CSE 331: Software Design & Implementation Fall 2025

Quiz Section 3: ADTs

The next few problems concern the following ADT:

VAT
Represents an immutable collection of integers.

if an integer is present or not. The order of the integers and the number of
times an integer appears in the list are inaccessible and do not matter.
*/
public class IntSet {
VAL

*
*
* Clients can think of a set as a list of integers. However, they can only ask
*
*

* Determines whether n is in the list.
* @param n the number to look for in the list
* Q@returns contains(n, obj), where

* contains(n, nil) := false
* contains(n, m :: L) := true ifm=n
* contains(n, m :: L) := contains(n, L) if m /= n

*/

public boolean contains(int n);

/%%
* Creates and returns a new list containing n as well as all of obj.
* @param n the number to add to the new list.
* Q@returns n :: obj
*/
public IntSet add(int n);

Jkx .. x/

public IntSet remove(int n);



Task 1 — Teacher’s Set [12 pts]

Answer the following questions about the specification of IntSet.

a) Explain in your own words what @return n :: obj means. In particular, what is “obj” in this
context? Why does this mathematical expression make sense?

b) Suppose that we have an IntSet T whose abstract state is the list 1 :: 2 :: 3 :: nil. What mathe-
matical value is returned by the expression T.add(4) according to the add function specification.

c) Write a specification for the method remove. It should return a list that all of the numbers in the
current list except for the number n, which should no longer be present.
(Hint: your spec should include a math definition similar to that of contains)



Task 2 — Jumping Through Dupes [12 pts]

In this problem, we will return to the original specification of IntSet, whose abstract state is a list of
elements possibly containing duplicates. We will consider three different concrete representations for it:

public class IntSetImpl implements IntSet {

(1) // AF: obj = this.elems
private int[] elems;

(2) // AF: obj = this.elems
// RI: this.elems contains no dups
private int[] elems;

(3) // AF: obj = this.elems
// RI: this.elems is sorted
private int[] elems;

public IntSetImpl(int[] elems) {
this.elems = elems;

3

For each of the methods shown below, state the concrete representations (1-3) for which it would satisfy
the specification of the method in IntSet. In each case, briefly explain why

a) public boolean contains(int n) {
return Arrays.binarySearch(this.elems, n) >= 0;

}

b) public boolean contains(int n) {
for (int i = 0; i < this.elems.length; i++) {
if (this.elems[i] == n)
return true;
}
return false;

3



d)

public IntSet add(int n) {

if (this.contains(n)) {
return this;

} else {
int[] newElems = new int[this.elems.length + 1];
System.arrayCopy(this.elems, O, newElems, 1, this.elems.length);
newElems[0] = n;
return new IntSetImpl(newElems);

public IntSet remove(int n) {
for (int i = 0; i < this.elems.length; i++) {
if (this.elems[i] == n) {
int[] newElems = new int[this.elems.length - 1];
System.arrayCopy(this.elems, 0, newElems, O, i);
System.arrayCopy(this.elems, i+1l, newElems, i,
this.elems.length - i - 1);
return new IntSetImpl(newElems);
}
}
return this;

}



Task 3 — Hold Down the Sort [12 pts]

Consider the following implementation of IntSetImpl, which ensures that the representation invariant
is satisfied by sorting the elements in the constructor:

public class IntSetImpl implements IntSet {
// AF: obj = this.elems
// RI: this.elems is sorted in ascending order
private int[] elems;

public IntSetImpl(int[] elems) {
this.elems = elems;

// Put the elements in sorted order.
for (int i = 1; i < elems.length; i++) {
int key = elems[i];
int j=1-1;
while (j >= 0 && elems[j] > key) {
elems[j + 1] = elems[j];
=
}
elems[j + 1] = key;

}

a) How many test cases are required to get proper coverage of the constructor? Explain your answer
and also give a specific set of test inputs that would give proper coverage.



