
CSE 331
Software Design & Implementation

Autumn 2025
Section 3 – ADTs

Administrivia

● HW3 released tonight - Due @ 6pm Friday

2

Specifications for ADTs – Review
● New Terminology for specifying ADTs:

○ Abstract State / Representation (Math)
■ How clients should understand the object
■ Ex: List(nil or cons)

○ Concrete State / Representation (Code)
■ Actual fields of the record and the data stored
■ Ex:

● We’ve had different abstract and concrete types all along!
○ in our math, List is an inductive type (abstract)
○ in our code, List is a class with two fields (concrete)

● Term “object” (or “obj”) will refer to abstract state
○ “object” means mathematical object
○ “obj” is the mathematical value that the record represents

Internally Documenting ADTs – Review
Abstract Function (AF) – defines what abstract state the field
values represent

– Maps field values → the object they represent
– Output is math, this is a mathematical function

Representation Invariants (RI) – facts about the field values that
must always be true

– Constructor must always make sure RI is true at runtime
– Can assume RI is true when reasoning about methods
– AF only needs to make sense when RI holds
– Must ensure that RI always holds

Externally Documenting ADTs - Review
TODO topic 5

- JavaDoc comments in interface use “tags” to describe what ADT
methods do in terms of the abstract state

/**

 * High level description of what function does

 * @param a What "a" represents + any conditions

 * @requires Rules about multiple params and Abstract State (obj)

 * @returns Detailed description of return value

 * @throws Condition when errors will be thrown

 */

- For mutable ADTs, will have 2 additional tags to describe
“mutator” methods

 * @modifies states what could be mutated by function (obj)

 * @effects Detailed description of guaranteed changes

// A list of integers that can retrieve the last element in O(1)
interface FastList {
/**
* Returns the object as a regular list
* @returns obj
*/
List toList();
}

Documenting ADTs – Example

class FastLastList implements FastList {
 // RI: this.last = last(this.list);
 // AF: obj = this.list;

 // @returns last(obj)
 int getLast() {
 return this.last;
 };
}

Hide the representation
details (i.e. real fields) from
the client

Talk about functions in
terms of the abstract state
(obj)

IntSet ADT

Task 1 - Teacher’s Set

Task 1 - Teacher’s Set

Task 2 - Jumping Through Dupes
Consider the following concrete representations of IntSet:

Task 2 - Jumping Through Dupes

Task 2 - Jumping Through Dupes

Task 2 - Jumping Through Dupes

Task 3 - Hold Down The Sort

Task 3 - Hold Down The Sort

Attendance TODO QR code

