
CSE 331
Software Design & Implementation

Autumn 2025
Section 1 – Specifications

Welcome!
• Let’s all introduce ourselves:

– Name and pronouns
– Year
– What other classes you are taking this quarter
– Would you rather be a dinosaur or a unicorn and why?

Homework Cycle
• Tuesdays: Section

– content review & homework problems
– Graded on participation
– (If sick): Can submit on gradescope @ 6pm Wednesday

• Wednesdays - Fridays: At-Home Work
– Submit remaining homework problems @ 6pm Friday
– TAs will assess and give feedback
– Graded on participation

• Mondays: In-Class Work
– Complete problems during lecture time
– Graded submissions

Review - Abstraction
- Hides unnecessary details from clients via specification
- Creates an Abstraction Barrier between clients and

implementers
- Implementers promise that the code follows the

specification
- Clients promise not to rely on details outside the

specification

Poll - Abstraction
What is one downside of AI regarding abstraction?

AI does not respect abstraction barriers. It relies on
implementation details when writing code rather than
solely specifications.

This leads to dependent code, where a change in
implementation of a function can break the rest of the
code.

Review – Specification Types

• Imperative specification says how to calculate the answer
- Gives the exact steps to get the answer
- Just have to translate math to code
- Ex: Absolute value: |x| = x if x ≥ 0 and –x otherwise

• Declarative specification says what the answer looks like
- Does not say how to calculate it
- Up to us to ensure that our code satisfies the spec
- Ex: Subtraction (a – b): return x such that b + x = a

Question - Specification Types
What type is each of these specs?:

- Steps to calculate the square of a number n: multiply n by itself, n * n.
● Declarative
● Imperative

- Return a number, such that this number is the same value as the square of n
● Declarative
● Imperative

Question - Specification Types
What type is each of these specs?:

- Steps to calculate the square of a number n: multiply n by itself, n * n.
● Declarative
● Imperative

- Return a number, such that this number is the same value as the square of n
● Declarative
● Imperative

Question - Specification Types
What type is each of these specs?:

- Steps to calculate the square of a number n: multiply n by itself, n * n.
● Declarative
● Imperative

- Return a number, such that this number is the same value as the square of n
● Declarative
● Imperative

Review – Specifications
A specification consists of two parts:

Precondition: Allowed inputs

Postcondition: Allowed outputs

A specification is stronger when it has less restrictive inputs and
more restrictive outputs. In other words, strong specifications have
more guarantees for a larger set of inputs.

Question - Specifications
Which of the two specs is stronger?:

/** Returns the square root of a given number x
 * @requires x >= 0
 * @return the integer y such that y^2 = x

Or
/** Returns the square root of a given number x
 * @requires x >= 0
 * @return the integer y such that y^2 = x and y >= 0

Question - Specifications
Which of the two specs is stronger?:

/** Returns the square root of a given number x
 * @requires x >= 0
 * @return the integer y such that y^2 = x

Or
/** Returns the square root of a given number x
 * @requires x >= 0
 * @return the integer y such that y^2 = x and y >= 0

Review – Math Notation

Made up for
this class

Standard
notations

Review – Math Notation

● Side Conditions: limiting / specifying input in right column
- ex: abs : ℝ → ℝ

 abs(x) := x if x ≥ 0
 abs(x) := –x if x < 0

- conditions must be exclusive and exhaustive
● Pattern Matching: defining function based on input cases

- Exactly one rule for every valid input
ex: f : ℕ → ℕ

f (0) := 0
f (n+1) := n

- “n + 1” signifies that input must be > 0 since smallest ℕ would be 0
- Preferred over side conditions in most cases

● Course Website > Topics > Math Notation Notes

https://courses.cs.washington.edu/courses/cse331/24au/topics/notes/math-notation.pdf

Review - Math Notation Example

Task 1a

Task 1a

Task 1a

Task 1a

Task 1a

Task 1a

Task 1b

● The specification does not describe what should happen if/when items is null.

● This is a problem because a client cannot effectively use a method if they do
not know what happens in some cases.

Task 2a

A & B

C & D are not satisfied since the item returned may not be the one
nearest below in price.
E is not satisfied since a NullPointerException is thrown instead of
returning null when items is null.

Task 2b

C & D

A & B & E are not valid since the return may not be within the
required price range

Task 2c

A & B & E

C & D are not satisfied since the item returned may not be the
one nearest below in price.

Review - Testing
• Statement Coverage

- Test every executable statement reachable by an allowed input

• Branch Coverage
- For every conditional, test all branches for allowed inputs

• Loop Coverage
- Every loop/recursive call must be tested on 0, 1, any 2+ iterations for allowed

inputs

• Exhaustive Testing
- Test all possible inputs for functions with <= 10 allowed inputs

Notes on Testing Requirements

https://courses.cs.washington.edu/courses/cse331/25su/resources/testing.pdf

Task 3

2 test cases (n < 0 and n >= 0)
- Achieves statement coverage
- Statement coverage also yields branch coverage
- Loop coverage vacuously true
- Ex: f(-1) = 2, f(2) = 6

3 test cases (0, 1, 2+ iterations)
- Achieves loop coverage
- Also yields Statement & branch coverage
- Ex: h(0) = 1, h(1) = 3, h(3) = 5

