P}} p

ey

— Check second triple by proving that R implies Q



Forward Reasoning Error Example

{{ x>11}}
X = x + 1;
{{ x =x,+1and x> 1 }}

y = 3 % \ .
~ ~ Drops this
{{ x =x,t1andy =3 * x}} assertion
z =y + 1,
{{ x = x landy =3 * xand z = /(3 * x) + 1 }}

What's wrong with these assertions?
Uses subscripts

for an invertible Simplifies
operation assertions too

early



Corrected Forward Reasoning Example

{{ x > 1
X = x + 1

{{Ix - 1> 1 }}

y = 3 % .x;
{{ x-1>1and vy 3 x x }}
z =y +1

{{ x-1>1and vy 3% x and z =y + 1 }}

b does not simplify
5 assertions early

updates x for this operation rather than
iIntroducing subscripts



Backward Reasoning — Review

« Backwards reasoning fills in preconditions

— Just use substitution!

— Gives weakest precondition making the triple valid
* Apply backwards reasoning to fill in R

{P} ]1 Q
(R}

55N

[ S 2 er i

— Check first triple by proving that P implies R




Forward & Backward General Rules

Forward Reasoning:
e After each line of code update variables in assertions based on
how they they were changed by the line of code

Backward Reasoning:
e As you work your way up the code directly substitute how
variables are modified in the code into your assertions

General:

e Do not drop or simplify assertions

e Do not use subscripts for invertible operations (addition and
subtraction are always invertible)



Task 1 - Found Guilty of Reason

a) Use forward reasoning to fill in the missing assertions in the following code:

lz>5}

y =X - 2;

{x>=dandy=x-2 3
z =3 * y;

{ x>=bandy=x-2and z=3y B

z =2z - 4;
{P: x>=5andy=x-2andz+4=3y B

{Q: 2>20}




Task 1 - Found Guilty of Reason

b) Show that the code is correct by proving by calculation that P implies Q.

We can see that () holds since

z=3y—4 since 2 + 4 = 3y
=3(x—2)—4 sincey=1x—2
=3z — 10
=23:-9—10 since x = 5
=9

=0



Task 1 - Found Guilty of Reason

c) Use forward reasoning to fill in the missing assertions in the following code:

{y>>band z>2}}
x =4 xy - 3;

{{y>5andz>23ndx=4y-3 }}
y=Y - 5;
{{y+5>5andz>23ndx=4(y+5)-3 1}

Z =2 %Yy,
{P: y+5>5andz/y>23ndx=4(y+5)-3}}

{Q: z<224+20}




Task 1 - Found Guilty of Reason

d) Show that the code is correct by proving by calculation that P implies Q.

We can see that () holds since

r=4y+ 17 sincex =4(y+5)—3
< 2z + 17 since z > 2y because y > 0
<2z + 20



Task 2 - Does a Duck Say “Back™?

a) Use backward reasoning to fill in the missing assertions in the following code:

Fill in each blank by applying the rules exactly as taught in lecture. Then, if you want, you can
simplify the resulting assertion, but do not weaken it. Separate any simplified statement from the
original by “©".

HPz: ez0}

{Q: 2c+1>=c-1 } < {{c=-2}
b = 2xc;

{(b+1>=c-1 )

¢ =c - 1;

{b*r1>=c i

a=p+ 1;

a=>ch




Task 2 - Does a Duck Say “Back™?

b) Show that the code is correct by proving by calculation that P implies Q.

We can see that  holds since ¢ > 0 > —2.



Task 2 - Does a Duck Say “Back™?

c) Use backward reasoning to fill in the missing assertions in the following code:

{{P a:<w—|—1andrm>()}}
{Q: 2x-8<4w _}} < {2c<4w+8} « {{z<2w+4}

y =4 % w;
f{ 2x-8<y i
X =X * 2;
{x-8<y i

zZ=x -8:

lz<yl



Task 2 - Does a Duck Say “Back™?

d) Show that the code is correct by proving by calculation that P implies Q.

We can see that ) holds since

r<w+1
<2w+1 sincew >0
<2w+4



Conditionals — Review

« Reason through “then” and “else” branches independently and
combine last assertion of both branches with an “or” at the end

* Prove that each implies post condition by cases

* Note: this is important for your homework!

const g = (n:

{{}}
let m;

if (n >= 0)

{{m>n}}

return m;

m = 2*n +

{

number) :

y

number => {

1

let m;
if (n >= 0) {
m= 2*n + 1;
} else ({
m = 0;
}
{{m>n}}

return m;



Task 3 - Nothing To Be If-ed At

Use forward reasoning to fill in the assertions. Then, prove, by cases, that what we know at the
end of the conditional implies the post condition. The final assertion of the if and else branches are
labeled as P1 and P2 respectively, please this abbreviation in future assertions and your proofs to
refer to the same set of facts.

{{s>0and k =s*}

if (s < 5) {
{O0<s<bandk=s"2 !
j=k+s;
{O0<s<bandk=s"2andj=k+s B
i=3i/2;
{P1: 0<s<bandk=s"2andjO=k+sanyj=Lj0/2]
} else {
{s>=b5and k=s"2 )
j =k - s;
{s>bandk=s"2andj=k-s B
i=3i+2;
{P2: s>=b%andk=s"2andj-2=k-s B
}
{{ P1 or P2 i

{i<k+s}



Task 3 - Nothing To Be If-ed At

We'll prove by cases that the assertion just below the conditional implies the post condition
{i<k+s }:

First, assuming P1:

9= |96/ 2] Since j = |jo / 2]

< Jo/2 Def of floor
= (k+s)/2 Since jo=k+s
<k+s Since s >0and k= s >0

Now, assuming P2:

=k—s+2 Sincej—2=k—s
<k+s Since s > 5, we know —s+2<s



Loop Invariant — Review

{{Inv: I}}
while (cond) {

S

true!

truel!
true!

1

true!

» Loop invariant must be true every time at the top of the loop

— The first time (before any iterations) and for the beginning of
each iteration

« Also true every time at the bottom of the loop
— Meaning it’s true immediately after the loop exits
* During the body of the loop (during S), it isn’t true

« Must use “Inv” notation to indicate that it's not a standard
assertion



Question ....

Where is it allowed for a loop invariant not to hold?
e before the loop
e after the loop
e after entering the loop
e Dbefore exiting the loop

e during the code execution inside of the loop



Question ....

Where is it allowed for a loop invariant not to hold?
e before the loop
e after the loop
e after entering the loop
e Dbefore exiting the loop

e during the code execution inside of the loop



Task 4 - Everybody Loops

{z=xz9and 2o =0}
int y = 0;
{Inv: 2p — 10y =z and z >0 }}
while (x >= 10) {
y=y+1
x =x - 10;

}

{10y < zp and o < 10(y + 1) and z = 2o — 10y }}
a) Prove that the invariant is true when we get to the top of the loop the first time.

Forward reasoning tells us that x = xg, xg = 0, and y = 0. The first part of the invariant

holds since
o — 10y = x — 10y since x = xg

= & since y =0

The second fact holds since x = 9 > 0



Task 4 - Everybody Loops

b) Prove that, when we exit the loop, the postcondition holds.

When we exit the loop, we know that o — 10y = x, x > 0, and x < 10. The first part
of the postcondition holds since

10y =29g—x sincezg—10y==zx

< xp sincexz =0

the second part of the postcondition holds since

o=+ 10y sincezg—10y==x
<104 10y since z < 10
=10(y + 1)

and the third part is a restatement of the first fact from the invariant.



Task 4 - Everybody Loops

c) Prove that the invariant is preserved by the body of the loop. Use either forward or backward
reasoning (your choice) to reduce the body to an implication and then check that it holds.

We can apply backward reasoning in the loop to get condition ) shown here:

{P: zo—10y=xzandz>0and z > 10}}
{Q@: zg—10y=aandz =10}
{xzo—10(y+1)=z—10and z—10=>0}}
y=y + 1in;
{zo—10y=2xz—10and z—10 >0 }}

X =x = 10n;

{zo—10y=zandz >0}

Both parts of ) are explicitly provided in P, so no calculations are needed.



