CSE 331 Software Design & Implementation

Autumn 2025 Section 2 - Reasoning

Administrivia

• HW2 will be released later tonight and is due **Friday** @

6pm!

Proof By Calculation - Review

- Proving implications is the core step of reasoning
- Uses known facts and definitions (ex: len(nil) = 0)
 - Written in our math notation!
- Start from the left side of the inequality to be proved
- Chain of "=" shows first = last
- Chain of "=" and "≤" shows <u>first</u> ≤ <u>last</u>
- Directly cite the definition of a function

Proof By Calculation Reminders

- The goal of proof by calculation is to show that an assertion is true given facts that you already know
- You should start the proof with either the left or the right side of the assertion and end the proof with the other side of the assertion.
- Every symbol (=, >, <, etc.) connecting each line of the proof is the current line's relationship to the previous line in the proof (not any other lines)
- Only modify one side
- Every line requires justification (except for algebraic manipulations)

Proof By Calculation - Example

```
// Inputs x and y are positive integers
// Returns a positive integer.
public static int f(int x, int y) {
   return x * y;
};
```

- Known facts "x ≥ 1" and "y ≥ 1"
- Correct if the return value is a positive integer

```
x * y \ge x * 1 \text{ since } y \ge 1
 \ge 1 * 1 \text{ since } x \ge 1
 = 1
```

Calculation shows that x * y ≥ 1

Proof By Calculation - Citing Functions

```
sum(nil) := 0
sum(x :: L) := x + sum(L)
```

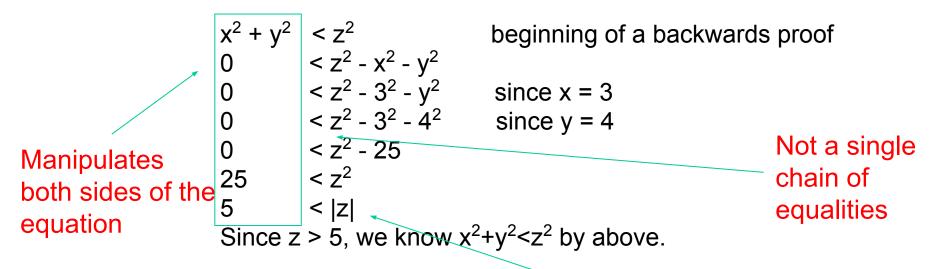
Know "a ≥ 0", "b ≥ 0", and "L = a :: b :: nil"

Prove the "sum(L)" is non-negative

```
sum(L)= sum(a :: b :: nil)since L = a :: b :: nil= a + sum(b :: nil)def of sum= a + b + sum(nil)def of sum= a + bdef of sum\geq 0 + bsince a \geq 0\geq 0since b \geq 0
```

Proof By Calculation Bad Example

Suppose we have the facts: x = 3, y = 4, z > 5 and we want to use proof by calculation to prove $x^2 + y^2 < z^2$. Our proof by calculation would look like this:



What is wrong with this proof?

doesn't end with right side of the assertion (z^2)

Proof by Calculation Bug: Explanation

The previous proof is an example of *Circular Reasoning*. We begin the proof with the conclusion manipulating both sides until we reach one of the given facts.

Just because we can prove one direction does **not** mean the other direction necessarily holds.

We must always start from what we know and end with what we want to prove.

 $\textbf{Facts} \rightarrow \textbf{Conclusion}$

Conclusion → **Facts**

Proof By Calculation Example Correct

Suppose we have the facts: x = 3, y = 4, z > 5 and we want to use proof by calculation to prove $x^2 + y^2 < z^2$. Our proof by calculation would look like this:

$$x^{2} + y^{2} = 3^{2} + y^{2}$$
 since $x = 3$
= $3^{2} + 4^{2}$ since $y = 4$
= 25

start with left side of assertion

$$= 5^2$$

$$< z^2$$

since
$$z > 5$$

end with right side of assertion

note that every line has justification (except for algebraic manipulations)

shows the

relationship only to

the previous line

Let a, b, c, d, e be integers. Complete each of the following proofs by calculation.

Include an explanation on each step where a given fact is used. You can skip such an explanation only if the claim written in that step is itself, *literally* a known fact. It is also fine to cite a fact that is equivalent (via simple algebra) to a known fact.

Let a, b, c, d, e be integers. Complete each of the following proofs by calculation.

Include an explanation on each step where a given fact is used. You can skip such an explanation only if the claim written in that step is itself, *literally* a known fact. It is also fine to cite a fact that is equivalent (via simple algebra) to a known fact.

$$a = 1$$

Let a, b, c, d, e be integers. Complete each of the following proofs by calculation.

Include an explanation on each step where a given fact is used. You can skip such an explanation only if the claim written in that step is itself, *literally* a known fact. It is also fine to cite a fact that is equivalent (via simple algebra) to a known fact.

$$a = 1$$
$$= 2 - 1$$

Let a, b, c, d, e be integers. Complete each of the following proofs by calculation.

Include an explanation on each step where a given fact is used. You can skip such an explanation only if the claim written in that step is itself, *literally* a known fact. It is also fine to cite a fact that is equivalent (via simple algebra) to a known fact.

$$a = 1$$

= 2 - 1
= 2 \cdot 1 - 1

Let a, b, c, d, e be integers. Complete each of the following proofs by calculation.

Include an explanation on each step where a given fact is used. You can skip such an explanation only if the claim written in that step is itself, *literally* a known fact. It is also fine to cite a fact that is equivalent (via simple algebra) to a known fact.

$$a = 1$$

= 2 - 1
= 2 · 1 - 1
= 2b - 1 since $b = 1$

Let a, b, c, d, e be integers. Complete each of the following proofs by calculation.

Include an explanation on each step where a given fact is used. You can skip such an explanation only if the claim written in that step is itself, *literally* a known fact. It is also fine to cite a fact that is equivalent (via simple algebra) to a known fact.

Let a, b, c, d, e be integers. Complete each of the following proofs by calculation.

Include an explanation on each step where a given fact is used. You can skip such an explanation only if the claim written in that step is itself, *literally* a known fact. It is also fine to cite a fact that is equivalent (via simple algebra) to a known fact.

$$(b-1)^2 = (2a-1-1)^2$$
 since $b = 2a-1$

Let a, b, c, d, e be integers. Complete each of the following proofs by calculation.

Include an explanation on each step where a given fact is used. You can skip such an explanation only if the claim written in that step is itself, *literally* a known fact. It is also fine to cite a fact that is equivalent (via simple algebra) to a known fact.

$$(b-1)^2 = (2a-1-1)^2$$
 since $b = 2a-1$
= $(2a-2)^2$

Let a, b, c, d, e be integers. Complete each of the following proofs by calculation.

Include an explanation on each step where a given fact is used. You can skip such an explanation only if the claim written in that step is itself, *literally* a known fact. It is also fine to cite a fact that is equivalent (via simple algebra) to a known fact.

$$(b-1)^2 = (2a-1-1)^2$$
 since $b = 2a-1$
= $(2a-2)^2$
= $(2 \cdot 1 - 2)^2$ since $a = 1$

Let a, b, c, d, e be integers. Complete each of the following proofs by calculation.

Include an explanation on each step where a given fact is used. You can skip such an explanation only if the claim written in that step is itself, *literally* a known fact. It is also fine to cite a fact that is equivalent (via simple algebra) to a known fact.

$$(b-1)^2 = (2a-1-1)^2$$
 since $b = 2a-1$
= $(2a-2)^2$
= $(2 \cdot 1 - 2)^2$ since $a = 1$
= 0^2
= 0

Let a, b, c, d, e be integers. Complete each of the following proofs by calculation.

Include an explanation on each step where a given fact is used. You can skip such an explanation only if the claim written in that step is itself, *literally* a known fact. It is also fine to cite a fact that is equivalent (via simple algebra) to a known fact.

$$(b-1)^2 = (2a-1-1)^2$$
 since $b = 2a-1$
= $(2a-2)^2$
= $(2 \cdot 1 - 2)^2$ since $a = 1$
= 0^2
= 0
< c since $c > 0$

Let a, b, c, d, e be integers. Complete each of the following proofs by calculation.

Include an explanation on each step where a given fact is used. You can skip such an explanation only if the claim written in that step is itself, *literally* a known fact. It is also fine to cite a fact that is equivalent (via simple algebra) to a known fact.

Let a, b, c, d, e be integers. Complete each of the following proofs by calculation.

Include an explanation on each step where a given fact is used. You can skip such an explanation only if the claim written in that step is itself, *literally* a known fact. It is also fine to cite a fact that is equivalent (via simple algebra) to a known fact.

$$e = a + 8b$$

Let a, b, c, d, e be integers. Complete each of the following proofs by calculation.

Include an explanation on each step where a given fact is used. You can skip such an explanation only if the claim written in that step is itself, *literally* a known fact. It is also fine to cite a fact that is equivalent (via simple algebra) to a known fact.

$$e = a + 8b$$

= $c + 8 + 8b$ since $a = c + 8$

Let a, b, c, d, e be integers. Complete each of the following proofs by calculation.

Include an explanation on each step where a given fact is used. You can skip such an explanation only if the claim written in that step is itself, *literally* a known fact. It is also fine to cite a fact that is equivalent (via simple algebra) to a known fact.

$$e = a + 8b$$

= $c + 8 + 8b$ since $a = c + 8$
= $c + 8 + 8(d - 1)$ since $b = d - 1$

Let a, b, c, d, e be integers. Complete each of the following proofs by calculation.

Include an explanation on each step where a given fact is used. You can skip such an explanation only if the claim written in that step is itself, *literally* a known fact. It is also fine to cite a fact that is equivalent (via simple algebra) to a known fact.

$$e = a + 8b$$

 $= c + 8 + 8b$ since $a = c + 8$
 $= c + 8 + 8(d - 1)$ since $b = d - 1$
 $= c + 8 + 8d - 8$
 $= c + 8d$

Let a, b, c, d, e be integers. Complete each of the following proofs by calculation.

Include an explanation on each step where a given fact is used. You can skip such an explanation only if the claim written in that step is itself, *literally* a known fact. It is also fine to cite a fact that is equivalent (via simple algebra) to a known fact.

d) Given that b = 2a - 1, $d = a^2$, and d + b + 2 < c, it follows that $(a + 1)^2 < c$.

$$(a+1)^2 = a^2 + 2a + 1$$

= $a^2 + 2a - 1 + 2$
= $a^2 + b + 2$ since $b = 2a - 1$
= $d + b + 2$ since $d = a^2$
< c since $d + b + 2 < c$

Defining Function By Cases – Review

- Sometimes we want to define functions by cases
 - **Ex**: define f(n) where $n : \mathbb{Z}$

```
f(n) := 2n + 1 if n \ge 0

f(n) := 0 if n < 0
```

- To use the definition f(n), we need to know if n > 0 or not
- This new code structure requires a new proof structure

Proof By Cases – Review

- Split a proof into cases:
 - Ex: a = True and a = False or n >= 0 and n < 0
 - These cases needs to be exhaustive
- Ex: f(n) := 2n + 1 if $n \ge 0$ f(n) := 0 if n < 0

Prove that $f(n) \ge n$ for any $n : \mathbb{Z}$

Case $n \ge 0$:

$$f(n) = 2n + 1$$
 def of f (since $n \ge 0$)
> n since $n \ge 0$

Case n < 0:

$$f(n) = 0$$
 def of f (since $n < 0$)
 $\ge n$ since $n < 0$

Since these 2 cases are exhaustive, f(n) >= nholds in general

Task 2 - Absolutely Positive

Let x be an integer and L a list. Complete the following proof by cases.

Let abs : $\mathbb{Z} \to \mathbb{Z}$ be defined as follows:

$$abs(x) = -x$$
 if $x < 0$
 $abs(x) = x$ if $x \ge 0$

Prove that abs(abs(x)) = abs(x).

Task 2 - Absolutely Positive

Let abs : $\mathbb{Z} \to \mathbb{Z}$ be defined as follows:

```
abs(x) = -x if x < 0

abs(x) = x if x \ge 0
```

Prove that abs(abs(x)) = abs(x).

Suppose that x < 0. Then, we can see that

$$\mathsf{abs}(\mathsf{abs}(x)) = \mathsf{abs}(-x) \quad \mathsf{def} \; \mathsf{of} \; \mathsf{abs} \; (\mathsf{since} \; x < 0)$$

$$= -x \quad \mathsf{def} \; \mathsf{of} \; \mathsf{abs} \; (\mathsf{since} \; -x > 0)$$

$$= \mathsf{abs}(x) \quad \mathsf{def} \; \mathsf{of} \; \mathsf{abs} \; (\mathsf{since} \; x < 0)$$

Now, suppose that $x \ge 0$. Then we can see that

$$abs(abs(x)) = abs(x)$$
 def of abs (since $x \ge 0$)

These two cases are exhaustive, so we have proven the claim holds in general.

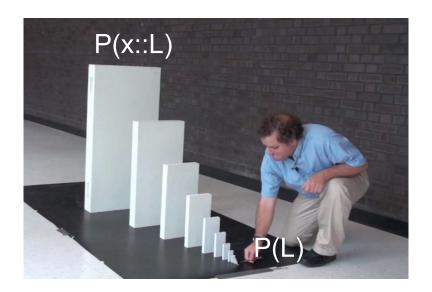
Structural Induction – Review

- Let P(S) be the claim
- To Prove P(S) holds for any list S, we need to prove two implications: base case and inductive case
 - Base Case: prove P(nil)
 - Use any known facts and definitions
 - Inductive Hypothesis: assume P(L) is true for a L: List
 - Use this in the inductive step ONLY
 - Inductive Step: prove P(x :: L) for any x : Z, L : List
 - Direct proof
 - Use known facts and definitions and Inductive Hypothesis
- Assuming we know P(L), if we prove P(x :: L), we then prove recursively that P(S) holds for any List

Structural Induction - 331 Format

The following is the structural induction format we recommend for using in your homework (the staff solution also follows this format)

- 1) Introduction define P(S) to be what we are trying to prove
- 2) Base Case show P(nil) holds
- 3) Inductive Hypothesis assume P(L) is true for an arbitrary list
- 4) Inductive Step show P(x :: L) holds
- 5) Conclusion "We have shown that P(S) holds for any list"



Task 3 - Keeping It Cool

The functions keep, skip: (List) \rightarrow List remove half the elements in a list. These two functions keep and skip every other element of the passed in list. The keep function includes the first element but skips the one after it, while skip drops the first element but keeps the one after that. They are defined formally as follows:

$$\mathsf{keep}(\mathsf{nil}) = \mathsf{nil}$$
 $\mathsf{keep}(x :: L) = x :: \mathsf{skip}(L)$ $\mathsf{skip}(\mathsf{nil}) = \mathsf{nil}$ $\mathsf{skip}(x :: L) = \mathsf{keep}(L)$

Also, recall the function echo : (List) \rightarrow List, which was defined in class as follows:

$$echo(nil) = nil$$

 $echo(x :: L) = x :: x :: echo(L)$

and the function sum : (List) $\rightarrow \mathbb{N}$, which was defined in class as follows:

```
sum(nil) := 0
sum(x :: L) := x + sum(L)
```

You will use these functions in the problem below.

Prove that sum(skip(echo(L))) = sum(L) holds by structural induction on L.

Task 3 - Keeping It Cool

Prove that sum(skip(echo(L))) = sum(L) holds by structural induction on L.

Define P(L) to be the claim sum(skip(echo(L))) = sum(L). We will prove that this holds for all values of L by structural induction.

Base Case. We can see that P(nil) holds as follows:

```
sum(skip(echo(nil))) = sum(skip(nil)) def of echo
= sum(nil) def of skip
```

Inductive Hypothesis. Suppose that P(L) holds for some list of integers L.

Inductive Step. Let x be an arbitrary integer. We can see that P(x::L) holds as follows:

```
\begin{aligned} \operatorname{sum}(\operatorname{skip}(\operatorname{echo}(x::L))) &= \operatorname{sum}(\operatorname{skip}(x::x::\operatorname{echo}(L))) & \operatorname{def} \ \operatorname{of} \ \operatorname{echo} \\ &= \operatorname{sum}(\operatorname{keep}(x::\operatorname{echo}(L))) & \operatorname{def} \ \operatorname{of} \ \operatorname{skip} \\ &= \operatorname{sum}(x::\operatorname{skip}(\operatorname{echo}(L))) & \operatorname{def} \ \operatorname{of} \ \operatorname{keep} \\ &= x + \operatorname{sum}(\operatorname{skip}(\operatorname{echo}(L))) & \operatorname{def} \ \operatorname{of} \ \operatorname{sum} \\ &= x + \operatorname{sum}(L) & \operatorname{Ind}. \ \operatorname{Hyp}. \\ &= \operatorname{sum}(x::L) & \operatorname{def} \ \operatorname{of} \ \operatorname{sum} \end{aligned}
```

Conclusion. P(L) holds for all lists of integers L by structural induction.

Attendance

https://tinyurl.com/25ausec2

